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Department of Communication Networks

University of Bremen, Germany
Bremen, Germany

ajk@comnets.uni-bremen.de

3rd Thushara Weerawardane
Department of Electrical Electronic & Telecommunication Engineering

General Sir John Kotelawala Defence University
Ratmalana, Sri Lanka

tlw@kdu.ac.lk

4th Anna Förster
Department of Communication Networks

University of Bremen, Germany
Bremen, Germany

anna.foerster@uni-bremen.de

Abstract—LoRa / LoRaWAN is a cutting-edge technology that
enables long-range and low-power communication for connecting
sensor nodes, making it ideal for the Internet of Things (IoT)
ecosystem. An adaptive data rate mechanism has already been
incorporated into the LoRaWAN standard protocol and the
network server monitors the signal-to-noise ratio to optimize the
value of transmission power and the spreading factor. However,
the legacy approach does not conduct any performance evaluation
when changing the transmission parameters. In this work, we
introduce a Q learning agent that dynamically fine-tunes the
transmission parameters, i.e., transmission power, spreading
factor, and code rate. The novel protocol aims to maintain the
minimum required SNR to receive the signal and minimize the
power consumption of end nodes while improving the packet
delivery ratio. Our approach is validated through both simulation
and real-world deployment. The simulation results reveal a
significant increase in the packet delivery ratio, both for operation
with one or multiple gateways, maintaining almost the same
power consumption; the real-world implementation demonstrates
the energy efficiency of the protocol.

Index Terms—Parameter Optimization, Adaptivity, Q Learn-
ing, ADR, LoRaWAN

I. INTRODUCTION

LoRaWAN, Long Range Wide Area Network protocol, is
a wireless protocol for the Internet of Things (IoT), focusing
on long-range transmission and low power consumption. Due
to the low energy requirement, it is suitable for battery-
powered nodes in remote areas. Meeting the requirements
of IoT applications, nodes can be easily added and removed
from the network. Using end-to-end encryption and device
authentication, secure communication is ensured.

The performance of a protocol in terms of energy con-
sumption, packet delivery rate, and delay is highly dependent
on the environment [1]. Optimal operation of a protocol can
be obtained by tuning parameters such as spreading factor
(SF), transmission power (TP), and code rate (CR) for differ-
ent environments. The gateway(s) can simultaneously decode
signals modulated with different SF, as they have multichannel

multi-modem transceivers [2]. The distribution of SF within
the network minimizes interference in the network. Higher TP
levels provide more extensive coverage, but increase interfer-
ence and consume more power. Four different CRs are used
for the robustness of the communication. However, selecting
the optimal combination of all three parameters is not trivial.

In the standard LoRaWAN protocol, the Adaptive Data Rate
(ADR) mechanism optimizes SF and TP for each node. The
parameter determination is carried out by the network server
for each node within a window of 20 consecutively received
packets. The identified parameters are sent in acknowledgment
packets.

The key contribution of the paper is the development of
a novel optimization algorithm based on Q learning, which
observes both the packet delivery ratio (PDR) and energy
consumption per bit of each node. The proposed approach is
initially validated using simulations. Furthermore, we design
and evaluate a physical experiment in order to demonstrate the
feasibility of our proposed algorithm in the real world.

The remainder of this paper is structured as follows. Sec-
tion II discusses existing work carried out related to the
optimization of protocol parameters. Section III presents a
technological overview of the LoRaWAN protocol and Q
learning. In section IV, the proposed model of the Q learning
based protocol parameter algorithm is described in detail. The
simulation setup and results are discussed in section V. The
real-world implementation setup and results are presented in
section VI. Finally, section VII concludes the paper, summa-
rizing the key findings and future research possibilities.

II. RELATED WORK

As mentioned in section III-B, the legacy ADR mechanism
uses maximum SNR to optimize the transmission parameters.
However, many other efforts exist to optimize the work of
the standard ADR mechanism with various goals. The authors
of [3] show improved performance by considering average
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SNR for the ADR mechanism. Further, the authors propose
assigning SF, based on the distance of the node to the gateway.
However, to implement the mentioned algorithm, knowledge
of the node’s physical location is required. The assignment
of SF among the nodes based on distance to the gateway has
been proposed in [4]. The DyLoRa algorithm in [1] uses a
prediction model to identify a better TP and SF to minimize
the energy consumption of each node, sacrificing PDR.

Various algorithms, such as the STEPS, and LP-MAB, have
been proposed to dynamically allocate transmission param-
eters [5], [6]. The authors of [7] have modified the ADR
algorithm, incorporating a flexible link margin.

The authors of [8] and [9] use Q learning and deep Q
learning, respectively, and show the results using simulations.
The approaches of [10] and [8] have shown improvements
in network performance. Increasing the number of nodes
significantly degrades performance in a network, as proven
by the work of [11], [12].

In summary, previous studies have suggested various algo-
rithms to determine protocol parameters, considering factors
such as average SNR, distance between node and gateway,
and utilizing Q learning and Deep Learning algorithms. The
state-of-the-art proposed algorithms improve performance and
have been proven using simulations with a small number of
nodes. Therefore, we identified a research gap in optimizing
parameters considering a large number of nodes; also, to
the best of our knowledge, no performance measurements
to evaluate the performance of Q learning in a LoRaWAN
network were taken so far in a real-world environment.

III. TECHNOLOGY OVERVIEW

A. Physical Layer and MAC Layer

The LoRa physical layer is defined in terms of modulation,
frequency bands, data rates, SF, and TP. The devices operate
in the unlicensed ISM (Industrial, Scientific, and Medical)
bands, such as 868 MHz (Europe), 915 MHz (North America),
and 433 MHz (Asia). Although the bandwidth can be set to
125 or 250 kHz, only the first option is widely used as a
typical value. SF is the main modulation parameter, which
can take values from 7 to 11 and decides the data rates and
transmission range. The different TP levels 2, 5, 8, 11, 14, and
20 dBm affect the transmission range along with SF. The LoRa
protocol allows for the use of different CRs 4/5, 4/6, 4/7, and
4/8. Although using a higher CR allows communication to be
robust, it increases the packet on-air time, resulting in higher
power consumption and an increase in the collision time.

LoRaWAN allows devices to be connected in an ad hoc
manner. Pure ALOHA is used for channel access in the uplink.
The duty cycle defines the duration of the allowed transmission
time per cycle, and to facilitate connections for many nodes,
the duty cycle of LoRaWAN is kept to as low as 1% [13].

B. Transmission Parameters and Adaptive Data Rate

To provide better performance, LoRaWAN provides ad-
justable parameter values for SF and TP. A one-step increase
in SF and TP contributes 3 dB gain to SNR. The gain that

can be obtained by changing CR is between 0.7-1.5 dBm
[14]. However, the gain is significant once the SNR is below
−4 dB [15]. Hence, CR changes should be encouraged in harsh
channel conditions.

Adaptive Data Rate (ADR) is a technique that dynami-
cally allocates the transmission parameters SF and TP used
by the end devices according to the SNR at the gateway.
The technique optimizes power consumption by adjusting the
parameters. As ADR changes the data rate for each end device,
the network capacity is also optimized [2].

In the ADR mechanism, if the difference between the
maximum SNR value and the required SNR is greater than
3 dB within a 20 packet window, SF is reduced unless it
is at the minimum level. If SF is in the minimum level,
TP is reduced in steps of 3 dB. If the maximum SNR is
lower than the required SNR, TP is increased. The spreading
factor is increased by the node if it cannot hear from the
Gateway. The newly determined parameter set is sent to the
end device piggybacked in the acknowledge message. The
ADR mechanism does not consider raising TP until SF is
minimum, although there is a possibility that the combined
adjustment may yield a better option.

C. Q learning

Q learning is a model-free reinforcement learning method
that learns from the environment through interactions. The
agent decides the next action based on the policy and the
outcome of the interactions with the environment. The result
of the actions is visible in the performance. The Q learner
calculates a reward based on performance, and the Q value is
calculated based on the reward for a particular state and ac-
tion. Q learning decides between exploration and exploitation
using a greedy algorithm. The learning parameters ϵ, α, and
γ determine the proportion of exploration and exploitation,
the step size of the algorithm, and the contribution of past
experience to current decisions, respectively. Q learning can
be used to optimize protocol parameters in a network with a
higher number of nodes in a simulation environment, as well
as the real world [16].

IV. MODEL OF THE Q LEARNING BASED ADAPTIVE
PARAMETER OPTIMIZATION

In the proposed model, the parameters to be adjusted, their
initial values, and the set of permitted values are given as
input. The parameter values are identified by the agent for
each packet window by evaluating the performance within
the window size. Once the values are identified, it sends the
parameter values to the end nodes to update their transmission
parameters.

Our work considers TP, SF, and CR to be adjusted using
Q learning. Building on the improved results obtained by the
authors of [3], the average SNR is considered to assess the
quality of the link within the window size in our work.

For the three parameters, the range of values was selected as
specified in Section III-A. Only in the case of TP, the highest
level of 20 dBm was not included. As already mentioned in
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Algorithm 1 Selection of Action

1: int N ← SNR
3

2: if N = 0 then S ← true
3: end if
4: if ϵ ≤ 0.2 && N ≥ 0 then best parameters
5: else
6: while N < 0 do
7: i ← (randomNumber%10)
8: if i ≥ 6 && SF != max then SF ← SF + 1
9: else

10: if TP != max then TP ← TP + 1
11: end if
12: end if
13: N ← N + 1
14: end while
15: while N > 0 do
16: if CR != min then CR ← CR− 1
17: end if
18: j ← (randomNumber%10)
19: if j ≥ 6 && SF != min then SF ← SF − 1
20: else
21: if TP != min then TP ← TP − 1
22: end if
23: end if
24: N ← N − 1
25: end while
26: if S&&(PDR ≤ 100%) then
27: k ← (randomNumber%3)
28: if k == 0 && CR != max then CR ← CR+ 1
29: end if
30: if k == 1 && SF != max then SF ← SF + 1
31: end if
32: if k == 2 && TP != max then TP ← TP + 1
33: end if
34: end if
35: end if

Section III-B, the change in TP and SF by one step improves
the link budget by 3 dB. However, the improvement gained by
a step change in CR provides a gain less than 2 dBm [15].

The Q learning algorithm evaluates the performance in
terms of the PDR and energy consumption for a successfully
delivered packet. The learning parameters ϵ, α, and γ were
set to 0.8, 0.2, and 0.3, respectively, after performing several
simulations. The state of the system is defined using the TP,
SF, and CR values. Therefore, there are 120 possible states. A
transition from one state to another occurs based on the packet
delivery rate, SNR, TP, and SF or ϵ. Algorithm 1 illustrates
the performance evaluation and obtaining the most suitable
parameters by QADR.

The reward is calculated using power consumption per
effective bit rate and PDR. The effective bit rate (EBR) is
calculated using the following equation 1:

EBR =
4SF ·BW

(4 + crbits) · 2SF
(1)

where BW is the bandwidth used, which is 125 kHz. crbits
is the number of bits added for every 4 bits due to CR.

The goal is to obtain the best parameter set that provides the
highest PDR with minimum energy consumption. Therefore,
the reward is calculated considering EBR, TP, and PDR, which
is calculated by the network server.

Reward =
4SF ·BW · PDR

(4 + crbits) · 2SF · tp
(2)

where tp is the TP in milliwatts. The reward is maximum
with values of 100% PDR, SF = 7, and tp= 2. Once the reward
is calculated according to equation 2, the Q value is calculated
according to equation 3

Q(S,A) ← Q(S,A) +α · (R+ γ ·maxaQ(S′, a)−Q(S,A)).
(3)

The performance of Q learning based ADR (QADR) is
measured and compared with ADR using the packet delivery
rate and the energy consumption per successfully received
packet (E). The latter value E is calculated according to
equation 4.

E =
Total energy consumption of all the nodes

Number of successfully received packets at the NS
(4)

If no control messages are received from the network server,
the node increases SF after waiting a predefined period [3].
However, there is a possibility that TP is required to increase
when SF is at the maximum value. Hence in our work,
after waiting for the predefined time as said before, the end
device increases SF or TP with a probability of 0.7 and
0.3, respectively. The probability values were determined after
running several simulations.

V. SIMULATION EXPERIMENTS

The performance of the proposed algorithm was tested using
a simulator and a real-world setup. Subsections V-A and V-B
discuss the simulation setup and the results obtained. The real-
life experiment is described in Section VI.

A. Simulation Setup

OMNET++ with the FLoRa framework is used as the sim-
ulator. FLoRa is an open source simulator and supports LoRa
gateways to receive multiple packets from nodes in different
channels [17]. A network with 1000 randomly deployed nodes
is considered within an area of 1000× 1000 m, considering an
urban environment. Each node transmits a packet every 1000 s.

Two cases are considered for simulation: in the first case,
the network consists of one gateway to send packets to the
network server, while in the second case, the network consists
of two gateways located 350 m apart within the same area as in
the network with one gateway. The initial TP is set to 14 dBm
and CR to 4/5 on all nodes. The SF is randomly set to a value
in the range specified in section III-B. The path loss model
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Fig. 1. Comparison of PDR

is Log Normal Shadowing with sigma set to the default value
3.57. The simulation duration is set to 10 days.

In each case, 8 different networks with randomly deployed
nodes were simulated and each network was simulated 10
times with a different random seed.

B. Simulation Results

Figure 1 illustrates the comparison of the packet delivery
rate and the confidence interval of QADR and ADRavg with
one and two gateways, respectively. In the network with one
gateway, the average improvement of QADR over ADRavg is
5%, while the confidence interval width is less than 1%. The
improvement in the network with two gateways is 1%, which
is less than in the case of one gateway.

Figure 2 illustrates the comparison of energy consumption
per packet of QADR and ADRavg received successfully with
one and two gateways, respectively. QADR consumes on
average 2% more energy compared to ADRavg.

Further analysis is conducted to identify the distribution of
SF, TP and CR within the network. Figures 3 and 4 illustrate
the number of nodes in the network that have the same
respective SF and TP values for both QADR and ADRavg.
Figure 3 shows that QADR sets SF to different values in
many nodes, whereas in ADRavg, mainly an SF of 9 is
used. Figure 7 shows the distribution of crbits, within the
QADR network. In the ADRavg method, crbits is not changed
and set to 1. Although crbits is not spread throughout the
network, similar to SF or TP in QADR, different values are
assigned. Hence, different CR values are also considered for
the optimum parameter set.

The SF is distributed more in the network of two gateways
compared to one gateway in both algorithms. Figure 5 shows
the distribution of SF between nodes within the two gateway
networks. QADR provides a greater distribution of SF between
nodes compared to ADRavg. The TP distribution of the nodes
in the same network is illustrated in Figure 6. The average TP
is lower in QADR compared to ADRavg. Figure 8 represents
the crbits distribution of the network with two gateways.
Many nodes use 1 as the crbits compared to the network
with one gateway.

Fig. 2. Comparison of energy consumption per Rx Packet

Fig. 3. SF distribution of the network with one gateway

VI. REAL WORLD EXPERIMENT

We implemented and tested a real-world setup in order
to demonstrate the practical feasibility of our proposed Q
learning algorithm.

A. Experiment Setup

QADR was implemented and evaluated using Heltec V3
nodes and a LoRaWAN gateway which connects to The Things

Fig. 4. TP distribution of the network with one gateway

Fig. 5. SF distribution of the network with two gateways
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Fig. 6. TP distribution of the network with two gateways

Fig. 7. crbits distribution in the network with one gateway

Network (TTN). Various connection metrics such as SNR,
RSSI, TP, and SF data were obtained for each node and
forwarded for data collection through MQTT messages. The
QADR algorithm was implemented using Python, and param-
eter values to be updated were sent through acknowledgment
messages to the nodes. The nodes were placed at 10 locations
around the gateway, and transmitted a packet every 15 seconds.
The parameters were set to the default values of the LoRaWAN
standard. The bandwidth of 125 kHz, TP of 14 dBm, SF of 7,
and a CR value of 4/5 were used as initial parameter values.
After analyzing the simulation test results, we concluded that
the impact of the CR change was less significant compared to
the SF change and the TP change. Hence, the CR parameter
was not selected as an adaptive parameter in the physical
experiment. Therefore, Algorithm 1 was used without the steps
incorporating CR.

For each node, the performance of QADR and legacy ADR
using average SNR(ADRavg) was measured after sending 301
packets.

To identify the significance of energy consumption for
different SF and TP combinations, the battery capacity re-
quired to transmit 200 packets was measured for different

Fig. 8. crbits distribution in the network with two gateways

Location Algorithm PDR Final SF Final TXPwr
Location A ADRavg 100 7 2

QADR 100 7 2
Location B ADRavg 100 7 14

QADR 100 7 2
Location C ADRavg 100 7 14

QADR 100 7 2
Location D ADRavg 100 7 14

QADR 100 7 2
Location E ADRavg 100 7 14

QADR 100 7 14
Location F ADRavg 92.6 7 14

QADR 100 7 14
Location G ADRavg 100 7 14

QADR 100 7 14
Location H ADRavg 100 7 14

QADR 100 7 14
Location I ADRavg 100 9 14

QADR 100 7 14
Location J ADRavg 96.6 7 14

QADR 100 7 14
TABLE I

COMPARISON BETWEEN THE ADRavg AND QADR PROTOCOLS

Fig. 9. Average SNR at the Gateway for different node locations

combinations of SF and TP. The battery charge was measured
using the UNI-T UT658 USB tester.

B. Experiment Results

The connection metrics obtained in the experiment for the
uplink packets are, average SNR, average RSSI, final SF
after transmitting 301 packets, final TP after transmitting
301 packets and average error rate. Further, the percentage
between the number of received packets at the gateway w.r.t.
the number of transmitted packets was computed. The results
are indicated for both protocols in Table I and in Figures 9
and 10.

The ADRavg protocol transmits with the lowest power in
location A, whereas in all other locations it transmits with
the highest TP. The QADR protocol transmits with minimum
power in four locations (A-D). For both protocols, from A
to D locations, the PDR is 100%. Therefore, QADR can be
observed to be a power-efficient protocol. Only in location
’I’, ADRavg increases its SF value to 9. However, QADR
maintains SF at 7 and obtains 100% packet delivery rate. For
locations E to J, the TP is kept at 14 dBm in both protocols.

Table II illustrates the battery charge required to transmit
200 packets for different combinations of SF and TP.
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Fig. 10. Average Error Rate at the Gateway for different node locations

Test SF TP Battery charge (mAh)
1 7 2 22
2 7 14 22
3 9 2 24
4 9 14 25
5 12 2 186
6 12 14 205

TABLE II
BATTERY CHARGE FOR DIFFERENT PARAMETER COMBINATIONS

VII. CONCLUSION AND OUTLOOK

In this work, we optimize the performance of LoRa trans-
missions by extending the legacy ADR scheme to adjust
transmission parameters, incorporating machine learning. We
considered three transmission parameters, TP, SF, and CR,
to optimize while learning about the environment. Although
higher transmission power improves the PDR, it adversely af-
fects the network lifetime. Furthermore, increasing the spread-
ing factor enhances the robustness of the channel while leading
to higher energy consumption and on-air time. The use of
QADR for adjusting the parameters improves performance in
terms of PDR, keeping minimum energy consumption. As the
CR’s contribution is less than the SF and TP, the nodes try
to maintain a 4/5 CR. Therefore, for real-world experiments,
only the TP and SF are used for optimization.

In QADR, the nodes explore other possible combinations
of parameters when the received SNR is between 0 and
3 dB. In contrast, in the legacy protocol and ADRavg, the
parameters are unchanged. Therefore, the nodes can identify
the best combination compared to the ADRavg algorithm. The
improvement in QADR is greater in the case of one gateway
compared to two gateways, according to the simulation results.
The SF values that individual nodes select are more distributed
than in the case of ADRavg. Hence, more packets are correctly
decoded at the receiver compared to ADRavg.

Allowing adjustments for TP as well as SF at the node
in QADR provides more opportunities to reach the network
server when control messages are not received, whereas
ADRavg only allows for increasing SF.

Real-world experiments show that increasing SF and TP
requires higher power consumption. The QADR focuses on
power optimization with higher PDR. Hence, it keeps mini-
mum Tx power and minimum SF, maintaining a higher packet
delivery rate compared to the legacy ADR.

An important direction for future work will be to extend
protocol parameter optimization using Q learning for other
communication protocols. Applying a similar approach as in
the current work will optimize resource allocation as well as
network performance according to the environmental condi-
tions.
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