

Electrical and thermal analysis of GaN Transistor with a van der Waals interface on arbitrary substrates

Taeyoung Han
 School of Electronic
 Engineering
 Soongsil University
 Seoul 06978, Korea
 han0415@Soongsil University

Geonwoo Yoo
 School of Electronic
 Engineering
 Soongsil University
 Seoul 06978, Korea
 gwyoo@ssu.ac.kr

In next-generation semiconductor technologies, power devices are required to simultaneously satisfy high-voltage, high-frequency, and high-efficiency characteristics, and GaN High Electron Mobility Transistors (HEMT) have consequently attracted significant attention as a key candidate. However, despite their outstanding electrical performance in high-power and high-frequency applications, GaN HEMT suffer from increased thermal resistance and reduced reliability due to self-heating. To address these thermal management challenges, recent research has focused on transferring devices onto high-thermal-conductivity substrates and optimizing interfacial thermal conductance [1]. Within this context, the Fluidic Assembly and Substrate Transfer(FAST) technique has emerged as an engineering platform of particular interest, as it decouples device fabrication from substrate selection, thereby enabling heterogeneous integration and facilitating the realization of novel device architectures and functionalities [2]. Furthermore, a variety of substrate and thermal management strategies have been developed to improve the thermal characteristics of semiconductor devices, as enhanced heat dissipation is considered essential for suppressing performance degradation and reliability issues under high-power operation. In this work, we investigate the electrical characteristics of GaN HEMTs transferred onto different substrates via FAST and propose design guidelines for optimizing thermal conduction and reliability under high-speed operating conditions.

In this study, the multi-channel GaN HEMTs were transferred using the FAST technique. An AlN layer was grown as the epitaxial layer, and during the FAST process, the devices were transferred onto two-dimensional materials utilizing van der Waals (VdW) bonding, completing the fabrication. Figure 1 presents the output characteristics obtained from pulsed I-V measurements, which were performed to evaluate the electrical performance and self-heating behavior of the device. From these measurements, the channel temperature and the width-normalized thermal resistance R_{th} , referenced to the total gate width, were subsequently extracted. [2] Figure 2 presents the calculated channel temperature based on the derived expression, thereby enabling analysis of the device characteristics. Figure 3 shows the variation of device performance as a function of temperature, revealing a pronounced dependence on the substrate. Compared with the pre-transfer baseline ($R_{th} = 28.1 \text{ }^{\circ}\text{C} \cdot \text{mm/W}$), all transferred devices exhibited reduced thermal resistance, with graphene reaching $R_{th} = 13.1 \text{ }^{\circ}\text{C} \cdot \text{mm/W}$ and As-grown achieving the lowest $R_{th} = 10.56 \text{ }^{\circ}\text{C} \cdot \text{mm/W}$. These findings demonstrate that substrate selection and interfacial thermal conductance play a dominant role in governing self-heating in transferred GaN HEMTs. The results indicate that substrate engineering through FAST transfer can preserve the electrical characteristics, as evaluated from transfer and output curves, while effectively mitigating channel self-heating.

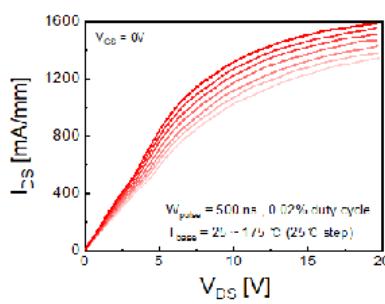


Figure 1. Pulsed I-V curves measured in 25 °C increments

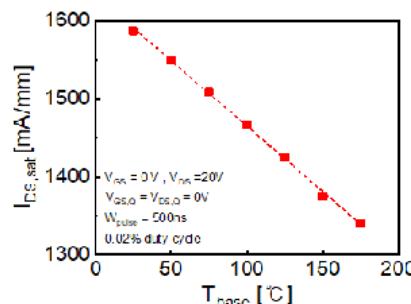


Figure 2. Temperature dependence of the drain current

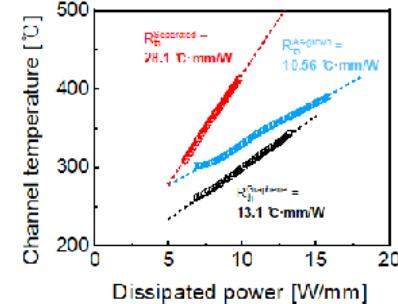


Figure 3. Channel temperature for different substrates after FAST

REFERENCES

- [1] H. J. Hwang, H.-J. Kim-Lee, S. W. Hong, J.-Y. Park, D. K. Kim, D. Kim, S. Song, J. Jeong, Y. Kim, M. J. Yeom, M.-C. Yu, J. Kim, Y. Park, D.-C. Shin, S. Kang, J.-K. Shin, Y. Kim, E. Yoon, H. Lee, G. Yoo, J. Jeong, and K. Hwang, "Wafer-scale alignment and integration of micro light-emitting diodes using engineered van der Waals forces," *Nature Electronics*, vol. 6, no. 3, pp. 216–224, Mar. 2023.

- [2] J. Kim, J. Hwang, H. Lee, H. Jang, Y. Lee, S. Cho, J. Jeong, and K. Hwang, "Transferrable AlGaN/GaN high-electron mobility transistors to arbitrary substrates via a two-dimensional boron nitride release layer," *Nature Electronics*, vol. 3, no. 8, pp. 483–489, Aug. 2020.K. Elissa, "Title of paper if known," unpublished.
- [3] J. Joh, J. A. del Alamo, U. Chowdhury, T.-M. Chou, H.-Q. Tserng, and J. L. Jimenez, "Measurement of Channel Temperature in GaN High-Electron Mobility Transistors," *IEEE Transactions on Electron Devices*, vol. 56, no. 12, pp. 2895-2901, Dec. 2009.

[한글본]

차세대 반도체 기술에서 전력 소자는 고전압, 고주파, 고효율 특성을 동시에 만족해야 하며, 이에 따라 GaN 고전자이동도 트랜지스터(HEMT)가 핵심 후보로서 큰 주목을 받고 있다. 그러나 GaN HEMT는 고전력 및 고주파 응용에서 뛰어난 전기적 성능에도 불구하고 자가 발열로 인한 열저항 증가와 신뢰성 저하 문제를 겪는다. 이러한 열 관리 문제를 해결하기 위해, 최근 연구는 높은 열전도도 기판으로 소자를 전사하고 계면 열전도도를 최적화하는 데 초점을 맞추고 있다[1]. 이러한 맥락에서, 유체 조립 및 기판 전사(FAST) 기술은 소자 제작을 기판 선택과 분리함으로써 이종 집적을 가능하게 하고, 새로운 소자 아키텍처 및 기능 구현을 촉진하는 공학적 플랫폼으로 특별한 관심을 받고 있다[2]. 또한, 반도체 소자의 열 특성을 향상시키기 위해 다양한 기판 및 열 관리 전략이 개발되어 왔으며, 향상된 열 방산은 고전력 동작에서 성능 저하와 신뢰성 문제를 억제하는 데 필수적인 것으로 간주된다. 본 연구에서는 FAST를 통해 서로 다른 기판으로 전사된 GaN HEMT의 전기적 특성을 조사하고, 고속 동작 조건에서 열전도 및 신뢰성을 최적화하기 위한 설계 지침을 제안한다.

본 연구에서는 다중 채널 GaN HEMT를 FAST 기술을 사용하여 전사하였다. 에피택시 층으로 AlN 층이 성장되었으며, FAST 공정 동안 소자는 반데르발스(VdW) 결합을 활용한 이차원 재료 위로 전사되어 제작이 완료되었다. 그림 1은 소자의 전기적 성능과 자가발열 거동을 평가하기 위해 수행된 필스 I-V 측정으로부터 얻어진 출력 특성을 보여준다. 이러한 측정으로부터 채널 온도와 전체 게이트 폭을 기준으로 한 폭 정규화 열저항 R_{th} 이 추출되었다[2]. 그림 2는 도출된 식을 기반으로 계산된 채널 온도를 제시하여 소자 특성 분석을 가능하게 한다. 그림 3은 온도의 함수로 나타낸 소자 성능 변화를 보여주며, 기판에 대한 뚜렷한 의존성을 드러낸다. 전사 전 기준값($R_{th} = 28.1 \text{ }^{\circ}\text{C} \cdot \text{mm}/\text{W}$)과 비교할 때, 모든 전사된 소자에서 열저항이 감소하였고, 그래핀과 MoS₂는 ($R_{th} = 13.1 \text{ }^{\circ}\text{C} \cdot \text{mm}/\text{W}$)에 도달했으며, As-grown은 가장 낮은 ($R_{th} = 10.56 \text{ }^{\circ}\text{C} \cdot \text{mm}/\text{W}$)를 달성하였다. 이러한 결과는 전사된 GaN HEMT에서 자가발열을 지배함에 있어 기판 선택과 계면 열전도도가 결정적 역할을 함을 보여준다. 본 연구 결과는 FAST 전사를 통한 기판 공학이 전사 및 출력 곡선을 통해 평가된 전기적 특성을 보존하면서 채널 자가발열을 효과적으로 완화할 수 있음을 나타낸다.