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Abstract—The quality of life is significantly affected by abnor-
malities in gait brought on by diseases like flat feet, Parkinson’s
disease, or stroke. This work presents the development of a
plantar pressure monitoring system that utilizes gait analysis
to aid in clinical evaluation and rehabilitation. The technol-
ogy records pressure data in real-time at key plantar areas
using eight Force Sensitive Resistor (FSR) sensors inserted in
a mat. Reconstructing high-resolution plantar pressure maps
from a small number of sensor inputs is made possible by an
innovative use of compressed sensing (CS). For accurate signal
reconstruction, the system employs a K-SVD-based dictionary
learning framework combined with Orthogonal Matching Pursuit
(OMP), where the pressure map is modeled as a sparse signal
in a learned representation domain. Experimental results using
a public dataset and real measurements demonstrate that the
reconstructed images closely match ground truth data, with a
Pearson correlation of 95.65%. This proves the feasibility of
reconstructing detailed pressure distributions from sparse input

data.
Index Terms—FSR; pressured mat; smart insole; compressed

sensing.

I. INTRODUCTION

Daily mobility and physical activity are essential human
needs. However, many people experience difficulties in move-
ment due to congenital conditions (such as flat feet), Parkin-
son’s disease, or post-stroke sequelae. These problems often
result in gait imbalances, negatively impacting mobility and
overall quality of life. Consequently, recent studies [1]—[3]
have focused on developing systems to assist in the diagnosis
and treatment of motor disorders. An widely adopted approach
involves analyzing the distribution of plantar pressure during
movement [4]. However, most current sensing systems are
limited to monitoring contact forces and do not adequately
assess or predict movement patterns in individuals with dis-
abilities. Therefore, the development of a plantar pressure
measurement system integrated with gait analysis to support
rehabilitation is both necessary and timely. In this study, the
authors employ Force Sensitive Resistor (FSR) sensors due
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to their advantages of being thin, lightweight, and easily
integrable into mats or shoe insoles. FSR sensors generate
voltage signals that vary with the applied force, making them
suitable for electronic signal processing. However, given the
small magnitude and susceptibility to noise of these signals,
the research focuses on optimizing sensor configuration, signal
amplification, and noise filtering. The acquired data are then
fed into an artificial intelligence (AI) model to reconstruct
and predict plantar pressure maps. This system facilitates
gait assessment by comparing with normative patterns and
suggesting interventions to improve mobility in people with
disabilities. To prove the concept and prototype system, the
authors focus on the reconstruction of static foot pressure
based on the Compressed Sensing method.
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Fig. 1. System Overview of the Plantar Pressure Measurement System and
Eight sensor locations as pixels of image.

II. PROPOSED DATA ACQUISITION AND
REGENERATION TECHNIQUES
According to recent studies [5] a typical plantar pressure
measurement system comprises three main components, as
illustrated in Fig. 1. Pressure sensors can be implemented

ICOIN 2026



using various technologies such as resistive, capacitive, or
piezoelectric sensors [6], [7]. They are strategically placed
on the insole or a rubber mat to capture pressure data at
key contact points during movement. (II) Data acquisition and
processing unit includes electronic components such as ana-
log—to—digital converters (ADC), a micro-controller (MCU),
and communication modules. The analog signals from the
pressure sensors are converted into digital form for further
processing, storage, or transmission to the analysis system.
(II) Data analysis or reconstruction system applies machine
learning techniques, artificial neural networks (ANN), or other
Al algorithms to analyze pressure patterns, reconstruct plantar
pressure maps, and support clinical diagnosis or gait analysis.

A. FSR piezoresistive sensor

To enable real-time monitoring and analysis of gait param-
eters, the sensors must meet several requirements, including
linearity, pressure range, and frequency response, and repeata-
bility.

The FSR sensor (Fig. 2 (a-b) is a passive two-terminal
device whose resistance changes — increases or decreases —
when pressure is applied to the sensor sensitive area (SSA)
[8], [9]. The SSA is typically composed of conductive particles
randomly dispersed within a non-conductive polymer matrix.
This layer is sandwiched between two metal electrodes, and
the resulting change in resistance is measured. Materials com-
monly used in the fabrication of the SSA include elastomers,
rubber, and polydimethylsiloxane (PDMS). The conductive
particles can be derived from various metals, such as nickel
or copper, with particle sizes ranging from tens of nanometers
to several micrometers.

(a) l,F (b)

Electrodes

(d) vcc-3v3
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Fig. 2. (a) FSR piezoresistive sensor structure; (b) FSR piezoresistive sensor;
(c) the equivalent electrical circuit model of a FSR; (d) The circuit schematic
of the voltage divider configuration.

When a force is applied, the conductive particles within the
SSA move closer together, resulting in a decrease in the sensor
resistance (Fig. 2 (c-d)). At this point, the resistance of the FSR
sensor can be determined using the following equation:

Rtotal = 2RCon + RPO] (1)
Lcc : RFSR

‘/ = 2

7 Ry + Resr @

After minimizing the influence of power supply noise, a
relationship between applied pressure and the electrical resis-
tance characteristic of the sensor must be addressed because
of variations in the number and distribution of conductive
particles within the polymer layer of each sensor. Standard
calibration weights were applied statically to the FSR sensors
to generate a range of known pressure values.

B. Sensor array design and signal acquisition circuit

1) Sensor Placement: Accurately capturing the force dis-
tribution at various locations on the foot during movement is
essential for monitoring individuals undergoing rehabilitation.
Based on a review of recent studies [10], the authors identified
eight key locations on the human foot for sensor placement
(Fig. 1). Placing sensors at these critical locations allows for
the collection of important data regarding plantar pressure
distribution. This configuration is also applicable to individuals
with flat feet. Therefore, the system is suitable for gait analysis
and functional assessment in both normal and pathological
cases.

2) Sensor data acquisition system: This section focuses
on accurately measuring the resistance values of FSR sensors
based on previously calibrated data. Each sample undergoes
multiple measurements. After completing the sensor calibra-
tion, the authors designed a signal acquisition system using
eight FSR sensors (Fig. 3) arranged on a mat to collect
pressure data from various locations on the foot. The varying
resistance signals from the FSR sensors are first fed into
a signal conditioning unit, which performs voltage division,
noise filtering, and level shifting to ensure compatibility with
the analog-to-digital converter (ADC). The ADC then converts
the analog signals into digital data, which is read by a micro-
controller unit (MCU). The MCU performs initial processing
and transmits the data to a computer (PC) for storage, visual-
ization, or further analysis (e.g., Al processing).

FILTER

PREPROCESSING

Fig. 3. Block diagram of the sensor data acquisition system.

Given the small variations in sensor resistance and the
need for a sufficiently high sampling rate to capture dynamic
human movements, the STM32F103C8T6 micro-controller
was selected due to its 72 MHz clock speed. In addition,
the system incorporates the ADS1115 module, which offers
a resolution of approximately 800 ADC counts within a 0.1V
input range. To meet real-time measurement requirements and
maintain high sampling frequency, the authors integrated the
FreeRTOS (Real-Time Operating System) into the system.
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FreeRTOS enables concurrent (logically parallel) execution of
tasks such as sensor data reading and data transmission. This
design optimizes system performance and minimizes data loss
when the MCU is occupied with processing or communication
tasks.

C. Compressed sensing method — Data reconstruction

1) Compressed sensing model for plantar pressure map re-
construction: Compressed sensing (CS) is a signal acquisition
and reconstruction framework that enables accurate recovery
of high-dimensional signals from a significantly reduced num-
ber of measurements by exploiting sparsity in an appropriate
representation domain. This paradigm is particularly well
suited to plantar-pressure measurement systems, where the
number of available physical sensors is inherently limited.

Y ®

Fig. 4. Schematic of measurements in the compressed sensing framework
[11].

Within the CS framework, the plantar pressure distribution
X € RY is not directly observed. Instead, a reduced set of
linear measurements is acquired through a sensing matrix ¢ €
RM*N "with M < N, according to:

Y =0X 3)

When the pressure map admits a sparse representation in a
dictionary U, i.e., X = UX , the measurement model can be
equivalently expressed as:

Y = dUX 4)

Reconstruction of the full plantar pressure map is then for-
mulated as a sparse recovery problem, in which the objective
is to estimate the sparse coefficient vector X from the com-
pressed measurements Y. Fig. 4 illustrates the schematic of the
measurement process in the compressed sensing framework,
highlighting the relationship between the original pressure
map, the sensing matrix, and the compressed measurements.
In the considered plantar-pressure application, measurements
are obtained via single-point pressure sensors, and the sensing
matrix @ is therefore fixed and directly determined by the
physical sensor layout. By exploiting a learned dictionary
W and sparse recovery algorithms, the full plantar pressure
distribution can be reconstructed from these limited sensor
measurements.

2) Dictionary Learning and Sparse Recovery Algorithms
(K-SVD and OMP): To enable sparse representations of plan-
tar pressure maps within the compressed sensing framework,
a data-driven dictionary is first learned using the K-SVD
algorithm. K-SVD is an iterative dictionary learning algorithm
that seeks an overcomplete dictionary ¥ enabling each training
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sample z; to admit a sparse representation 2; such that
x; ~ Uiy

N
JEE}; Jzi — Uii|3 st [|&]o < s, (5)

where s denotes the prescribed sparsity level. This objective
constitutes the loss function minimized during training. The
algorithm alternates between two stages. In the sparse-coding
stage, the dictionary W is fixed and each sparse vector ; is
estimated by solving equation (6), typically using Orthogonal
Matching Pursuit (OMP).

#; = argmin ||z; — U2||3 st 2o < s (6)
x

In the dictionary-update stage, each atom vy, is refined by
isolating its contribution to the representation error. Let Ej,
(equation(7)) be the residual matrix excluding atom k, and
let E](ﬂR) contain only the columns for which the coefficient
associated with 1 is nonzero.

B, =X — Zzz;jge} (7)
i#k

Applying singular value decomposition E,ER) = UxVT,
the atom and its active coefficients are jointly updated as
Y =U(, 1);5023) = X%(1,1)V(:,1). Through this alternating
procedure, K-SVD progressively refines both dictionary atoms
and sparse codes to achieve increasingly accurate sparse
representations of the training data.

Given the learned dictionary, sparse coefficient estima-
tion from compressed measurements is then performed using
Orthogonal Matching Pursuit (OMP). Orthogonal Matching
Pursuit (OMP) is a greedy sparse-recovery algorithm used to
estimate a sparse representation & from compressed measure-
ments. In the compressed sensing model y = ®x = PVz,
OMP seeks the sparse vector & whose dictionary-based syn-
thesis W best matches the measurements. At each iteration,
the algorithm identifies the dictionary atom that has the highest
correlation with the current residual, augments the active set of
selected atoms, and solves a constrained least-squares problem
to update the estimate of 2. The residual is then recomputed
and the process repeats until a predefined sparsity level or
reconstruction criterion is satisfied. Thus, OMP provides the
sparse coefficients required to reconstruct the foot-pressure
signal under limited sensing.

3) Experimental Model Construction: Fig. 1 illustrates the
eight sensor positions as pixels in the image. These positions
directly determine the structure of the sensing matrix &.
After determining the sensor locations, the pressure map X
is flattened by stacking the columns of the original pressure
image (with resolution n; x ny = 40 x 20) into a single vector
of 800 length. The matrix ® serves to select the corresponding
values from X to form the measurement vector P.

Specifically, ® is a binary matrix of size M x N, where each
row contains a single value of 1 at the index corresponding to
the position of a sensor in the flattened vector X . The non-zero
elements of matrix ® are visualized in Table I.



Finally, to reconstruct the original signal, a basis matrix ¥
of size N x N’ is required. In this study, the authors selected
N’ = 50, resulting in a transform basis matrix ¥ of size
800 x 50. Training this matrix ¥ so that the transformed
signal X is sufficiently sparse helps to improve the accuracy
of reconstruction. In the experiments, a sparsity level of s = 2
was chosen.

TABLE I
SENSOR POSITION MAPPING IN MATRIX ¢

Index | Value

284 7.0 (0, 352, 1)
290 6.0 (1, 540, 1)
340 3.0 (2, 340, 1)
352 1.0 (3,535, 1)
446 8.0 (4, 451, 1)
451 5.0 (5, 290, 1)
535 4.0 (6, 284, 1)
540 2.0 (7, 446, 1)

High-Resolution Images X [ Sensor Readings Y ] [Measurement Matrix (D]

Dictionary Learning
[ Dictionary W ]—b[ Sparse Solver Y =@ W X ]17

l

[ X (Sparse Coefficients) ]
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[ Reconstructed High-Resolution Image X J

Fig. 5. Diagram of Dictionary Learning and Image Reconstruction.

The input data used in this study was sourced from a
publicly available “Pressure Sensor Heatmap-RGB” dataset
on Kaggle.com [12], a well-known platform that provides
machine learning datasets and model examples. This data set
comprises 1801 images of plantar pressure heat maps, each
224 x 224, from both feet, and was originally designed for
applications in gait analysis and anomaly detection in medical
diagnostics. Based on the data set, the authors reconstructed
the plantar pressure maps following the procedure illustrated
in Fig. 5.

ITII. RESULTS
A. Sensor Calibration Results

To calibrate the sensors, different standard weights were
applied to generate the corresponding resistance values. These
resistance changes, in turn, caused variations in the output
voltage of the voltage divider circuit. For this reason, the
authors chose to use ADC values to plot the relationship
between pressure and resistance. The corresponding figure
shows that the sensor error ranges from 0% to 5%, depending
both on the sensor characteristics and on the measurement
systems itself. The fitted equations in the plot follow an
exponential function form. The coefficient of determination

R2, which measures how well a regression model explains the
variation in the predicted data compared to the actual data, was
used to assess the quality of the fit (Fig. 6). It is calculated as
follows:

SS,
2 res
R*=1-0 (8)
tot
FSR3
2x10°
2x10° .
2x10°
g 2x10%
<
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2x10* T
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Fig. 6. Graph of the relationship between pressure and ADC.

where 5SS is the residual sum of squares between the
actual and predicted values, and SSy, is the total sum of
squares between the actual values and their mean.

The value R? represents the reliability of the fitted model
in capturing the data trend. In this study, the R? values for
the pressure-ADC relationship reached 0.98, indicating that
the curve can closely approximate the actual pressure values
based on the ADC readings.

Fig. 7. Experimental plantar pressure measurement array.

The derived equations serve as the foundation for the
construction of the foot pressure measurement system, which
includes eight sensors. Each sensor requires a separate cali-
bration equation to predict the pressure values from the ADC
readings. This approach helps minimize potential errors in
the measurement system by accounting for the individual
characteristics and variability of each sensor.

B. Plantar Pressure Measurement System

A healthy volunteer with no known foot disorders and a
body weight of 65 kg applied static pressure to the measure-
ment system, where the pressure sensors were arranged as
shown in Fig. 7.

The signals acquired from the sensors were passed through
calibration functions specific to each sensor, as shown in Table
1L
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From Table II, it is evident that sensors located at positions
1, 3, 4 and 7 recorded significantly higher values compared to
the others. This reflects the non-uniform pressure distribution
under the plantar surface. These sensor positions correspond
to anatomical regions such as the heel, metatarsal heads, and
the area near the big toe — which are typically the main load
bearing regions during standing. In contrast, the sensor at
position 5 consistently recorded near-zero values throughout
all measurements, indicating a region not in direct contact
with the surface-consistent with the anatomical location of the
medial arch. Other sensors, such as those at positions 2, 6, and
8, reported low pressure values, suggesting they are located in

areas that bear minimal load.

TABLE 11
CALIBRATED PRESSURE VALUES AT EACH SENSOR POSITION

STT | ST1 | ST2 | ST3 | ST4 | ST5 | ST6 | ST7 | ST8
1 3.65 | 0.27 | 1.03 | 0.90 | 0.00 | 0.17 | 2.36 | 0.07
2 443 | 027 | 098 | 0.80 | 0.00 | 0.17 | 2.52 | 0.08
3 401 | 028 | 1.30 | 1.10 | 0.00 | 0.20 | 1.81 | 0.06
4 405 | 032 | 1.22 | 1.10 | 0.00 | 0.21 | 2.17 | 0.07
5 448 | 035 | 142 | 1.10 | 0.00 | 0.12 | 1.63 | 0.06
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Fig. 8. Comparison between reconstructed and ground truth signal.

These findings indicate that the input signal naturally ex-
hibits sparsity, with only a few positions registering significant
pressure values. This sparsity is advantageous for applying
compressed sensing methods. The calibrated data are then
used to construct the measurement vector Y, and the sparse
spatial structure of the signal improves the reconstruction
performance when using OMP algorithms.

C. Training Al Using the Compressed Sensing (CS) Algorithm

After constructing all the necessary matrices for reconstruct-
ing the signal X from the measurement vector Y, the original
signal X is estimated using the equation 5.

The input pressure map dataset was split into two subsets:
70% for training the K-SVD algorithm and the remaining 30%
for testing purposes. A random image from the test set was
selected to evaluate the reconstruction performance.

To verify the theoretical feasibility of sparse recovery, we
evaluate the mutual incoherence between the sensing matrix ¢
and the learned dictionary W. Based on the standard definition
of mutual incoherence

p = max (i, 0],

where all sensing vectors ¢; (rows of ®) and basis atoms 1),
(columns of W) are normalized in the /5 sense, we obtain an
incoherence value of approximately ;o ~ 0.21. According to
the classical sufficient condition established by Donoho and
Elad [13], and later refined in Tropp [14], accurate recovery
of any s-sparse signal via ¢; minimization is guaranteed

whenever:
1 1
<-(1+4+—-
’ 2< +u>

Substituting 1 = 0.21 yields, s < 2.88, indicating that
theoretical guarantees hold only for signals with sparsity level
up to s = 2.

In the context of plantar-pressure measurement with a
severely limited number of sensors, the acquisition process
must rely on single-point measurements, leading to a Single-
Pixel sensing matrix. An incoherence level of 1 ~ 0.21
suggests a moderate degree of incompatibility between ¢ and
W, which may be acceptable for signals with very low intrinsic
sparsity.

Fig. 8 clearly demonstrates the resemblance between the
original and reconstructed signals when represented as one-
dimensional vectors. Fig. 9 compares the original and recon-
structed pressure maps after reshaping them back into two-
dimensional space. Despite using only data from 8 sensors,
the reconstruction algorithm successfully preserves the shape
and spatial characteristics of the original image. This demon-
strates the feasibility of reconstructing plantar pressure maps
using the Compressed Sensing (CS) approach, especially in
applications with a limited number of sensors.
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Fig. 9. Ground Truth and Reconstructed Pressure Maps.

To quantify the similarity between the original and re-
constructed images, the Pearson correlation coefficient was
employed, calculated as follows:

D o{ O (1)
Vw22 0)

To evaluate the Pearson correlation of the algorithm, the
authors only considered values above 5 in Fig. 8, as points

close to zero correspond to locations without applied force.

(10)
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The results show a Pearson correlation of 97.43% in Fig. 8
and an average Pearson coefficient of 95.01% across the test
set.

D. Reconstruction of Plantar Pressure Maps Using Compres-
sive Sensing

Based on experimental data collected from the pressure
measurement system with 8 sensors, the authors carried out
the reconstruction of plantar pressure distribution images using
a pre-trained model. Since the images in the initial training
set were normalized with a maximum pixel value of ap-
proximately 255, the actual measured values from the sensor
were adjusted to ensure consistency in the value domain.
Specifically, the authors scaled the measured sensor values
by an appropriate factor to align them with the range of the
training data.

Fig. 10 illustrates the result of reconstructing a plantar
pressure image from 8 input values corresponding to the posi-
tions of the sensors. The reconstructed image demonstrated
the algorithm’s ability to recover the overall shape of the
plantar pressure distribution, including key structural features
such as pressure points under the heel and toes. Despite the
limited number of input sensors, the employed Compressed
Sensing algorithm successfully reconstructed an image with
high structural similarity to the training data in terms of both
shape and pixel distribution.
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Fig. 10. Reconstruction from 8 sensor values using the CS algorithm.

IV. CONCLUSION

Upon completing the proposed tasks, the authors developed
a standardized resistive sensor system, establishing individ-
ual calibration equations for each sensor integrated into the
generalized 8-sensor pressure measurement framework. This
system, combined with the Compressed Sensing (CS) algo-
rithm, enabled the reconstruction of plantar pressure maps
from limited sensor input.

In the future, this work can be extended by deploying FSR
sensors on larger mats that cover the full contact area of
the foot during gait. Increasing both the sensor density and
distribution area would improve spatial resolution and enable
more comprehensive data acquisition, especially for analyzing

complex or abnormal gait patterns, such as those observed in
individuals with disabilities.

Furthermore, instead of relying solely on simulated or
normalized data, the system could integrate Al training pro-
cesses using actual measurements from a diverse group of
participants. This approach would enable the model to learn
the natural variations in gait and pressure distribution across
different walking patterns, thereby enhancing the accuracy and
adaptability of the reconstructed pressure maps.

Finally, incorporating deep learning techniques and real-
time processing could unlock broader applications in con-
tinuous motion tracking systems, personalized rehabilitation
support, and early detection of gait anomalies.
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