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Abstract—Hematopoietic Stem Cell Transplantation (HSCT)
requires sufficient mobilization of stem cells from healthy al-
logeneic donors. However, some donors, termed poor mobiliz-
ers, fail to yield adequate cells despite mobilization, leading
to delays and adverse outcomes. To address this challenge,
we propose an explainable machine learning framework that
classifies donors into poor and good mobilizers using clinical
features. The method integrates Recursive Feature Elimination
and the XGBoost classifier into a lightweight pipeline suitable
for deployment in multi-center, network-based clinical decision-
support systems. The proposed model achieves 96.1% accuracy,
98.7% AUC, and 98.1% recall for poor mobilizers. To enhance
interpretability, we employ SHAP to quantify the contributions
of key clinical factors such as Platelet count, Age, and MCV.
These explanations confirm established predictors while suggest-
ing exploratory insights, supporting the potential of explainable
Machine Learning (ML) to improve donor screening in HSCT.

Index Terms—Explainable Machine Learning, SHAP,
Hematopoietic Stem Cell Mobilization.

I. INTRODUCTION

Hematopoietic stem cell transplantation (HSCT) is a cura-
tive therapy for hematologic malignancies and severe blood
disorders. A critical step for successful transplantation is the
mobilization of hematopoietic stem cells (HSCs) from the
bone marrow into peripheral blood, usually induced with
granulocyte colony-stimulating factor (G-CSF). Adequate mo-
bilization is required to collect sufficient CD34+ cells for
engraftment. However, a subset of donors, known as poor
mobilizers, fail to achieve the required yield despite standard
regimens, resulting in repeated procedures, increased costs,
and treatment delays [1]. Early identification of poor mobiliz-
ers is therefore essential for optimizing donor selection and
transplant planning.

Conventional predictors such as donor age, body mass
index (BMI), and blood indices are readily available but often
lack accuracy and fail to capture nonlinear interactions [2].
In recent years, machine learning (ML) approaches have
demonstrated significant potential in biomedical prediction
tasks, including donor classification and transplant outcome
forecasting. Nevertheless, most existing studies focus primar-
ily on achieving high predictive accuracy while neglecting the
interpretability of the models. The resulting “black-box” nature
of ML remains a major barrier to clinical use, as physicians re-
quire transparent reasoning to trust predictions [3]. In addition
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to clinical relevance, predictive models for donor mobilization
can support connected and distributed HSCT workflows, where
donor evaluation often occurs across multiple hospitals and
laboratories. Lightweight and explainable ML models are in-
creasingly important in such networked clinical environments,
as they reduce communication overhead, allow transparent
model sharing, and enhance reliability within federated or
cloud-edge medical systems. Therefore, an interpretable and
feature-efficient ML framework may contribute not only to
clinical decision-making but also to broader information net-
working infrastructures that enable real-time donor assessment
across institutions.

To address both the clinical and system-level needs, we pro-
pose an explainable ML framework using the XGBoost clas-
sifier combined with SHapley Additive exPlanations (SHAP).
This approach not only achieves high predictive accuracy
for identifying poor mobilizers, but also provides transparent
explanations of feature contributions, offering insights at both
global and individual levels. To the best of our knowledge,
this is the first study to apply SHAP for explaining donor mo-
bilization outcomes in HSCT. Our approach not only confirms
established predictors such as platelet count and age, which
are well supported by clinical literature, but also highlights ex-
ploratory factors such as mean corpuscular volume (MCV) and
albumin, which may offer novel biological insights into mo-
bilization heterogeneity. By bridging predictive performance
with interpretability, this study contributes both a practical
screening tool for clinicians and a deeper understanding of the
biological variability in HSC mobilization, thereby supporting
more reliable and transparent decision-making in HSCT donor
management.

II. PROPOSED METHOD

The proposed workflow consists of five steps, as illustrated
in Fig.1. First, donor data mobilized with G-CSF are prepro-
cessed to handle missing values and noise, and the Synthetic
Minority Oversampling Technique (SMOTE) is applied to
address the class imbalance between poor and good mobilizers.
The dataset is subsequently divided into 80% for training and
20% for testing to enable model development and independent
evaluation.
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Fig. 1. Overview of the proposed method.

Second, feature selection is conducted using Recursive
Feature Elimination (RFE) in order to remove irrelevant or
redundant predictors and to retain a subset of clinically mean-
ingful features. This step ensures that the model is trained
on variables that contribute most to mobilization outcomes,
reducing overfitting and improving interpretability.

Third, the XGBoost classifier is trained on the selected fea-
tures. Hyperparameters are optimized through 10-fold cross-
validation on the training set, providing a robust estimation of
model performance and preventing overfitting. The optimized
model is then evaluated on the held-out testing set and further
validated on the entire dataset (excluding SMOTE-generated
samples). Performance is assessed using commonly reported
metrics in medical ML applications, including accuracy, AUC,
and recall, with particular emphasis on recall for poor mobi-
lizers due to its clinical importance.

Finally, explainable machine learning techniques are applied
to enhance the transparency of the model. In this study, SHAP
(SHapley Additive exPlanations) is employed to quantify the
contribution of each feature to the model’s predictions. SHAP
provides both global explanations - ranking features by their
overall impact on predictions across all donors- and local
explanations that illustrate how specific features influence
the outcome for individual donors. This dual perspective
enables a deeper understanding of the relationship between
clinical factors and mobilization outcomes, while also offering
interpretable evidence to support decision-making in donor
screening.

A. Data

The dataset consisted of 799 allogeneic donors, shared
by Professor John F. DiPersio at Washington University [4].
Donor mobilization outcome is defined based on CD34+ cell
counts after G-CSF administration: 171 donors with CD34
counts < 40/uL are classified as poor or less-than-optimal
mobilizers (class 0), while 628 donors with CD34 counts
> 40/ L are classified as good mobilizers (class 1). The input
features include several clinically relevant variables such as
Age, Sex, Body Mass Index (BMI), Platelet count, and other
standard laboratory measures.
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Fig. 2. Confusion matrices: (left) 20% testing set, (right) entire dataset.
Class 0: Poor/less-than-optimal mobilization and Class 1: Good mobilization

TABLE I
PERFORMANCE OF XGBOOST.

Evaluation set | Accuracy | AUC | Recall (poor)
Test set (20%) 87.3% 94.9% 90.7%
Entire dataset 96.1% 98.7% 98.1%

B. Feature Selection

Using RFE, a total of 35 features are selected and retained
for subsequent model training. Because the final model focuses
on a curated set of clinically meaningful features rather
than the full laboratory profile, it remains feasible for use
in distributed or bandwidth-limited network settings, where
transferring complete donor datasets between HSCT centers
may be inefficient.

C. Model

For classification, we employ the Extreme Gradient Boost-
ing (XGBoost) algorithm, an ensemble method based on
gradient boosting known for its high predictive accuracy,
robustness, and computational efficiency [5].

ITI. RESULTS
A. XGBoost Performance

As shown in Fig. 2, XGBoost achieves high classification
accuracy. On the 20% testing set (252 donors), 103 of 123
poor mobilizers and 117 of 129 good mobilizers are correctly
classified, with only 32 misclassifications in total. On the
entire dataset (799 donors), 152 of 171 poor and 616 of
628 good mobilizers are correctly classified, confirming the
model’s robustness.

Table I summarizes the overall performance. On the testing
set, the model achieves an accuracy of 87.3%, an AUC of
94.9%, and a recall of 90.7% for poor mobilizers. On the
entire dataset, the accuracy, AUC, and recall further improve to
96.1%, 98.7%, and 98.1%, respectively. These results demon-
strate reliable discrimination, with particularly high recall
for poor mobilizers—clinically important since missing poor
donors leads to failed mobilization and unnecessary costs.

B. Explainability Analysis

1) Global explanation with SHAP: As shown in Fig. 3,
SHAP summary plot ranks features by average impact, with
each point representing a donor: positive SHAP values indicate
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Fig. 4. SHAP dependence plot for Platelet count, colored by Age.

higher risk of poor mobilization, while negative values indicate
good mobilization.

The five most influential predictors are Platelet count, MCYV,
BMI, Albumin, and MCH. For example, older age is associated
with poor mobilization, in line with clinical knowledge that
hematopoietic stem cell yield declines with donor age. Higher
Platelet counts are linked to successful mobilization, consistent
with established clinical evidence that platelet levels strongly
predict CD34+ yield [6]. In contrast, MCV shows a novel
association with poor mobilization, highlighting its exploratory
value for future study. These findings are consistent with clini-
cal knowledge, suggesting that the model captures biologically
plausible risk factors in stem cell mobilization.
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Fig. 5. SHAP waterfall plot illustrating feature contributions.

2) Feature-level explanation (SHAP dependence plots):
Fig. 4 shows the SHAP dependence plot for Platelet count,
with color indicating Age. Lower platelet counts are associated
with positive SHAP values, shifting predictions toward poor
mobilizers, while higher platelet counts decrease the probabil-
ity of poor mobilization. The color gradient further suggests
that older donors (red points) remain at higher risk even with
moderate platelet levels, whereas younger donors (blue points)
are more likely to mobilize well.

3) Local explanation for an individual donor: As shown
in the SHAP summary plot (Fig. 3), higher Platelet count and
Uric acid generally reduce the likelihood of poor mobilization.
However, the SHAP waterfall plot for the donor in Fig. 5
illustrates how individual risk profiles can deviate from global
trends. For this donor, relatively low Platelet count, low Uric
acid, and high MCV are the strongest positive contributors,
increasing the probability of poor mobilization. In contrast,
BMI and Total Bilirubin show negative contributions, lowering
this probability. This comparison highlights how SHAP links
population-level patterns with case-specific explanations, pro-
viding both biological plausibility and clinically interpretable
insights.

IV. DISCUSSION

The results indicate that explainable ML can support early
identification of poor mobilizers in the HSCT workflow. SHAP
offers transparent and clinically interpretable insights, address-
ing a major limitation of previous black-box prediction ap-
proaches. In addition, relying on selected clinically meaningful
features suggests that the model can be deployed efficiently
within network-based or multi-center HSCT environments,
where rapid sharing of interpretable predictions is valuable.
Although the model performs well, future work may include
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external validation or subgroup-level robustness analysis to
further strengthen clinical reliability.

V. CONCLUSION

This paper has proposed an explainable ML framework for
predicting poor stem cell mobilizers in HSCT donors. The
XGBoost model achieved high accuracy with strong recall for
poor mobilizers, minimizing missed high-risk cases. SHAP
confirmed known predictors such as Platelet count and Age,
while highlighting exploratory factors like MCV and Albumin.
These findings demonstrated both biological plausibility and
novel insights, supporting the clinical adoption of interpretable
ML in donor screening. Given its interpretability and reliance
on a curated set of clinically meaningful features rather
than the full laboratory profile, the proposed approach is
also suitable for integration into distributed HSCT networks,
telemedicine systems, and cloud-edge clinical infrastructures,
supporting reliable donor assessment across connected health-
care environments.
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