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Abstract—Traffic prediction is a critical component in optimiz-
ing resource allocation, ensuring quality of service, and enhancing
the overall performance of Software-Defined Networks (SDNs).
Traditional machine learning methods for traffic forecasting
often suffer from limited adaptability to highly dynamic and
heterogeneous network conditions. This paper proposes adaptive
machine learning models tailored for traffic prediction in SDNs,
leveraging the programmability and centralized control offered
by the SDN paradigm. We design and evaluate models that
incorporate adaptive learning strategies to address challenges
such as traffic burstiness, temporal variability, and shifting
traffic patterns. The proposed framework dynamically tunes
model parameters and selectively updates prediction strategies
based on real-time network feedback. Experimental results on
benchmark SDN traffic datasets demonstrate that our adaptive
models significantly improve prediction accuracy, reduce com-
putational overhead, and achieve faster convergence compared
to conventional static approaches. These findings highlight the
potential of adaptive machine learning to enable more intelligent,
scalable, and resilient traffic management in next-generation
SDN .

Index Terms—Software-Defined Networking (SDN), traffic pre-
diction, adaptive machine learning, dynamic resource allocation,
network intelligence, QoS optimization.

I. INTRODUCTION

The rapid growth of Internet applications, cloud services,
and emerging paradigms such as the Internet of Things (IoT)
and 5G has led to an exponential increase in network traffic
volume and complexity [1]. Modern networks must handle
highly dynamic traffic patterns, including burstiness, tempo-
ral fluctuations, and heterogeneous flows, while maintaining
stringent requirements for quality of service (QoS), latency,
and reliability. Traditional network architectures, built on rigid
and distributed control mechanisms, often struggle to adapt to
these challenges efficiently [2].

Software-Defined Networking (SDN) has emerged as a
transformative networking paradigm that decouples the control
plane from the data plane, enabling centralized management,
programmability, and global visibility of the entire network
[3]. These features make SDN an attractive platform for traffic
engineering and intelligent network management. A key en-
abler of efficient SDN operation is accurate traffic prediction,
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which allows controllers to proactively allocate resources,
avoid congestion, and improve overall system performance [4].

Existing traffic prediction approaches primarily rely on
statistical analysis or conventional machine learning mod-
els. While these methods provide valuable insights, they
typically assume stationary traffic patterns and fixed model
configurations [5]. As a result, they often fail to maintain
high prediction accuracy under dynamic and rapidly changing
network environments [6]. Recent advances in deep learning
have demonstrated improved prediction capabilities; however,
these models can be computationally intensive and may not
adapt quickly to real-time traffic variations.

To address these limitations, this paper proposes adaptive
machine learning models for traffic prediction in SDNs. Un-
like static approaches, adaptive models dynamically update
their learning strategies, tune hyperparameters, and integrate
real-time feedback from the network to enhance prediction
accuracy [7]. By leveraging the programmability of SDN, our
approach enables controllers to deploy self-adjusting traffic
forecasting mechanisms that respond effectively to shifting
conditions without incurring excessive computational costs.
The data collection is shown in Table I.

The contributions of this paper are summarized as follows
[8]:

+ Adaptive Learning Framework: We design adaptive ma-
chine learning models capable of adjusting to temporal varia-
tions and bursty traffic patterns in SDNs .

+ Dynamic Parameter Tuning: We introduce mechanisms
for real-time parameter optimization and selective retraining
to balance accuracy with computational efficiency.

+ Comprehensive Evaluation: We validate the proposed
framework on benchmark SDN traffic datasets, demonstrat-
ing improvements in accuracy, convergence, and robustness
compared to conventional models.

+ The remainder of this paper is organized as follows.
Section II reviews related work on traffic prediction in SDNs.
Section III presents the proposed adaptive machine learning
framework. Section IV describes the experimental setup and
dataset [9]. Section V discusses the evaluation results. Finally,
Section VI concludes the paper and outlines future research
directions.
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DateTime Junction  Vehicles ID lagl lag2  lag3 lagd  lag5 lag6  lag7 lag8 lag9  lagl0  target_ma3
2015-11-01 10:00:00 1 15 20151101101 12 11 8 9 6 9 7 10 13 15 15.00
2015-11-01 11:00:00 1 17 20151101111 15 12 11 8 9 6 9 7 10 13 16.00
2015-11-01 12:00:00 1 16 20151101121 17 15 12 11 8 9 6 9 7 10 16.00
2015-11-01 13:00:00 1 15 20151101131 16 17 15 12 11 8 9 6 9 7 16.00
2015-11-01 14:00:00 1 16 20151101141 15 16 17 15 12 11 8 9 6 9 15.67
2015-11-01 15:00:00 1 12 20151101151 16 15 16 17 15 12 11 8 9 6 14.33
2015-11-01 16:00:00 1 12 20151101161 12 16 15 16 17 15 12 11 8 9 13.33
2015-11-01 17:00:00 1 16 20151101171 12 12 16 15 16 17 12 12 11 8 13.33
2015-11-01 18:00:00 1 17 20151101181 16 12 12 16 15 16 17 15 12 11 15.00
2015-11-01 19:00:00 1 20 20151101191 17 16 12 12 16 15 16 17 15 12 17.67
2015-11-01 20:00:00 1 17 20151101201 20 17 16 12 12 16 15 16 17 15 18.00
2015-11-01 21:00:00 1 19 20151101211 17 20 17 16 12 12 16 15 16 17 18.67
2015-11-01 22:00:00 1 20 20151101221 19 17 20 17 16 12 12 16 15 16 18.67
2015-11-01 23:00:00 1 15 20151101231 20 19 17 20 17 16 12 12 16 15 18.00
2015-11-02 00:00:00 1 14 20151102001 15 20 19 17 20 17 16 12 12 16 16.33
TABLE T

FIRST 15 ROWS OF PROCESSED TRAFFIC DATASET.

II. METHODOLOGY
A. Data collection

Accurate and representative data is essential for building re-
liable traffic prediction models in Software-Defined Networks
(SDNs). In this study, we utilize publicly available benchmark
datasets and synthetic traffic traces to capture diverse network
scenarios. The data collection process is designed to reflect
both real-world traffic dynamics and controlled experimental
conditions.

Source of Data: We collect traffic traces from two primary
sources:

Public Benchmark Datasets: We employ widely used SDN-
related traffic datasets such as the UNSW-NB15 dataset and
the MAWI traffic archive, which provide packet- and flow-
level statistics. These datasets include features such as packet
counts, byte counts, flow duration, inter-arrival times, and
protocol information, allowing for comprehensive traffic char-
acterization.

Emulated SDN Environment: To supplement public
datasets, we generate traffic traces using Mininet and the Ryu
SDN controller. Workloads are created with iPerf and D-ITG
to emulate different traffic conditions, including bursty traffic,
high-throughput video streams, and latency-sensitive flows.
This controlled environment ensures that the adaptive models
can be tested under realistic but reproducible conditions.

Data Features: The datasets include a variety of features
relevant to traffic prediction, such as:

+ Flow-level statistics: source/destination IP, ports, and
protocol type.

+ Temporal features: packet arrival times, flow duration, and
inter-arrival variance.

+ Traffic volume indicators: bytes per flow, packets per
second, and bandwidth utilization.

+ QoS-related metrics: delay, jitter, and packet loss (mea-
sured in emulated setups).

These features are preprocessed into time-series representa-
tions, enabling predictive modeling of future traffic patterns.

Data Preprocessing: To ensure data quality and suitability
for model training, the following preprocessing steps are
applied:

+ Cleaning: Removal of incomplete or corrupted records,
such as flows with missing timestamps.

+ Normalization: Scaling numerical attributes (e.g., packet
counts, byte sizes) into a fixed range to avoid bias toward
high-volume flows.

+ Aggregation: Grouping flows into time windows (e.g., 1s,
5s, 10s) to capture temporal dependencies.

+ Feature Selection: Employing correlation analysis and
domain knowledge to reduce redundant attributes and retain
the most informative predictors.

+ Labeling: For supervised learning tasks, future traffic
values (e.g., throughput in the next time interval) are used
as prediction targets.

+ Dataset Partitioning: The final dataset is divided into
three subsets: 70% for training, 15% for validation, and 15%
for testing. Cross-validation is also employed to assess the
generalization capability of the adaptive models under varying
traffic patterns.

B. Applied methodology

The proposed methodology integrates adaptive machine
learning models with the centralized control features of
Software-Defined Networking (SDN) to enhance traffic pre-
diction. First, traffic data is collected from both benchmark
datasets and emulated SDN environments, then preprocessed
through cleaning, normalization, feature extraction, and aggre-
gation into time-series windows. Machine learning and deep
learning models including Random Forests, Support Vector
Regression, LSTM, and GRU are designed to capture both
short-term fluctuations and long-term temporal dependencies.
Ensemble and hybrid techniques are employed to combine
strengths of different models, while feature selection ensures
only the most relevant attributes (e.g., throughput, packet inter-
arrival times, and flow duration) are used for training. A key
novelty of our approach lies in its adaptive learning strategy.
Instead of relying on static models with fixed configura-
tions, the system dynamically tunes hyperparameters, updates
models incrementally with streaming data, and switches be-
tween lightweight or complex predictors depending on traffic
conditions and computational resources. Prediction errors are
continuously monitored to trigger retraining or parameter
adjustments, ensuring robustness under non-stationary traffic.
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Once trained, the adaptive models are deployed within the
SDN controller to provide proactive traffic forecasting for
bandwidth allocation, load balancing, congestion avoidance,
and QoS enforcement. The performance is evaluated in terms
of prediction accuracy (MAE, RMSE, R?), computational
efficiency (training and inference latency), and network-level
metrics such as throughput, delay, and jitter. The processing
steps are shown in Fig. 1.

(Benchmark datasets, Emulated SDN traffic)

v

Data Preprocessing
(Cleaning, Normalization, Aggregation, Feature Selection)

v

Model Design
(ML/DL Models: RF, SVR, LSTM, GRU, Ensembles)

v

{ Adaptive Learning Strategy }

L Data Collection }

(Online Updating, Dynamic Tuning, Model Switching)

v

{ Integration with SDN Controller }

(Traffic Prediction, Resource Allocation, QoS)

v

Evaluation
(Accuracy, Efficiency, Network Metrics)

Fig. 1. Processing steps of the proposed methodology.

ITI. NUMERICAL RESULTS
A. Prediction Accuracy Metrics

To assess the effectiveness of the proposed adaptive machine
learning models, we employ both prediction-oriented and
network-oriented evaluation metrics. These metrics provide
a comprehensive view of model performance in terms of
accuracy, computational efficiency, and impact on Software-
Defined Network (SDN) operations. Prediction accuracy is
evaluated using standard statistical measures: + Mean Absolute
Error (MAE):

N
! A
MAE—Nglyi—yA (1)

where y; is the actual traffic value and ¢; is the predicted
value.
+ Root Mean Squared Error (RMSE):

1 )
RMSE = N Z (yi — 0:)° 2

i=1

This metric penalizes larger errors more heavily than MAE.

+ Coefficient of Determination (R2):

SV (v —9)?

where 7 is the mean of observed values. R? indicates how
well the model explains traffic variability.

Computational Efficiency Metrics: We evaluate computa-
tional efficiency to ensure feasibility in real-time SDN envi-
ronments:

+ Training Time: total time required to train the prediction
model.

+ Inference Latency: average time to generate a prediction
per instance.

+ Resource Utilization: CPU and memory usage during
training and inference.

Network Performance Metrics: Finally, network-level per-
formance is measured to evaluate the impact of predictions on
SDN operations:

+ Throughput: total successfully delivered traffic over the
network.

+ End-to-End Delay: average latency experienced by pack-
ets.

+ Jitter: variation in packet inter-arrival time.

+ Packet Loss Ratio: percentage of packets lost during
transmission.

These metrics together allow us to quantify not only the
prediction accuracy of the adaptive models but also their
efficiency and effectiveness in improving SDN traffic man-
agement.

RP=1- 3)

B. Performance predictions

To evaluate the predictive performance of the proposed
adaptive machine learning framework, we trained and tested
two baseline models: Random Forest Regressor and Gradient
Boosting Regressor. The dataset was preprocessed using lag-
based feature engineering, moving averages, and split into
training (70%), validation (15%), and testing (15%) sets.
Evaluation metrics include Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and the coefficient of determi-
nation (R?). The results obtained on the test dataset (Vehicles
target, n = 1500 samples) are summarized in Table II.

TABLE II
PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS FOR
TRAFFIC PREDICTION

Model MAE RMSE R? Samples
Random Forest 43016  6.6879  0.8455 1500
Gradient Boosting ~ 5.0844  7.2966  0.8161 1500

As shown in Table II, the Random Forest model outper-
forms Gradient Boosting, achieving lower error values and a
higher R? score. These results demonstrate the effectiveness
of ensemble-based learning methods in capturing temporal
traffic dynamics in Software-Defined Networks. The results
are shown in Fig. 2, Fig. 3, and Fig. 4.

568



— kg
--- RancomForest
594 -~ GradientBoostng

15

Vehicle Count

125

100

T
I 0 pil kil
Time Indes:

=

Fig. 2. Traffic Prediction vs Actual.
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Fig. 3. Actual vs Predicted Vehicle Count (Test Set).

IV. CONCLUSIONS

In this paper, we presented adaptive machine learning
models for traffic prediction in Software-Defined Networks
(SDNs). By integrating benchmark datasets, emulated SDN
traffic, and a comprehensive preprocessing pipeline, the pro-
posed framework effectively captures both short-term fluc-
tuations and long-term temporal dependencies in network
traffic. The adaptive learning strategy combining dynamic
parameter tuning, online model updating, and model switching
addresses the limitations of traditional static predictors and
enhances robustness under non-stationary traffic conditions.
Experimental results demonstrated that ensemble-based mod-
els, particularly Random Forest, achieve superior accuracy
and stability compared to Gradient Boosting, with notable
improvements in MAE, RMSE, and R? scores. These findings
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Fig. 4. RandomForest Forecast - Next Steps.

highlight the potential of adaptive machine learning to support
proactive resource allocation, congestion avoidance, and QoS
optimization within SDN controllers. Future work will focus
on expanding the adaptive framework to include advanced
deep learning architectures such as Transformers and Graph
Neural Networks, incorporating multimodal traffic features,
and deploying the system in real-time SDN testbeds to assess
scalability, overhead, and responsiveness under large-scale
network environments.
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