
Visual Event Detection over AI-Edge LEO

Satellites with AoI Awareness

Chathuranga M. Wijerathna Basnayaka∗, Haeyoung Lee∗, Pandelis Kourtessis∗, John M. Senior∗,

Vishalya P. Sooriarachchi†‡, Dushantha Nalin K. Jayakody†‡, Marko Beko†‡¶ and Seokjoo Shin§

∗School of Physics, Engineering and Computer Science, University of Hertfordshire, United Kingdom
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Abstract—Non terrestrial networks (NTNs), particularly low
Earth orbit (LEO) satellite systems, play a vital role in supporting
future mission critical applications such as disaster relief. Recent
advances in artificial intelligence (AI)-native communications
enable LEO satellites to act as intelligent edge nodes capable
of on board learning and task oriented inference. However,
the limited link budget, coupled with severe path loss and
fading, significantly constrains reliable downlink transmission.
This paper proposes a deep joint source-channel coding (DJSCC)-
based downlink scheme for AI-native LEO networks, optimized
for goal-oriented visual inference. In the DJSCC approach, only
semantically meaningful features are extracted and transmitted,
whereas conventional separate source-channel coding (SSCC)
transmits the original image data. To evaluate information
freshness and visual event detection performance, this work
introduces the age of misclassified information (AoMI) metric and
a threshold based AoI analysis that measures the proportion of
users meeting application specific timeliness requirements. Sim-
ulation results show that the proposed DJSCC scheme provides
higher inference accuracy, lower average AoMI, and greater
threshold compliance than the conventional SSCC baseline,
enabling semantic communication in AI native LEO satellite
networks for 6G and beyond.

Index Terms—Age of Information (AoI), Deep Joint Source and
Channel Coding (DJSCC), Semantic Communication, AI-Edge,
LEO Satellite.

I. INTRODUCTION

The rapid evolution of communication technologies has

positioned non-terrestrial networks (NTNs), particularly low

Earth orbit (LEO) satellite-assisted systems, as key enablers of

mission-critical applications [1], [2]. These includes disaster

relief, autonomous vehicles, remote healthcare, industrial au-

tomation, all of which demand high reliability, low latency, and

fresh, up-to-date information [3]. With the emergence of AI-

native communication paradigms, LEO satellites can operate

as intelligent edge nodes that perform on board learning and

task oriented inference, improving overall network adaptability

and efficiency [4], [5]. However, LEO satellite communi-

cation systems face significant challenges, as their limited

link budget, further affected by path loss, rain attenuation,

and fading, restricts reliable downlink performance. Conven-

tional separate source channel coding (SSCC) systems, which

process compression and error protection separately, suffer

performance degradation under adverse channel conditions.

To address these limitations, recent studies have explored

deep joint source–channel coding (DJSCC) [6], a neural net-

work–based framework that jointly optimizes source compres-

sion and channel protection in an end-to-end manner. DJSCC

has demonstrated strong robustness and graceful performance

degradation in noisy environments compared to conventional

SSCC systems [7].

As wireless networks move toward semantic and goal ori-

ented communication, the focus shifts from bit level accuracy

to task performance, where the receiver must correctly perform

tasks such as visual event detection or feature recognition

without reconstructing the original data [8]. This paradigm is

particularly beneficial for satellite systems, where transmission

efficiency and information timeliness are critical. This paper

proposes a DJSCC-based AI-native LEO satellite system for

goal-oriented visual inference, transmitting only semantically

meaningful features to ground users. To quantify both timeli-

ness and inference accuracy, the age of misclassified informa-

tion (AoMI) metric is introduced, extending the conventional

age of information (AoI) [9], [10] framework to task-oriented

semantic communications. Additionally, a threshold-based AoI

performance analysis is developed to evaluate system reliabil-

ity by quantifying the percentage of users meeting application-

specific timeliness requirements.

The proposed DJSCC approach is evaluated through sim-

ulations in realistic LEO satellite environments characterized

by composite fading and rain attenuation. Results demonstrate

that the DJSCC scheme significantly improves inference ac-

curacy, information freshness, and threshold compliance rates

compared with SSCC baselines, providing a viable foundation

for semantic, AI-native satellite networks in 6G and beyond.

II. SYSTEM MODEL

The proposed satellite communication system, illustrated in

Fig. 1, comprises a single LEO satellite, denoted as s, and a

set U of U ground users (GUs). The system is designed for au-

tomated visual event detection applications, where the satellite
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Fig. 1. System architecture of the proposed LEO satellite communication
system. The satellite captures images and transmits them to U ground users
(GUs) via DJSCC.

captures images at random intervals during orbital operations,

enabling continuous terrestrial monitoring for mission-critical

events including natural disasters, environmental changes, and

security incidents. This paper proposes a DJSCC scheme that

employs an AI-assisted wireless communication framework

to facilitate efficient and timely event detection from these

randomly acquired images. Images are captured by the LEO

satellite according to a Poisson process with rate λI images per

second. Each captured image I ∈ R
IH×IW×IC undergoes au-

tomated processing for event detection. The proposed DJSCC

framework enables direct event classification without explicit

image reconstruction, as shown in Fig. 2. The input image has

spatial dimensions IH×IW and IC color channels, comprising

kP = IHIW IC pixels, which defines the source bandwidth. A

deep neural network encoder f(·,ϑ) with learnable parameters

ϑ extracts task-specific semantic features z = f(I,ϑ) ∈
R

2nT , where nT denotes the number of transmitted complex

symbols. The bandwidth compression ratio nT /kP < 1
indicates source compression. The encoder produces a latent

feature tensor of size (IH/2δ)×(IW /2δ)×ncon, where δ ∈ Z
+

is the number of downsampling stages and ncon is the number

of feature channels per spatial location. The total number of

complex channel symbols is given by

nT =

�

IHIW
22δ

�

ncon, (1)

yielding the compression ratio

nT

kP
=

ncon

IC · 22δ
, kP = IHIW IC . (2)

The semantic features z ∈ R
2nT are linearly mapped to the

transmitted xsem = [x1, . . . , xnT
]T ∈ C

nT , subject to the

average power constraint 1
nT

E
�

∥xsem∥
2
�

≤ PT , where PT

is the maximum transmit power. The LEO satellite channel

is characterized by composite fading, which integrates large-

scale path loss, rain attenuation, and small-scale Rician fading.

The received signal for a user u employing DJSCC is modeled

as:

yu =

�

PTG
(s,u)
large ·Hs,uxsem + nu, (3)

where G
(s,u)
large denotes the aggregate large-scale channel gain

between satellite s and user u, accounting for free-space

path loss and rain-induced attenuation. The matrix Hs,u =
diag(h1, h2, . . . , hnT

) is a diagonal channel matrix whose

elements hi are independent and identically distributed Rician

fading coefficients, each representing the small-scale fading

experienced by one of the nT transmitted symbols. The

additive white Gaussian noise at the receiver is given by

nu ∼ CN (0, σ2
uIn), where In is the identity matrix. The

small scale Rician fading component models the dominant

Line of Sight (LOS) propagation characteristic typical of LEO

satellite channels. Each coefficient hi is expressed as:

hi =

�

K

K + 1
hLOS +

�

1

K + 1
hNLOS, (4)

where hLOS is the deterministic LOS component, hNLOS ∼
CN (0, 1) represents the scattered non-LOS components, and

K is the Rician K-factor, defining the power ratio between the

LOS and non-LOS components. The power gain |hi|
2 follows

a non-central chi-square distribution. Its probability density

function (PDF) is given by:

f|hi|2(z) = (K+1)e−K exp[−(K + 1)z] I0

�

2
�

K(K + 1)z
�

,

where z ≥ 0, I0(·) denotes the zero-order modified Bessel

function of the first kind. The total channel power gain is the

product of large-scale and small-scale components: G
(s,u)
total =

G
(s,u)
large |hi|

2. The aggregate large scale channel gain comprises:

G
(s,u)
large =

GTGR

PLtotal

, (5)

where GT and GR represent satellite and terrestrial antenna

gains, respectively and PLtotal = PLfs + PLrain is the

composite path loss, which includes free-space loss and rain

attenuation. The free-space path loss is

PLfs =

�

4πdfc
c

�2

, (6)

where d is the slant range, fc is the carrier frequency, and c
is the speed of light. The slant range is

d = RE





�

�

1 +
o

RE

�2

− cos2 ϵ0 − sin ϵ0



 , (7)

where RE is the Earth’s radius, o is the orbital altitude, and

ϵ0 is the elevation angle. Rain attenuation is modelled as

PLrain = κRβLrain, where R is the rain rate (mm/h), κ and β
are frequency-dependent coefficients, and Lrain is the effective

path length through precipitation:

Lrain =
�

0.00741R0.776 + (0.232− 0.00018) sin ϵ0
�−1

. (8)

The signal-to-noise ratio (SNR) for DJSCC-based user u is

calculated as

γu =
PTG

(s,u)
total

σ2
u

. (9)
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Fig. 2. (a) DJSCC transceiver; (b) SSCC transceiver. The DJSCC encoder maps images directly to channel symbols; the decoder performs classification
without reconstruction. The SSCC chain comprises BPG compression, LDPC coding, QAM modulation, demodulation, LDPC decoding, BPG decompression,
and classification.

The receiver processing chain begins with signal reception

and preprocessing. The received complex-valued signal yu

undergoes component separation, where the real and imaginary

components are extracted and reshaped to form the feature

vector ẑ ∈ R
2nT . This feature vector serves as input to a deep

neural network decoder jointly optimized with the transmitter

encoder during the training phase. The decoder network maps

the noisy channel output to semantic features without inter-

mediate bit-level decoding operations. The decoded semantic

features ẑ are processed by a classification network M(·, τ )
with learnable parameters τ , which directly generates the

output label L = M(ẑ, τ ). This approach preserves semantic

information and avoids image reconstruction, reducing end-to-

end latency.

For comparison with conventional approaches, we consider

a conventional SSCC scheme. The input image I first un-

dergoes source compression using Better Portable Graphics

(BPG), producing a sequence of encoded bits bsrc. These

bits are then channel encoded using a Low-Density Parity-

Check (LDPC) code, generating the encoded bit stream bchan.

The channel-encoded bits bchan are modulated using M -ary

Quadrature Amplitude Modulation (QAM), where M = 2m

represents the constellation size and m is the number of

bits per symbol. The modulation process maps each group

of m bits to a complex symbol x ∈ C from the QAM

constellation set X = {X1, X2, . . . , XM}. The transmitted

symbol sequence x = [x1, x2, . . . , xNsym
]T satisfies the aver-

age power constraint: E
[

∥x∥2
]

= 1
Nsym

∑Nsym

i=1 ∥xi∥
2 = Pavg,

where Pavg denotes the average symbol power and Nsym is the

total number of transmitted symbols. For SSCC scheme, the

received signal is given by yu =
√

PavgG
(s,u)
large ·Hs,ux+nu,

where the channel parameters G
(s,u)
large , Hs,u, and the resulting

SNR γu = PavgG
(s,u)
total /σ2

u are defined identically to the

DJSCC case. The received signal yu first undergoes symbol

detection using maximum likelihood detection, followed by

QAM demodulation to recover the encoded bit stream bchan.

The demodulated bits are then processed by an LDPC decoder

implementing the iterative belief propagation algorithm. The

channel decoder corrects transmission errors and outputs the

source-encoded bit stream bsrc, which is subsequently decom-

pressed using the BPG decoder to reconstruct the image Î . The

reconstructed image, which may contain distortions from lossy

compression and uncorrected symbol errors from the channel

decoder, is finally fed into a pre-trained classifier to obtain

the classification result. This multi-stage processing pipeline,

while providing explicit error correction, introduces significant

processing delays compared to the DJSCC approach due to the

sequential nature of demodulation, channel decoding, source

decoding, and classification operations.

III. AGE OF INFORMATION ANALYSIS

This section derives the average AoMI (AAoMI) for the

LEO satellite-assisted communication network. The system

model assumes images are captured by the satellite at rate

λI , following a Poisson process. The probability of correct

image classification at receiver u is denoted by ρu, where

0 ≤ ρu < 1 and u ∈ U . At the transmitter, located on

the LEO satellite, the input image undergoes encoding with

processing delay Denc. The encoded features are transmitted

over the wireless channel with transmission time nTTs, where

nT is the number of symbols and Ts is the symbol duration.

User u performs classification with processing time D
(u)
cls .

Accordingly, the total end-to-end delay experienced by user

u is defined as D
(u)
total = Denc + nTTs +D

(u)
cls .

For user u ∈ U , let τ
(u)
g (t) denote the generation timestamp

of the most recently correctly classified image at the receiver

up to the observation time t. The instantaneous AoMI at time

t is defined as

α
(u)
0 (t) ≜ t− τ (u)g (t), (10)

573



which represents the time elapsed since the last successful

classification. The time-averaged AoMI over an observation

interval [0, T ] is given by

ᾱ
(u)
T ≜

1

T

∫ T

0

α
(u)
0 (t)dt. (11)

Under ergodicity, as T → ∞, ᾱ
(u)
T converges to the average

AoMI (AAoMI):

α(u)
avg ≜ lim

T→∞
ᾱ
(u)
T = E

[

α
(u)
0 (t)

]

. (12)

The AAoMI is derived by modeling the system using

stochastic hybrid systems (SHS) [9]. In this framework, the

state is defined by a continuous component and a discrete

component. The discrete state, q(t) ∈ Q = {0, 1}, represents

the operational mode of the system: q(t) = 0 indicates the

system is idle, and q(t) = 1 indicates it is actively transmitting

an image. The continuous state, α(u)(t) = [α
(u)
1 (t), α

(u)
0 (t)],

tracks the age processes. Here, α
(u)
0 (t) is the AoMI—the age

of the last correctly classified image at the receiver. The state

α
(u)
1 (t) represents the projected age of the image currently

under transmission, were it to be correctly classified.

The evolution of the AoMI process is described by a

directed graph (Q,L), where the set of nodes Q represents

the discrete states, and the set of directed edges L represents

transitions between these states triggered by stochastic events.

Each transition l ∈ L is associated with a transition rate λ(l)

and a reset map that instantaneously updates the continuous

state upon the transition according to α(u)′ = α(u)Al, where

Al ∈ {0, 1}2×2 is a binary matrix.

For the considered system, the transitions are defined as

follows. Transition l1 (0 → 1) corresponds to an image

generated by the satellite while the system is idle, occurring at

rate λ(1) = λI . The reset map A1 =

[

0 0
1 0

]

sets α
(u)′
1 = α

(u)
0

and α
(u)′
0 = 0. Transition l2 (1 → 0) occurs when the

ground user correctly classifies a transmitted image, with rate

λ(2) = ρu/D
(u)
total. The reset map A2 =

[

0 0
0 1

]

updates

the AoMI by setting α
(u)′
0 = α

(u)
1 , reflecting the age of

the newly correctly-classified image. Transition l3 (1 → 0)

represents a misclassification by the ground user, occurring at

rate λ(3) = (1−ρu)/D
(u)
total. The reset map A3 =

[

0 0
1 0

]

resets

α
(u)
1 while preserving the current AoMI α

(u)
0 . Transition l4

(1 → 1) is triggered by a new image generated during ongoing

transmission, where the current transmission continues and

the new image is discarded, occurring at rate λ(4) = λI .

The reset map A4 =

[

0 1
1 0

]

swaps the age values, setting

α
(u)′
1 = α

(u)
0 and α

(u)′
0 = α

(u)
1 . The continuous state α(u)(t)

evolves linearly in each discrete state q according to the

differential equation: α̇(u)(t) = bq , where bq is a binary

vector. For this system, b0 = [1, 0] when q = 0, meaning

only the AoMI α
(u)
0 (t) increases at a unit rate. When q = 1,

b1 = [1, 1], meaning both α
(u)
0 (t) and α

(u)
1 (t) increase at a unit

rate. The SHS method computes the AAoMI, α
(u)
avg = E[α

(u)
0 ],

by analyzing the system in steady state. Let πq(t) = E[δq,q(t)]
be the probability of the discrete state q at time t, and let

v
(u)
q (t) = [v

(u)
q0 (t), v

(u)
q1 (t)] = E[α(u)(t)δq,q(t)] be the corre-

lation vector between the age process and the discrete state.

Assuming the underlying Markov chain is ergodic, the state

probability vector π(t) = [π0(t), π1(t)] converges to a unique

stationary distribution π̄ = [π̄0, π̄1]. The balance equations

for the discrete states are π̄0λI = π̄1/D
(u)
total, π̄0 + π̄1 = 1.

Solving these yields:

π̄0 =
1

1 + λID
(u)
total

, π̄1 =
λID

(u)
total

1 + λID
(u)
total

. (13)

In steady state, the correlation vectors v
(u)
q =

limt→∞ v
(u)
q (t) satisfy the following system of linear

equations for all q̄ ∈ Q [9]:

v
(u)
q̄

∑

l∈Lq̄

λ(l) = bq̄π̄q̄ +
∑

l∈L′

q̄

λ(l)v(u)
ql

Al, (14)

where Lq̄ is the set of transitions leaving state q̄, and L′
q̄ is

the set of transitions entering state q̄. Applying (14) to states

q = 0 and q = 1 gives the following equations. For state

q = 0:

λIv
(u)
0 = b0π̄0 +

ρu

D
(u)
total

v
(u)
1 A2 +

1− ρu

D
(u)
total

v
(u)
1 A3. (15)

Substituting the values for b0, A2, and A3 gives the scalar

equations:

λIv
(u)
00 = π̄0 +

1− ρu

D
(u)
total

v
(u)
10 , (16)

λIv
(u)
01 =

ρu

D
(u)
total

v
(u)
11 . (17)

For state q = 1:
(

λI +
1

D
(u)
total

)

v
(u)
1 = b1π̄1 + λIv

(u)
0 A1 + λIv

(u)
1 A4. (18)

Substituting the values for b1, A1, and A4 gives the scalar

equations:
(

λI +
1

D
(u)
total

)

v
(u)
10 = π̄1 + λIv

(u)
01 + λIv

(u)
11 , (19)

(

λI +
1

D
(u)
total

)

v
(u)
11 = π̄1 + λIv

(u)
10 . (20)

The AAoMI can be obtained from the correlation vec-

tors through total expectation as α
(u)
avg = E[α

(u)
0 ] =

limt→∞ E[α
(u)
0 (t)] =

∑

q∈Q v
(u)
q0 = v

(u)
00 +v

(u)
10 . Then, solving

(16)–(20) for v
(u)
00 and v

(u)
10 , and substituting the stationary

probabilities from (13), yields the closed-form expression for

the AAoMI of user u:

α(u)
avg =

1

λIρu
+

D
(u)
total

ρu
+

λI(D
(u)
total)

2

1 + λID
(u)
total

. (21)
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The network AAoMI is then obtained by averaging the indi-

vidual AAoMI from (21) over all users: αnet
avg = 1

U

∑U
u=1 α

(u)
avg .

The AAoMI enables reliability assessment via threshold-based

analysis of information freshness. Let ηaomi represent the

maximum allowable AoMI for a specific application. For

each user u ∈ U , the threshold compliance condition is

defined as: α
(u)
avg ≤ ηaomi. The threshold compliance ratio

across the network quantifies the percentage of users meeting

the timeliness requirement: Γ = 1
U

∑U
u=1 I

(

α
(u)
avg ≤ ηaomi

)

,

where I(·) is the indicator function that returns unity when

the argument is true and zero otherwise.

IV. NUMERICAL RESULTS AND PERFORMANCE ANALYSIS

The proposed DJSCC scheme is evaluated through Monte

Carlo simulations implemented in Python using TensorFlow

and Sionna. The system serves U = 5 ground users with

channel parameters randomly sampled to reflect realistic LEO

deployment scenarios. Elevation angles ϵ0 are uniformly dis-

tributed in [20◦, 60◦], rain rates R in [0.1, 25] mm/h, and Ri-

cian K-factors in [5, 15] dB. System parameters include: Earth

radius RE = 6371 km, satellite antenna gain GT ∈ [28, 32]
dBi, user antenna gain GR ∈ [23, 27] dBi, carrier frequency

fc = 20 GHz, orbital altitudes o ∈ {400, 1000} km, noise

power σ2
u = −99.61 dBm, and rain attenuation coefficients

κ = 0.075, β = 1.099. Transmit power PT = Pavg ranges

from 0.01 W to 100 W.

Performance is assessed using the CIFAR-10 dataset (32×
32× 3 RGB images, kP = 3072 pixels). The SSCC baseline

uses BPG compression, rate-2/3 LDPC coding with 3072

information bits and 4608 coded bits, and 4-QAM modulation.

The BPG quality is adjusted to achieve an end-to-end band-

width ratio of 1/3, resulting in 1024 channel uses per image.

The DJSCC transceiver adopts the DeepJSCC-l architecture

[11], where the encoder comprises five convolutional layers

with generalized divisive normalization (GDN) activations.

With δ = 2 downsampling stages, the encoder produces

a latent tensor of size 8 × 8 × ncon. Setting ncon = 16
yields 1024 complex channel symbols, matching the SSCC

bandwidth ratio of 1/3. The decoder employs transposed

convolutions with inverse GDN and a classification head with

two fully connected layers. End-to-end training is performed

at γtrain = 10 dB using the Adamax optimizer (batch size 128),

cross-entropy loss, and power normalization.

For AoI analysis, encoding delay is Denc = 0.01 s for both

schemes, symbol duration Ts = 125 ns, classification delays

are D(DJSCC)
cls = 0.02 s and D(SSCC)

cls = 0.03 s, and images arrive

according to a Poisson process with rate λI = 1.0 image/s.

Fig. 3 illustrates the comparative classification accuracy of

DJSCC and conventional LDPC+BPG across varying trans-

mission powers for both 400 km and 1000 km orbit heights.

DJSCC achieves higher accuracy than SSCC, especially at

low SNR, across both orbit heights. The 400 km orbit

achieves slightly better performance owing to reduced path

loss compared with the 1000 km orbit. The graceful degra-

dation characteristic of DJSCC is evident, demonstrating the
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Fig. 4. Network AAoMI (αnet
avg) vs. transmission power characteristics for

DJSCC and conventional LDPC+BPG at 400 km and 1000 km orbit heights.

effectiveness of the joint source-channel coding approach for

visual event detection in challenging satellite communication

environments.

Fig. 4 presents the network AAoMI (αnet
avg) vs. transmis-

sion power characteristics for both orbit heights. The results

show that DJSCC consistently achieves lower AAoMI val-

ues compared to conventional SSCC across all transmission

power levels and orbit heights. This performance advantage

is attributed to higher classification accuracy and reduced

processing latency relative to conventional approaches. The

400 km orbit height demonstrates better AAoMI performance

for both methods due to improved channel conditions, but

DJSCC maintains its superiority in both scenarios. The DJSCC

scheme demonstrates improved freshness performance across

multiple SNR levels, with particular advantages over conven-

tional SSCC approaches in challenging channel conditions.

Fig. 5 demonstrates the threshold compliance ratio Γ across

varying transmission powers for both orbit heights, consid-

ering an AoMI threshold ηaomi = 2 seconds. The proposed

DJSCC system achieves significantly higher compliance rates

compared to conventional SSCC approaches, particularly in

low-power operational regimes. For the 400 km orbit height,
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Fig. 5. Threshold Compliance Ratio Γ vs. transmission power characteristics
for DJSCC and conventional LDPC+BPG at 400 km and 1000 km orbit
heights, with AoMI threshold ηaomi = 2 seconds.

DJSCC maintains near-perfect compliance (Γ > 0.9) across

most power levels, while conventional SSCC methods struggle

to achieve acceptable compliance rates below 10 W transmis-

sion power. The 1000 km orbit height shows similar trends

with slightly reduced absolute performance due to increased

path loss, but DJSCC maintains its relative advantage. Simu-

lation results demonstrate that the DJSCC approach provides

advantages over conventional SSCC methods.. For the 400

km orbit height, the DJSCC system achieves up to 287%

relative improvement in classification accuracy at 1 W transmit

power compared to the SSCC baseline, highlighting its effec-

tiveness in low-power communication regimes. Furthermore,

the proposed DJSCC scheme achieves lower AAoMI across

all transmit power levels and reduces AAoMI by more than

85% at 10 W relative to the conventional SSCC baseline. The

threshold compliance analysis reveals that DJSCC achieves

compliance rates exceeding 90% across most operational

scenarios, while conventional methods fall below 50% in

challenging conditions.

The performance advantage remains consistent across both

orbit heights, with the 400 km orbit achieving approximately

15–20% superior absolute performance metrics due to reduced

path loss. Nevertheless, DJSCC maintains substantial perfor-

mance gains over conventional methods in both orbital sce-

narios, demonstrating the robustness of the proposed approach

across varying satellite deployment configurations.

While the DJSCC method requires all users to employ AI-

enabled processors with substantial computational resources,

the significant performance gains in classification accuracy,

information freshness, and threshold compliance rates justify

this requirement for mission-critical applications. The end-

to-end optimization of source compression and channel pro-

tection enables robust performance in the challenging LEO

satellite environment, making DJSCC a promising approach

for future AI-native satellite networks across various orbital

configurations.

V. CONCLUSION

This paper introduces a novel deep joint source-channel cod-

ing (DJSCC) framework optimised for 6G AI-edge LEO satel-

lite networks supporting visual event detection. The proposed

architecture enables direct semantic feature transmission, elim-

inating explicit image reconstruction while maintaining task-

oriented performance. Through comprehensive Stochastic Hy-

brid Systems analysis, closed-form expressions for the Age

of Misclassified Information are derived, providing a unified

metric capturing both information timeliness and inference

accuracy for semantic communications. Simulations at 400 km

and 1000 km orbit heights show that DJSCC achieves up to

287% higher classification accuracy at 1 W transmit power,

reduces average AoMI by over 85% at 10 W, and satisfies the

timeliness threshold (ηaomi = 2 s) for over 90% of users. These

performance improvements remain consistent across channel

conditions, indicating the effectiveness of DJSCC compared to

LDPC+BPG. The integration of semantic communication with

freshness-aware metrics enables reliable low-latency visual

inference in AI-native LEO satellite networks, supporting

automated environmental and safety monitoring applications

such as flood detection, fire surveillance, and urban disaster

monitoring.

REFERENCES

[1] X. Zhao, L. Lei, Z. Wei, H. Fang, W. Wang, and S. Chatzinotas, “An
Integrated OTFS-NOMA Framework for Multi-Beam LEO Systems:
Reliability and Capacity Analysis,” IEEE Trans. Wireless Commun., pp.
1–1, 2025.

[2] C.-S. Choi, “Modeling and Analysis of Downlink Communications in a
Heterogeneous LEO Satellite Network,” IEEE Trans. Wireless Commun.,
vol. 23, no. 8, pp. 8588–8602, 2024.

[3] S. Su, J. Jiao, T. Yang, L. Xu, Y. Wang, and Q. Zhang, “Unequal Timeli-
ness Protection Massive Access for Mission Critical Communications in
S-IoT,” IEEE Trans. Wireless Commun., vol. 72, no. 6, pp. 3211–3226,
June 2024.

[4] S. Yao, Y. Lin, M. Wang, K. Xu, M. Xu, C. Xu, and H. Zhang,
“LEOEdge: A Satellite-Ground Cooperation Platform for the AI Infer-
ence in Large LEO Constellation,” IEEE J. Sel. Areas Commun., vol. 43,
no. 1, pp. 36–50, 2025.

[5] Z. Xiao, J. Yang, T. Mao, C. Xu, R. Zhang, Z. Han, and X.-G. Xia,
“LEO satellite access network (LEO-SAN) toward 6G: Challenges and
approaches,” IEEE Wireless Commun., vol. 31, no. 2, pp. 89–96, 2024.

[6] E. Bourtsoulatze, D. Burth Kurka, and D. Gündüz, “Deep Joint Source-
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