Developing an SDR-Based LoRa Communication
System with a Web-Based Monitoring and Control
Interface for Performance Analysis

Nguyen Viet Hung
Faculty of Telecommunications 1
Posts and Telecommunications Institute
of Technology
Hanoi, Vietnam
nvhung_vtl@ptit.edu.vn

Duong Thi Thanh Tu
Faculty of Telecommunications 1
Posts and Telecommunications Institute
of Technology
Hanoi, Vietnam
tudtt@ptit.edu.vn

Abstract— LoRa communication is currently gaining
significant research attention globally for various applications,
such as the Internet of Things (IoeT) owing to its long-range
transmission and energy-efficient characteristics. Meanwhile,
Software-Defined Radio (SDR) technology, with its flexible
customization and rapid adaptability for diverse radio
applications, fully meets the requirements of such
communication systems. While simulation studies and
commercial deployments exist, there is a lack of reports that
integrate theoretical evaluation with experimental validation on
SDR platforms, particularly those incorporating a real-time
monitoring framework. This paper presents a complete LoRa
testbed based on ADALM-PLUTO and GNU Radio, which
integrates a real-time dashboard using Node-RED, MQTT, and
Database Management System (DBMS). The research
methodology comprises two parts: (i) Monte Carlo simulations
over an AWGN channel to establish a theoretical Bit Error Rate
(BER) vs. Signal-to-Noise Ratio (SNR) baseline for various
Spreading Factors and Coding Rates, combined with Time-on-
Air calculation; and (ii) experimental BER/Packet Error Rate
(PER) measurements on the SDR platform to compare against
the theoretical baseline and assess real-world performance. The
real-time dashboard enables the monitoring and control of
message transmission/reception, observation of signal strength,
and real-time tracking of the packet error rate.

Keywords—LoRa,
Radio, GNU Radio

Internet-of-Things, Software Defined

L.

The Internet of Things (IoT) is expanding at an
unprecedented rate, generating significant demand for diverse
connectivity technologies. To address varying requirements
for bandwidth, range, and energy consumption, numerous
communication technologies have been developed: 5G
provides high bandwidth and low latency; WiFi and Bluetooth
are suitable for local area networks; NB-IoT is optimized for
stationary devices; whereas Low-Power Wide-Area Network
(LPWAN) technologies, such as LoRa, are specifically
designed for long-range communication with extremely low
power consumption.These characteristics have led to LoRa's
widespread adoption in diverse domains: smart agriculture,
smart cities, industry, and scenarios involving complementary

INTRODUCTION

979-8-3315-7896-1/26/$31.00 ©2026 IEEE

Vi Minh Hieu
Faculty of Telecommunications 1
Posts and Telecommunications Institute
of Technology
Hanoi, Vietnam
hieuvm.b22vt197@stu.ptit.edu.vn

Nguyen Kim Khoa
Department of Electrical Engineering
Ecole de technologie superieure
University of Quebec
Quebec, Canada
kim-khoa.nguyen@etsmtl.ca

626

Nguyen Quy Duong
Faculty of Telecommunications 1
Posts and Telecommunications Institute
of Technology
Hanoi, Vietnam
duongnq.b22vt1 13@stu.ptit.edu.vn

Le Van Hau
Department of Electrical Engineering
Ecole de technologie superieure
University of Quebec
Quebec, Canada
van-hau.le@etsmtl.ca

connectivity via LEO satellites to extend coverage to remote
regions. Utilizing a star topology, end-devices communicate
with LoRa gateways, which then relay data to a network
server, creating a flexible ecosystem for large-scale IoT
applications.

The LoRa technology stack is divided into two main
components: The LoRa PHY (Physical Layer) and
LoRaWAN (MAC Layer) [1]. The LoRa PHY employs CSS
modulation, which is proven to be highly robust against in-
band and out-of-band interference—a common issue in shared
ISM bands. The LoRaWAN protocol operates at the MAC
Layer, managing medium access control corresponding to the
Data Link Layer of the OSI 7-layer model [2]. While the
LoRaWAN MAC protocol is an open standard, the LoRa PHY
is proprietary technology owned by Semtech. This proprietary
nature obscures many specific implementation details from
the research community, impeding the full exploration of its
potential, hindering performance enhancements, and limiting
the development of advanced LoRa-based applications. This
information gap has motivated numerous reverse-engineering
efforts to gain a comprehensive understanding of its
underlying mechanisms, including packet modulation,
demodulation, and preamble detection.

Currently, to mitigate this opacity, Software-Defined
Radio (SDR) platforms have become essential tools for
reverse-engineering and analyzing the LoRa PHY. SDR
devices allow researchers to bypass fixed commercial
transceivers in favor of flexible, software-controlled
implementations [3], [4]. However, existing SDR-based
testbeds often face challenges related to high hardware costs
or incomplete open-source support.

Hereby, we present the design, development, and
performance analysis of a comprehensive LoRa
communication system implemented on SDR. The primary
objective is to create a flexible, low-cost, and reproducible
testbed that enables in-depth investigation of the LoRa
physical layer, free from the constraints of proprietary
commercial hardware. Our system utilizes the ADALM-
PLUTO hardware, is implemented entirely using open-source
tools, and this paper evaluates its resulting performance.

ICOIN 2026

The rest of this paper is structured as follows. Section II
describes the detailed architecture and implementation of the
system. Section III evaluates its performance. Finally, we
conclude the paper in Section IV.

II. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we present the implementation of the LoRa
communication system and a web-based interface designed
to monitor and control the message transmission and
reception process between two ADALM-PLUTO devices
which is called LoRaSDR Chat.

A. Communication System

The system is primarily implemented within the GNU
Radio environment, a leading open-source software
development framework specifically designed for Software-
Defined Radio (SDR) applications. GNU Radio was selected
as the development platform due to its high degree of
modularity and visual development paradigm. This
characteristic permits the rapid design and prototyping of
complex signal processing flowgraphs by graphically
interconnecting discrete functional blocks. We have extended
the Web Application Programming Interface (API) to
incorporate the MQTT protocol, and the source code
including GNU Radio Python Scripts and Node-RED Flow
Scripts is now publicly accessible on GitHub'.

As the LoRa Physical Layer (PHY) processing blocks are
not standard components within GNU Radio, the core of this
SDR-based LoRa implementation utilizes a third-party, open-
source module available on GitHub (tapparelj/gr-lora_sdr)
[5]. This module provides the necessary LoRa modulator and
demodulator blocks. On the hardware side, each ADALM-
PLUTO (PlutoSDR) device is connected via USB to a Linux
host computer executing the GNU Radio flowgraph. A typical
GNU Radio flowgraph for a LoRa link comprises two main
processing streams, operating on separate devices:

e Transmission (Tx) Flow: This processing stream
begins with a Message Source block to generate the
payload, such as a user-defined text string or binary
data. This data is then fed into the LoRa Modulator
block [5], which is the core component of the
transmitter. This block is responsible for executing
critical PHY layer tasks. These tasks include
generating the preamble for packet detection and
synchronization at the receiver, applying Forward
Error Correction (FEC) to add redundancy for
enhancing reliability against channel noise, and
performing the characteristic Chirp Spread Spectrum
(CSS) modulation using "Up-chirps" [6] (linearly
frequency-increasing signals) to encode the data
symbols. The resulting complex baseband (digital
chirp) signal is then passed to the PlutoSDR Sink
block. This block interfaces with the SDR hardware,
performs the necessary Digital-to-Analog (D/A)
conversion, upconverts to the target RF frequency, and
facilitates wireless transmission via the antenna.

Reception (Rx) Flow: Conversely, the signal is
captured by the PlutoSDR Source block, which
continuously samples the RF environment, performs
Analog-to-Digital conversion and downconversion,
and passes the resulting digital samples into the
flowgraph. These samples are fed into the LoRa

! github.com/Brauuwu/LoRa-SDR_Chat

627

Decoder block [5]. This block executes the complex
inverse operations: it first scans the incoming stream
for preamble detection and performs packet
synchronization. It then executes the CSS
demodulation, typically by multiplying the received
signal with a reference "Down-chirp" [6] (a linearly
frequency-decreasing signal) to de-spread the desired
signal. Finally, this block applies FEC decoding to
correct potential bit errors and recover the original
payload.

In the direct communication model shown in Fig. 1, the
signal flowgraph represents a unidirectional communication
process, or Simplex Mode. Consequently, one Pluto device is
assigned the fixed role of the transmitter (Tx) and the other
Pluto device serves entirely as the receiver (Rx). The signal
transmission path is configured to utilize a specific
narrowband ISM (Industrial, Scientific, and Medical)
frequency, adhering to regional spectrum regulations.

433 MHz / 868 MHz
SDR2
Rx
~_) T~

Ubuntu Ubuntu
22.04 22.04

SDR1
Tx

Fig. 1 LoRa SDR Communication System Model

Analogous to a fundamental digital communication
system, this LoRa transceiver architecture incorporates input
message processing blocks at the transmitter, such as
encoding (FEC) and modulation (CSS), and corresponding
output processing blocks at the receiver, namely demodulation
and decoding. To ensure system validation beyond simple
time-domain waveform and frequency-domain spectral
analysis, we utilize a complete message transmission and
reception framework that includes error control. This end-to-
end validation approach is particularly relevant as the LoRa
protocol is designed to operate effectively even when its signal
strength is minimal, often significantly below the low noise
floor [3]. Evaluating performance under such low Signal-to-
Noise Ratio (SNR) conditions necessitates testing the integrity
of the decoded data, not just the presence of a signal.

B. Web-based Monitoring and Control Interface

To move beyond simple command-line validation and
enable robust interaction, we developed a real-time, web-
based monitoring interface to visualize the
transmission/reception process and key performance
parameters. This system is based on a decoupled, four-
component architecture, depicted in 3, which strategically
separates the high-fidelity signal processing layer from the
data transport and user-facing visualization layers. This design
ensures modularity and scalability. The four main components
are:

1) Data Collection in GNU Radio: At the core of the
receiver's flowgraph, critical information is extracted in real-
time. This metadata—such as the Received Signal Strength
Indicator (RSSI) of the latest valid packet, a cumulative count
of received packets, the recovered message payload, and
other PHY-layer metrics like SNR—is accessed from the
GNU Radio environment. This is achieved by interfacing
with the flowgraph using custom Python blocks or probes,
which sample the data streams and prepare the information as
structured messages (e.g., JSON) for external data exchange.

2) Data Transmission via MQTT Protocol: We selected
MQTT, a lightweight application-layer IoT protocol, for its
efficient and reliable publish-subscribe model. This model
fundamentally decouples the data producer (the GNU Radio
flowgraph) from the data consumers (the dashboard and
database). We integrated MQTT Publisher blocks directly
into the receiver's GNU Radio flowgraph. The Publisher is
responsible for sending the collected data packets to a central
MQTT Broker, with each data type assigned a distinct topic.
This topic-based segregation is crucial, as it allows different
components of the dashboard to subscribe only to the data
streams they need, facilitating an organized and efficient
visualization of messages versus performance parameters.

3) Visualization in Node-RED: Node-RED serves as the
low-code backend and frontend for our interface. As a flow-
based programming tool, it enabled the rapid development
and iteration of the data processing logic without complex
server-side coding. We established flows within Node-RED
that subscribe to the relevant MQTT topics from the Broker.
As messages arrive, they are parsed, processed, and
channeled to the appropriate elements on the web dashboard.
This dashboard is constructed using various graphical
components (nodes) from the Node-RED library, such as
time-series charts for historical data, gauges for instantaneous
values like RSSI, and text fields for logging received
payloads.

4) Data Storage and Querying with DBSM: Recognizing
that real-time monitoring alone is insufficient for rigorous
subsequent post-analysis, we extended the processing flow in
Node-RED. A parallel branch in the Node-RED flow is
dedicated to data persistence. In addition to displaying data
on the dashboard, this branch formats the received data (and
its associated metadata like RSSI, SNR, and a precise
timestamp) into a standardized SQL query. This query is then
executed to insert the data into a Database Management
System (DBMS). By storing each received packet as a
distinct row, we create a comprehensive and permanent
experimental log. This database is invaluable for offline
analysis, allowing us to correlate performance metrics against
experimental variables long after the experiment has

SMQTT

3]
PUBISUB

PUB/SUB
Node-RED

QUERY

®

o

MariaDB

~9

Fig. 2 GNU Radio to Node-RED interfacing via MQTT, with MariaDB
backend for data persistence and management.

This architecture enables flexible and effective remote
system monitoring via a standard web browser, offering an
intuitive, consolidated overview of both the LoRa message
reception status and the receiver's physical layer parameters.

628

To complete this framework, a Graphical User Interface
(GUI) was constructed using the nodes available in the Node-
RED Dashboard. This interface provides a unified visual
control and monitoring hub, enabling operators to interact
with and evaluate the LoRa system's performance in real-
time. The GUI is segmented into three primary, functionally
distinct panels:

Control and Sending Panel: Positioned on the left,
this section provides a proactive mechanism for
testing the communication link. It contains a text
input field for message composition and a "SEND"
button. When this button is pressed, the message
payload is not handled locally; instead, it is
published via MQTT to a separate topic. The
transmitter's GNU Radio flowgraph, running on a
different host, subscribes to this topic. This allows
the operator to trigger on-demand transmissions
directly from the web interface without requiring
physical intervention or reconfiguration of the active
flowgraph, thus creating a complete, closed-loop
testing environment.

Monitoring and Feedback Panel: The central area
of the GUI serves as the primary real-time feedback
log. It displays a timestamped, scrolling log of all
successfully — received messages, providing
immediate confirmation of data integrity. Alongside
this, it aggregates and displays critical performance
statistics, such as the count of errored or missed
packets, the calculated Bit Error Rate (BER), and
other vital status information from the receiver.
Historical Charts Panel: Located on the right, this
panel is dedicated to visualizing trends over time. It
features dynamic charts that track the fluctuation of
the Received Signal Strength Indicator (RSSI) and
the configured hardware gain at the receiver upon
capturing LoRa signals. Displaying these two
metrics together is crucial, as it allows the operator
to distinguish whether a change in signal strength is
due to channel fading or an adjustment in the
receiver's own gain settings

III. PERFORMANCE EVALUATION

To comprehensively evaluate the system's performance
and validate its operational capabilities within realistic
contexts, we designed and conducted three distinct
experimental scenarios. These scenarios were meticulously
structured to methodically test the system under a gradient of
environmental conditions and with varying core LoRa
parameters, allowing us to isolate and understand different
performance variables.

The first scenario focused on assessing the fundamental
transmission range and link degradation within a controlled
suburban environment. This setting, characterized by low-
density buildings, open spaces, and some foliage, was chosen
to represent a baseline "lightly obstructed" deployment. In this
experiment, the key variable was distance; the transmission
distance was incrementally increased from 100m to 400m at
discrete waypoints. To simulate a challenging but common
near-ground link, typical of many ground-based IoT sensor
deployments, both transmitting and receiving antennas were
positioned at a low altitude of approximately 1-2m above
ground level. This configuration intentionally introduces

propagation challenges from ground proximity and minor
obstacles [7]. During this test, all core LoRa parameters were
held constant to isolate the singular effect of path loss. The
primary objective was to observe and quantify the degradation
of link metrics, specifically the Received Signal Strength
Indicator (RSSI) and the Packet Error Rate (PER), as a direct
function of increasing distance. This allowed us to map the
system's Dbaseline path loss profile and identify the
approximate range at which link reliability begins to collapse.

The second scenario transitioned to a far more challenging
dense urban environment. This setting was selected to test the
system's robustness under conditions of significant multipath
fading, high ambient RF noise levels, and heavy signal
attenuation from concrete structures. We established a fixed-
distance link of 650m, specifically chosen to represent a
typical urban NLOS scenario where no direct visual path
existed between the transmitter and receiver. The low-altitude
antenna configuration of 1-2m was deliberately maintained to
emphasize these difficult NLOS conditions. In this harsh
environment, the key variable under investigation was the
Spreading Factor (SF), which was systematically varied
across its operational range from SF7 to SF12. The core
objective was to empirically quantify the critical trade-off
between data rate (achieved with low SFs) and link reliability
(provided by high SFs). By carefully measuring the Bit Error
Rate (BER) and Packet Error Rate (PER) for each SF setting,
we could pinpoint the exact performance gains of using
slower, more robust modulation schemes. These empirical
results were then compared against the theoretical
performance baseline in an AWGN channel to evaluate the
system's "implementation margin" and quantify the severe
performance penalty imposed by the real-world urban
multipath channel.

The third experimental scenario was rigorously designed
to evaluate the system's long-range transmission capabilities
at a distance of 1200m, with a specific focus on the critical
role of antenna placement, marking a significant transition
from the near-ground NLOS conditions of previous trials to a
more favorable LOS or near-LOS propagation model. For this
test, the antennas were elevated to a height of 10m,
transitioning from a near-ground NLOS setup to a more
favorable LOS or near-LOS condition. This elevation is
crucial as it likely clears major ground-level obstructions and
the first Fresnel zone, mitigating the severe multipath fading
and signal absorption experienced in the 1-2m tests. This
scenario had a dual purpose: first, to again evaluate the impact
of the SF on decoded signal quality at this extended range, and
second, to assess the influence of increased antenna height on
decoding capability and overall coverage. Comparing the
results of this test with the previous scenarios allows for a
clear distinction between system limitations and channel-
induced limitations.

Before presenting the experimental results, the
performance of the LoRa-SDR system is first analyzed via
AWGN channel simulation. To establish a theoretical
baseline, we performed Monte Carlo simulations over an
AWGN channel for SF7 through SF12, with a 125 kHz
bandwidth, hard-decision decoding, and two distinct coding
rates (CR): 4/5 and 4/8. Fig. 3 illustrates the resulting BER vs.
SNR curves on a logarithmic scale. At a BER threshold of 10
3 with CR 4/5, the required SNR for each SF is approximately:
SF7 = -9 dB, SF8 =~ -10 dB, SF9 = -11.6 dB, SF10 = -13 dB,
SF11 =-14.5 dB, and SF12 = -16.2 dB. The use of CR 4/8 (4

629

check bits) provides improved BER performance compared to
CR 4/5 (1 check bit) due to more robust FEC, enabling
operation at a lower SNR for the same BER level. However,
the primary trade-off is a significant increase in the Time-on-
Air (ToA).

For a 50-byte payload, 125 kHz BW, and an §-symbol
preamble, the ToA increases by 43-47% when switching from
CR 4/5 to CR 4/8. Specifically for SF12, the ToA is 2.3s for
CR 4/5 and 3.3s for CR 4/8 (a 42.7% increase), resulting in an
approximate 30% reduction in throughput and a ~43%
increase in energy consumption per packet. Table I
summarizes the ToA for all SFs.

TABLE L. TIME-ON-AIR COMPARISION FOR DIFFERENT SPREADING
FACTOR AND CODING RATES.
SF CR 4/5 (ms) CR 4/8 (ms) Increase (%)
7 97.5 143.6 472
8 174.6 254.5 45.7
9 328.7 476.2 44.9
10 616.5 886.8 439
11 1314.8 1904.6 449
12 2302.0 3285.0 42.7

To rigorously evaluate the system's reliability in realistic
operating conditions, the first experimental phase focused on
quantifying the Bit Error Rate (BER) across transmission
distances ranging from 130m to 410m. Both the transmitting
and receiving antennas were positioned at a low height of 1m
above ground level to simulate a worst-case scenario for
ground-based IoT nodes. The system parameters were
configured as follows: Spreading Factor (SF) =7, Coding Rate
(CR) =4/5, Bandwidth (BW) = 125 kHz, and a sampling rate
of 2 MHz. Fig. 4 illustrates the measured BER curve versus
distance on a logarithmic scale. BER increases gradually from
1.15x10™* at 130m to 4.90x1072 at the maximum tested range
of 410m. Despite this increase, the connection remained
maintained, validating the effectiveness of the LoRa physical
layer even with the lowest spreading factor.

i LoRa BER x SNR Curves
10 i == Spreading Factor
—e— SF7
—=— SF8

=3 —— SF9
o —a— SF10
w *— SF11
2101
(]
L
]
(-4
.
o
=
w 102
=
m

Coding Rate

—— CR4 (4/8)

---- CR1 (4/5)

-3l : ; : | (N i
10 =22 =20 -18 -16 -14
SNR (dB)

Fig. 3 BER vs. SNR Curves for different Spreading Factors (SFs)

Comparison with AWGN theoretical baseline: Fig. 3
presents the BER-SNR curve obtained from Monte Carlo
simulation over an AWGN channel. For SF7, BER = 103
requires SNR = -9 dB according to theory. Comparing with
experimental results, BER = 107 is achieved at approximately
215-220m distance. Therefore, the SNR condition of = -9 dB

in AWGN simulation corresponds to an actual distance of =
220m in a suburban environment with parameters SF7 and CR
4/5. This reflects the impact of multipath fading, shadowing
from large obstacles, noise sources, and ambient noise in real-
world environments.

0.014
4.90e-3

5.50e-4 5.50e

4.50e-4

1.0e-5 T T T T T T T i
130 160 190 200 230 290 340 370 410

Distance (m)

Fig. 4 BER Performance versus Transmission Distance for SF7

In the second experiment, we performed BER/PER
measurements at a fixed distance of 650m in an interference-
heavy urban environment, with both transmitting and
receiving antennas placed 2m above ground level. The system
parameters were set as follows: Bandwidth (BW) = 125 kHz,
Coding Rate (CR) = 4/6, with Spreading Factors from SF7 to
SF12. The corresponding sampling rates are provided in the
TABLE 1L

TABLE II. SAMPLE RATE CONFIGURATION FOR DIFFERENT FOR
SPREADING FACTORS
SF 7 8 9 10 11 12
SR 250k 250k 250k 250k 250k 125k
0.02+
0.01527
0.0154 0.01458
0.01257 0.01198
-4
w
00,01
0.0054
0 ;

SF7 SF8 SF9 SF10 SF11 SF12
Spreading Factor

Fig. 5 BER Comparison for SF9-SF12 in Urban Environment (650m)

For SF =7 and SF = 8, the receiver failed to decode any
packets. This reflects a critical finding: at the 650m distance
in the urban environment, and with a low antenna height (2m),

the receiver sensitivity for SF7 and SF8 was insufficient to
overcome the high interference and background noise,
resulting in an SNR below the decoding threshold.

For SF = 9, a BER of 1.26x102 was recorded. This
indicates that while the system began to successfully decode
some packets, the bit error rate remained extremely high. This
high BER was corroborated by observations on the web
interface, which indicated that "a significant number of
packets did not reach the destination."

For SF = 11 and SF = 12, the BER ranged from 1.46x107
to 1.53x102 Although higher SFs (SF10-SF12) enable the
demodulator to operate at lower SNRs due to longer symbol
durations, the BER remained high. This is attributed to the
severe channel conditions within the urban environment,
characterized by numerous obstructions and heavy
interference.

0.4+

0.3750

0.31

PER

0.2

0.14

SF7 SF8 SF9 SF10 SF11 SF12
Spreading Factor

Fig. 6 PER Comparison for SF9-SF12 in Urban Environment (650m)

Furthermore, the Packet Error Rate (PER) results
confirmed that only SF12 was sufficiently robust for
transmission at 650m in this heavily obstructed, high-
interference urban environment with the 2m antenna height.

0.004+
0.00356

0.003

&

0,002

0.001-

0- 0.00000 0.00000 0.00000 0.00000 0.00000

SF7 SF8 SF9 SF1I0 SF11 SFI12

Spreading Factor

Fig. 7 BER versus Spreading Factor with Elevated Antenna (1200m)

Recognizing the pronounced impact of obstructions on
channel quality, we relocated the transceiver system to an
elevated height of 10m above ground. In this experiment, the
system transmitted approximately 100 packets; the results
were updated in real-time on the web interface and are
summarized in the following table. SF7 yields a bit error rate
0f 0.00356, while from SF8 onwards, the system successfully
decodes all received messages with zero errors. Notably, the
results improve significantly despite the transmission distance
doubling and the persistent presence of heavy noise in the
environment.

IV. CONCLUSION

This research successfully presented a comprehensive and
unified evaluation framework for LoRa communication,
integrating an SDR platform (based on ADALM-PLUTO and
GNU Radio) with an innovative web-based real-time
monitoring dashboard and database logging capabilities. This
framework addresses the critical need for end-to-end
performance validation in practical deployment scenarios,
supporting both theoretical analysis and experimental
validation. The extensive experimental campaigns, conducted
across urban, suburban, and varying antenna height
environments, provided crucial benchmark data, clearly
quantifying the trade-offs between range, environmental path
loss, and link reliability (e.g., Packet Error Rate). These
empirical results contribute vital insight into optimal LoRa
configurations. In summary, this work advances a unified
experimental methodology and establishes a solid foundation

631

for the optimal configuration of both IoT and LEO satellite
systems utilizing the LoRa physical layer. Future work will
focus on extending experimental coverage, increasing the
sample size, evaluating more complex propagation conditions,
and developing adaptive parameter optimization mechanisms.

REFERENCES

A. A. Abuarqoub, M. A. Ferrer, J. F. Timmons, and R. V. Prasad, "On
the feasibility of open-source LoRa PHY implementations: A
comprehensive study," Computer Networks, vol. 240, p. 110083, Apr.
2024. doi: 10.1016/j.comnet.2024.110083.

V. Carvalho, M. Feldman, 1. Miiller, and M. G6tz, "Comparison of
simulation, SDR implementation and commercial device on LoRa
protocol," in Proc. 2024 8th Int. Symp. Instrum. Syst., Circuits
Transducers (INSCIT), 2024, pp. 1-6. doi:
10.1109/INSCIT62583.2024.10693394.

J. P. de Omena Simas, D. G. Riviello, and R. Garello, "Software-
defined radio implementation of a LoRa transceiver," Sensors, vol. 24,
no. 15, p. 4825, Jul. 2024. doi: 10.3390/524154825.

R. M. Colombo, A. Mahmood, E. Sisinni, P. Ferrari, and M. Gidlund,
"Low-cost SDR-based tool for evaluating LoRa satellite
communications," in Proc. 2022 IEEE Int. Symp. Meas. Netw. (M&N),
2022, pp. 1-6. doi: 10.1109/MN55117.2022.9887761.

J. Tapparel and A. Burg, "Design and implementation of LoRa physical
layer in GNU radio," in Proc. 14th GNU Radio Conf., 2024.

Semtech, "LoRa and LoRaWAN: A Technical Overview," Semtech
White Paper, 2020.

M. Bor, U. Roedig, T. Voigt, and J. M. Alonso, "Do LoRa low-power
wide-area networks scale?" in Proc. ACM Int. Conf. Model., Anal.
Simul. Wireless Mobile Syst. (MSWiM '16), 2016, pp. 59-67. doi:
10.1145/2988287.2989163.

(1

(2]

(3]

(4]

(5]

(6]
(7

