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Abstract— LoRa communication is currently gaining 
significant research attention globally for various applications, 
such as the Internet of Things (IoT) owing to its long-range 
transmission and energy-efficient characteristics. Meanwhile, 
Software-Defined Radio (SDR) technology, with its flexible 
customization and rapid adaptability for diverse radio 
applications, fully meets the requirements of such 
communication systems. While simulation studies and 
commercial deployments exist, there is a lack of reports that 
integrate theoretical evaluation with experimental validation on 
SDR platforms, particularly those incorporating a real-time 
monitoring framework. This paper presents a complete LoRa 
testbed based on ADALM-PLUTO and GNU Radio, which 
integrates a real-time dashboard using Node-RED, MQTT, and 
Database Management System (DBMS). The research 
methodology comprises two parts: (i) Monte Carlo simulations 
over an AWGN channel to establish a theoretical Bit Error Rate 
(BER) vs. Signal-to-Noise Ratio (SNR) baseline for various 
Spreading Factors and Coding Rates, combined with Time-on-
Air calculation; and (ii) experimental BER/Packet Error Rate 
(PER) measurements on the SDR platform to compare against 
the theoretical baseline and assess real-world performance. The 
real-time dashboard enables the monitoring and control of 
message transmission/reception, observation of signal strength, 
and real-time tracking of the packet error rate. 

Keywords—LoRa, Internet-of-Things, Software Defined 
Radio, GNU Radio 

I. INTRODUCTION 
The Internet of Things (IoT) is expanding at an 

unprecedented rate, generating significant demand for diverse 
connectivity technologies. To address varying requirements 
for bandwidth, range, and energy consumption, numerous 
communication technologies have been developed: 5G 
provides high bandwidth and low latency; WiFi and Bluetooth 
are suitable for local area networks; NB-IoT is optimized for 
stationary devices; whereas Low-Power Wide-Area Network 
(LPWAN) technologies, such as LoRa, are specifically 
designed for long-range communication with extremely low 
power consumption.These characteristics have led to LoRa's 
widespread adoption in diverse domains: smart agriculture, 
smart cities, industry, and scenarios involving complementary 

connectivity via LEO satellites to extend coverage to remote 
regions. Utilizing a star topology, end-devices communicate 
with LoRa gateways, which then relay data to a network 
server, creating a flexible ecosystem for large-scale IoT 
applications. 

The LoRa technology stack is divided into two main 
components: The LoRa PHY (Physical Layer) and 
LoRaWAN (MAC Layer) [1]. The LoRa PHY employs CSS 
modulation, which is proven to be highly robust against in-
band and out-of-band interference—a common issue in shared 
ISM bands. The LoRaWAN protocol operates at the MAC 
Layer, managing medium access control corresponding to the 
Data Link Layer of the OSI 7-layer model [2]. While the 
LoRaWAN MAC protocol is an open standard, the LoRa PHY 
is proprietary technology owned by Semtech. This proprietary 
nature obscures many specific implementation details from 
the research community, impeding the full exploration of its 
potential, hindering performance enhancements, and limiting 
the development of advanced LoRa-based applications. This 
information gap has motivated numerous reverse-engineering 
efforts to gain a comprehensive understanding of its 
underlying mechanisms, including packet modulation, 
demodulation, and preamble detection. 

Currently, to mitigate this opacity, Software-Defined 
Radio (SDR) platforms have become essential tools for 
reverse-engineering and analyzing the LoRa PHY. SDR 
devices allow researchers to bypass fixed commercial 
transceivers in favor of flexible, software-controlled 
implementations [3], [4]. However, existing SDR-based 
testbeds often face challenges related to high hardware costs 
or incomplete open-source support. 

Hereby, we present the design, development, and 
performance analysis of a comprehensive LoRa 
communication system implemented on SDR. The primary 
objective is to create a flexible, low-cost, and reproducible 
testbed that enables in-depth investigation of the LoRa 
physical layer, free from the constraints of proprietary 
commercial hardware. Our system utilizes the ADALM-
PLUTO hardware, is implemented entirely using open-source 
tools, and this paper evaluates its resulting performance. 
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The rest of this paper is structured as follows. Section II 
describes the detailed architecture and implementation of the 
system. Section III evaluates its performance. Finally, we 
conclude the paper in Section IV. 

II. SYSTEM DESIGN AND IMPLEMENTATION 
In this section, we present the implementation of the LoRa 

communication system and a web-based interface designed 
to monitor and control the message transmission and 
reception process between two ADALM-PLUTO devices 
which is called LoRaSDR Chat. 

A. Communication System 
 The system is primarily implemented within the GNU 
Radio environment, a leading open-source software 
development framework specifically designed for Software-
Defined Radio (SDR) applications. GNU Radio was selected 
as the development platform due to its high degree of 
modularity and visual development paradigm. This 
characteristic permits the rapid design and prototyping of 
complex signal processing flowgraphs by graphically 
interconnecting discrete functional blocks. We have extended 
the Web Application Programming Interface (API) to 
incorporate the MQTT protocol, and the source code 
including GNU Radio Python Scripts and Node-RED Flow 
Scripts is now publicly accessible on GitHub1. 

 As the LoRa Physical Layer (PHY) processing blocks are 
not standard components within GNU Radio, the core of this 
SDR-based LoRa implementation utilizes a third-party, open-
source module available on GitHub (tapparelj/gr-lora_sdr) 
[5]. This module provides the necessary LoRa modulator and 
demodulator blocks. On the hardware side, each ADALM-
PLUTO (PlutoSDR) device is connected via USB to a Linux 
host computer executing the GNU Radio flowgraph. A typical 
GNU Radio flowgraph for a LoRa link comprises two main 
processing streams, operating on separate devices: 

• Transmission (Tx) Flow: This processing stream 
begins with a Message Source block to generate the 
payload, such as a user-defined text string or binary 
data. This data is then fed into the LoRa Modulator 
block [5], which is the core component of the 
transmitter. This block is responsible for executing 
critical PHY layer tasks. These tasks include 
generating the preamble for packet detection and 
synchronization at the receiver, applying Forward 
Error Correction (FEC) to add redundancy for 
enhancing reliability against channel noise, and 
performing the characteristic Chirp Spread Spectrum 
(CSS) modulation using "Up-chirps" [6] (linearly 
frequency-increasing signals) to encode the data 
symbols. The resulting complex baseband (digital 
chirp) signal is then passed to the PlutoSDR Sink 
block. This block interfaces with the SDR hardware, 
performs the necessary Digital-to-Analog (D/A) 
conversion, upconverts to the target RF frequency, and 
facilitates wireless transmission via the antenna. 

• Reception (Rx) Flow: Conversely, the signal is 
captured by the PlutoSDR Source block, which 
continuously samples the RF environment, performs 
Analog-to-Digital conversion and downconversion, 
and passes the resulting digital samples into the 
flowgraph. These samples are fed into the LoRa 

Decoder block [5]. This block executes the complex 
inverse operations: it first scans the incoming stream 
for preamble detection and performs packet 
synchronization. It then executes the CSS 
demodulation, typically by multiplying the received 
signal with a reference "Down-chirp" [6] (a linearly 
frequency-decreasing signal) to de-spread the desired 
signal. Finally, this block applies FEC decoding to 
correct potential bit errors and recover the original 
payload. 

In the direct communication model shown in Fig. 1, the 
signal flowgraph represents a unidirectional communication 
process, or Simplex Mode. Consequently, one Pluto device is 
assigned the fixed role of the transmitter (Tx) and the other 
Pluto device serves entirely as the receiver (Rx). The signal 
transmission path is configured to utilize a specific 
narrowband ISM (Industrial, Scientific, and Medical) 
frequency, adhering to regional spectrum regulations. 

 
Fig. 1 LoRa SDR Communication  System Model 

Analogous to a fundamental digital communication 
system, this LoRa transceiver architecture incorporates input 
message processing blocks at the transmitter, such as 
encoding (FEC) and modulation (CSS), and corresponding 
output processing blocks at the receiver, namely demodulation 
and decoding. To ensure system validation beyond simple 
time-domain waveform and frequency-domain spectral 
analysis, we utilize a complete message transmission and 
reception framework that includes error control. This end-to-
end validation approach is particularly relevant as the LoRa 
protocol is designed to operate effectively even when its signal 
strength is minimal, often significantly below the low noise 
floor [3]. Evaluating performance under such low Signal-to-
Noise Ratio (SNR) conditions necessitates testing the integrity 
of the decoded data, not just the presence of a signal. 

B. Web-based Monitoring and Control Interface 
To move beyond simple command-line validation and 

enable robust interaction, we developed a real-time, web-
based monitoring interface to visualize the 
transmission/reception process and key performance 
parameters. This system is based on a decoupled, four-
component architecture, depicted in 3, which strategically 
separates the high-fidelity signal processing layer from the 
data transport and user-facing visualization layers. This design 
ensures modularity and scalability. The four main components 
are: 

1) Data Collection in GNU Radio: At the core of the 
receiver's flowgraph, critical information is extracted in real-
time. This metadata—such as the Received Signal Strength 
Indicator (RSSI) of the latest valid packet, a cumulative count 
of received packets, the recovered message payload, and 
other PHY-layer metrics like SNR—is accessed from the 
GNU Radio environment. This is achieved by interfacing 
with the flowgraph using custom Python blocks or probes, 
which sample the data streams and prepare the information as 
structured messages (e.g., JSON) for external data exchange. 

1 github.com/Brauuwu/LoRa-SDR_Chat 

627



2) Data Transmission via MQTT Protocol: We selected 
MQTT, a lightweight application-layer IoT protocol, for its 
efficient and reliable publish-subscribe model. This model 
fundamentally decouples the data producer (the GNU Radio 
flowgraph) from the data consumers (the dashboard and 
database). We integrated MQTT Publisher blocks directly 
into the receiver's GNU Radio flowgraph. The Publisher is 
responsible for sending the collected data packets to a central 
MQTT Broker, with each data type assigned a distinct topic. 
This topic-based segregation is crucial, as it allows different 
components of the dashboard to subscribe only to the data 
streams they need, facilitating an organized and efficient 
visualization of messages versus performance parameters. 

3) Visualization in Node-RED: Node-RED serves as the 
low-code backend and frontend for our interface. As a flow-
based programming tool, it enabled the rapid development 
and iteration of the data processing logic without complex 
server-side coding. We established flows within Node-RED 
that subscribe to the relevant MQTT topics from the Broker. 
As messages arrive, they are parsed, processed, and 
channeled to the appropriate elements on the web dashboard. 
This dashboard is constructed using various graphical 
components (nodes) from the Node-RED library, such as 
time-series charts for historical data, gauges for instantaneous 
values like RSSI, and text fields for logging received 
payloads.  

4) Data Storage and Querying with DBSM: Recognizing 
that real-time monitoring alone is insufficient for rigorous 
subsequent post-analysis, we extended the processing flow in 
Node-RED. A parallel branch in the Node-RED flow is 
dedicated to data persistence. In addition to displaying data 
on the dashboard, this branch formats the received data (and 
its associated metadata like RSSI, SNR, and a precise 
timestamp) into a standardized SQL query. This query is then 
executed to insert the data into a Database Management 
System (DBMS). By storing each received packet as a 
distinct row, we create a comprehensive and permanent 
experimental log. This database is invaluable for offline 
analysis, allowing us to correlate performance metrics against 
experimental variables long after the experiment has 
concluded. 

 
Fig. 2 GNU Radio to Node-RED interfacing via MQTT, with MariaDB 
backend for data persistence and management. 

This architecture enables flexible and effective remote 
system monitoring via a standard web browser, offering an 
intuitive, consolidated overview of both the LoRa message 
reception status and the receiver's physical layer parameters. 

To complete this framework, a Graphical User Interface 
(GUI) was constructed using the nodes available in the Node-
RED Dashboard. This interface provides a unified visual 
control and monitoring hub, enabling operators to interact 
with and evaluate the LoRa system's performance in real-
time. The GUI is segmented into three primary, functionally 
distinct panels: 

• Control and Sending Panel: Positioned on the left, 
this section provides a proactive mechanism for 
testing the communication link. It contains a text 
input field for message composition and a "SEND" 
button. When this button is pressed, the message 
payload is not handled locally; instead, it is 
published via MQTT to a separate topic. The 
transmitter's GNU Radio flowgraph, running on a 
different host, subscribes to this topic. This allows 
the operator to trigger on-demand transmissions 
directly from the web interface without requiring 
physical intervention or reconfiguration of the active 
flowgraph, thus creating a complete, closed-loop 
testing environment. 

• Monitoring and Feedback Panel: The central area 
of the GUI serves as the primary real-time feedback 
log. It displays a timestamped, scrolling log of all 
successfully received messages, providing 
immediate confirmation of data integrity. Alongside 
this, it aggregates and displays critical performance 
statistics, such as the count of errored or missed 
packets, the calculated Bit Error Rate (BER), and 
other vital status information from the receiver. 

• Historical Charts Panel: Located on the right, this 
panel is dedicated to visualizing trends over time. It 
features dynamic charts that track the fluctuation of 
the Received Signal Strength Indicator (RSSI) and 
the configured hardware gain at the receiver upon 
capturing LoRa signals. Displaying these two 
metrics together is crucial, as it allows the operator 
to distinguish whether a change in signal strength is 
due to channel fading or an adjustment in the 
receiver's own gain settings 

III. PERFORMANCE EVALUATION 
To comprehensively evaluate the system's performance 

and validate its operational capabilities within realistic 
contexts, we designed and conducted three distinct 
experimental scenarios. These scenarios were meticulously 
structured to methodically test the system under a gradient of 
environmental conditions and with varying core LoRa 
parameters, allowing us to isolate and understand different 
performance variables. 

The first scenario focused on assessing the fundamental 
transmission range and link degradation within a controlled 
suburban environment. This setting, characterized by low-
density buildings, open spaces, and some foliage, was chosen 
to represent a baseline "lightly obstructed" deployment. In this 
experiment, the key variable was distance; the transmission 
distance was incrementally increased from 100m to 400m at 
discrete waypoints. To simulate a challenging but common 
near-ground link, typical of many ground-based IoT sensor 
deployments, both transmitting and receiving antennas were 
positioned at a low altitude of approximately 1-2m above 
ground level. This configuration intentionally introduces 
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propagation challenges from ground proximity and minor 
obstacles [7]. During this test, all core LoRa parameters were 
held constant to isolate the singular effect of path loss. The 
primary objective was to observe and quantify the degradation 
of link metrics, specifically the Received Signal Strength 
Indicator (RSSI) and the Packet Error Rate (PER), as a direct 
function of increasing distance. This allowed us to map the 
system's baseline path loss profile and identify the 
approximate range at which link reliability begins to collapse. 

The second scenario transitioned to a far more challenging 
dense urban environment. This setting was selected to test the 
system's robustness under conditions of significant multipath 
fading, high ambient RF noise levels, and heavy signal 
attenuation from concrete structures. We established a fixed-
distance link of 650m, specifically chosen to represent a 
typical urban NLOS scenario where no direct visual path 
existed between the transmitter and receiver. The low-altitude 
antenna configuration of 1-2m was deliberately maintained to 
emphasize these difficult NLOS conditions. In this harsh 
environment, the key variable under investigation was the 
Spreading Factor (SF), which was systematically varied 
across its operational range from SF7 to SF12. The core 
objective was to empirically quantify the critical trade-off 
between data rate (achieved with low SFs) and link reliability 
(provided by high SFs). By carefully measuring the Bit Error 
Rate (BER) and Packet Error Rate (PER) for each SF setting, 
we could pinpoint the exact performance gains of using 
slower, more robust modulation schemes. These empirical 
results were then compared against the theoretical 
performance baseline in an AWGN channel to evaluate the 
system's "implementation margin" and quantify the severe 
performance penalty imposed by the real-world urban 
multipath channel. 

The third experimental scenario was rigorously designed 
to evaluate the system's long-range transmission capabilities 
at a distance of 1200m, with a specific focus on the critical 
role of antenna placement, marking a significant transition 
from the near-ground NLOS conditions of previous trials to a 
more favorable LOS or near-LOS propagation model. For this 
test, the antennas were elevated to a height of 10m, 
transitioning from a near-ground NLOS setup to a more 
favorable LOS or near-LOS condition. This elevation is 
crucial as it likely clears major ground-level obstructions and 
the first Fresnel zone, mitigating the severe multipath fading 
and signal absorption experienced in the 1-2m tests. This 
scenario had a dual purpose: first, to again evaluate the impact 
of the SF on decoded signal quality at this extended range, and 
second, to assess the influence of increased antenna height on 
decoding capability and overall coverage. Comparing the 
results of this test with the previous scenarios allows for a 
clear distinction between system limitations and channel-
induced limitations. 

Before presenting the experimental results, the 
performance of the LoRa-SDR system is first analyzed via 
AWGN channel simulation. To establish a theoretical 
baseline, we performed Monte Carlo simulations over an 
AWGN channel for SF7 through SF12, with a 125 kHz 
bandwidth, hard-decision decoding, and two distinct coding 
rates (CR): 4/5 and 4/8. Fig. 3 illustrates the resulting BER vs. 
SNR curves on a logarithmic scale. At a BER threshold of 10-

3 with CR 4/5, the required SNR for each SF is approximately: 
SF7 ≈ -9 dB, SF8 ≈ -10 dB, SF9 ≈ -11.6 dB, SF10 ≈ -13 dB, 
SF11 ≈ -14.5 dB, and SF12 ≈ -16.2 dB. The use of CR 4/8 (4 

check bits) provides improved BER performance compared to 
CR 4/5 (1 check bit) due to more robust FEC, enabling 
operation at a lower SNR for the same BER level. However, 
the primary trade-off is a significant increase in the Time-on-
Air (ToA). 

For a 50-byte payload, 125 kHz BW, and an 8-symbol 
preamble, the ToA increases by 43-47% when switching from 
CR 4/5 to CR 4/8. Specifically for SF12, the ToA is 2.3s for 
CR 4/5 and 3.3s for CR 4/8 (a 42.7% increase), resulting in an 
approximate 30% reduction in throughput and a ~43% 
increase in energy consumption per packet. Table I 
summarizes the ToA for all SFs. 

TABLE I.  TIME-ON-AIR COMPARISION FOR DIFFERENT SPREADING 
FACTOR AND CODING RATES. 

 

 To rigorously evaluate the system's reliability in realistic 
operating conditions, the first experimental phase focused on 
quantifying the Bit Error Rate (BER) across transmission 
distances ranging from 130m to 410m. Both the transmitting 
and receiving antennas were positioned at a low height of 1m 
above ground level to simulate a worst-case scenario for 
ground-based IoT nodes. The system parameters were 
configured as follows: Spreading Factor (SF) = 7, Coding Rate 
(CR) = 4/5, Bandwidth (BW) = 125 kHz, and a sampling rate 
of 2 MHz. Fig. 4 illustrates the measured BER curve versus 
distance on a logarithmic scale. BER increases gradually from 
1.15×10⁻⁴ at 130m to 4.90×10⁻³ at the maximum tested range 
of 410m. Despite this increase, the connection remained 
maintained, validating the effectiveness of the LoRa physical 
layer even with the lowest spreading factor.  

 
Fig. 3 BER vs. SNR Curves for different Spreading Factors (SFs) 

Comparison with AWGN theoretical baseline: Fig. 3 
presents the BER-SNR curve obtained from Monte Carlo 
simulation over an AWGN channel. For SF7, BER = 10⁻³ 
requires SNR ≈ -9 dB according to theory. Comparing with 
experimental results, BER = 10⁻³ is achieved at approximately 
215-220m distance. Therefore, the SNR condition of ≈ -9 dB 

SF CR 4/5 (ms) CR 4/8 (ms) Increase (%) 

7 97.5 143.6 47.2 
8 174.6 254.5 45.7 
9 328.7 476.2 44.9 

10 616.5 886.8 43.9 
11 1314.8 1904.6 44.9 

12 2302.0 3285.0 42.7 
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in AWGN simulation corresponds to an actual distance of ≈ 
220m in a suburban environment with parameters SF7 and CR 
4/5. This reflects the impact of multipath fading, shadowing 
from large obstacles, noise sources, and ambient noise in real-
world environments. 

 
Fig. 4 BER Performance versus Transmission Distance for SF7 

 In the second experiment, we performed BER/PER 
measurements at a fixed distance of 650m in an interference-
heavy urban environment, with both transmitting and 
receiving antennas placed 2m above ground level. The system 
parameters were set as follows: Bandwidth (BW) = 125 kHz, 
Coding Rate (CR) = 4/6, with Spreading Factors from SF7 to 
SF12. The corresponding sampling rates are provided in the 
TABLE II. 

TABLE II.  SAMPLE RATE CONFIGURATION FOR DIFFERENT FOR 
SPREADING FACTORS 

SF 7 8 9 10 11 12 

SR 250k 250k 250k 250k 250k 125k 

 

 
Fig. 5 BER Comparison for SF9-SF12 in Urban Environment (650m) 

For SF = 7 and SF = 8, the receiver failed to decode any 
packets. This reflects a critical finding: at the 650m distance 
in the urban environment, and with a low antenna height (2m), 

the receiver sensitivity for SF7 and SF8 was insufficient to 
overcome the high interference and background noise, 
resulting in an SNR below the decoding threshold. 

For SF = 9, a BER of 1.26x10-2 was recorded. This 
indicates that while the system began to successfully decode 
some packets, the bit error rate remained extremely high. This 
high BER was corroborated by observations on the web 
interface, which indicated that "a significant number of 
packets did not reach the destination." 

For SF = 11 and SF = 12, the BER ranged from 1.46x10-2 
to 1.53x10-2 Although higher SFs (SF10-SF12) enable the 
demodulator to operate at lower SNRs due to longer symbol 
durations, the BER remained high. This is attributed to the 
severe channel conditions within the urban environment, 
characterized by numerous obstructions and heavy 
interference. 

 
Fig. 6 PER Comparison for SF9-SF12 in Urban Environment (650m) 

Furthermore, the Packet Error Rate (PER) results 
confirmed that only SF12 was sufficiently robust for 
transmission at 650m in this heavily obstructed, high-
interference urban environment with the 2m antenna height.  

 
Fig. 7 BER versus Spreading Factor with Elevated Antenna (1200m) 

630



Recognizing the pronounced impact of obstructions on 
channel quality, we relocated the transceiver system to an 
elevated height of 10m above ground. In this experiment, the 
system transmitted approximately 100 packets; the results 
were updated in real-time on the web interface and are 
summarized in the following table. SF7 yields a bit error rate 
of 0.00356, while from SF8 onwards, the system successfully 
decodes all received messages with zero errors. Notably, the 
results improve significantly despite the transmission distance 
doubling and the persistent presence of heavy noise in the 
environment.  

IV. CONCLUSION 
This research successfully presented a comprehensive and 

unified evaluation framework for LoRa communication, 
integrating an SDR platform (based on ADALM-PLUTO and 
GNU Radio) with an innovative web-based real-time 
monitoring dashboard and database logging capabilities. This 
framework addresses the critical need for end-to-end 
performance validation in practical deployment scenarios, 
supporting both theoretical analysis and experimental 
validation. The extensive experimental campaigns, conducted 
across urban, suburban, and varying antenna height 
environments, provided crucial benchmark data, clearly 
quantifying the trade-offs between range, environmental path 
loss, and link reliability (e.g., Packet Error Rate). These 
empirical results contribute vital insight into optimal LoRa 
configurations. In summary, this work advances a unified 
experimental methodology and establishes a solid foundation 

for the optimal configuration of both IoT and LEO satellite 
systems utilizing the LoRa physical layer. Future work will 
focus on extending experimental coverage, increasing the 
sample size, evaluating more complex propagation conditions, 
and developing adaptive parameter optimization mechanisms. 

REFERENCES 
[1] A. A. Abuarqoub, M. A. Ferrer, J. F. Timmons, and R. V. Prasad, "On 

the feasibility of open-source LoRa PHY implementations: A 
comprehensive study," Computer Networks, vol. 240, p. 110083, Apr. 
2024. doi: 10.1016/j.comnet.2024.110083. 

[2] V. Carvalho, M. Feldman, I. Müller, and M. Götz, "Comparison of 
simulation, SDR implementation and commercial device on LoRa 
protocol," in Proc. 2024 8th Int. Symp. Instrum. Syst., Circuits 
Transducers (INSCIT), 2024, pp. 1–6. doi: 
10.1109/INSCIT62583.2024.10693394. 

[3] J. P. de Omena Simas, D. G. Riviello, and R. Garello, "Software-
defined radio implementation of a LoRa transceiver," Sensors, vol. 24, 
no. 15, p. 4825, Jul. 2024. doi: 10.3390/s24154825. 

[4] R. M. Colombo, A. Mahmood, E. Sisinni, P. Ferrari, and M. Gidlund, 
"Low-cost SDR-based tool for evaluating LoRa satellite 
communications," in Proc. 2022 IEEE Int. Symp. Meas. Netw. (M&N), 
2022, pp. 1–6. doi: 10.1109/MN55117.2022.9887761. 

[5] J. Tapparel and A. Burg, "Design and implementation of LoRa physical 
layer in GNU radio," in Proc. 14th GNU Radio Conf., 2024. 

[6] Semtech, "LoRa and LoRaWAN: A Technical Overview," Semtech 
White Paper, 2020. 

[7] M. Bor, U. Roedig, T. Voigt, and J. M. Alonso, "Do LoRa low-power 
wide-area networks scale?" in Proc. ACM Int. Conf. Model., Anal. 
Simul. Wireless Mobile Syst. (MSWiM '16), 2016, pp. 59-67. doi: 
10.1145/2988287.2989163. 

 
 

 

631


