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Abstract—Diffusion models have demonstrated strong capa-
bilities in text-guided image editing; however, most existing ap-
proaches update the global parameters of the generative network,
leading to unintended modifications in non-target regions and
reduced structural fidelity. This work introduces a Selective
Gradient Diffusion (SGD) framework for text-guided image-to-
image augmentation, designed to achieve localized modifications
while preserving the integrity of the surrounding content. The
proposed architecture leverages a latent diffusion backbone in
which low-rank adapters (LoRA) are embedded within cross-
attention layers of the U-Net to enable parameter-efficient fine-
tuning. To further constrain edits, a region-weighted noise
prediction loss emphasizes modifications within specified masks,
and a gradient-masking strategy restricts weight updates to
selected neurons. This combination ensures that edits driven
by natural language prompts are confined to semantically rel-
evant regions without disturbing unrelated pixels. Experiments
conducted on interior design datasets demonstrate that the pro-
posed method achieves higher edit precision, improved structural
preservation, and reduced parameter overhead compared to
state-of-the-art diffusion-based editing approaches. The results
suggest that selective neuron updating in diffusion models of-
fers an effective direction for controllable and efficient text-
guided image augmentation. The supportive code is available
at: https://sucharithasu.github.io/SGDWeb/,

Index Terms—Selective gradient diffusion, LoRA, U-Net, Text-
Guided, image augmentation..

I. INTRODUCTION

In the image synthesis process, recent advancements in
diffusion models have demonstrated their superiority over
existing GAN-based approaches. Diffusion models belong to
the family of generative models and are capable of producing
high-quality, semantically coherent images conditioned on
natural language prompts. The fundamental principle of dif-
fusion involves gradually corrupting data with Gaussian noise
during a forward diffusion process and then training a neural
network to learn the reverse process, step by step, in order
to reconstruct the original signal or generate novel images
from pure noise [1]- [3]. Recent research has explored text-
guided image manipulation and augmentation using diffusion
models, demonstrating significant advances over traditional
methods [4]- [6]. These diffusion models represent a state-
of-the-art approach in generative artificial intelligence, par-
ticularly excelling in image generation and serving as key
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components in text-to-image generators and large language
models [7]. These models operate by systematically adding
noise to training data and then learning to reverse this pro-
cess, enabling the generation of new synthetic outputs from
random data [8]- [9]. The inversion process has recently
drawn a considerable attention over GAN models [10]- [12],
but not addressing the problems with text guided diffusion
models. Gallon et al., [13] provide a mathematically rigor-
ous framework for denoising diffusion probabilistic models
(DDPMs), covering training procedures, generation methods,
and extensions including improved DDPMs, denoising diffu-
sion implicit models, classifier-free diffusion guidance, and
latent diffusion models. The mathematical foundations connect
to partial differential equation diffusion models, making them
relevant for courses in stochastic processes, inference, machine
learning, and scientific computing [14]. Although DDPM has
achieved high quality image generation without adversarial
training, yet they require simulating a Markov chain for
many steps to produce a sample, making computationally
expensive. To address efficiency concerns, Denoising Diffu-
sion Implicit Models (DDIMs) [15] construct non-Markovian
diffusion processes that maintain the same training objective
while enabling 10x to 50x faster sampling. It is a more
efficient class of iterative implicit probabilistic models with
the same training procedure as DDPMs. Low-Rank Adaptation
(LoRA) has emerged as a significant fine-tuning technique
for diffusion models, allowing adaptation to specific domains,
characters, styles, or concepts using limited context examples
[16]- [17]. LoRA’s importance lies in its ability to efficiently
customize pre-trained diffusion models like Stable Diffusion
for specialized tasks. Advanced guidance techniques like Au-
toLoRA further enhance LoRA-fine-tuned models by balanc-
ing domain consistency with sample diversity, improving both
quality and variability in generated images. However, most
existing approaches update global network parameters, often
causing unintended alterations in non-target regions and loss
of structural fidelity. Furthermore, current inpainting methods
lack fine-grained control over where and how edits are applied,
limiting their applicability in domains such as interior design
or medical imaging where contextual preservation is critical.
To overcome these issues, we introduce a Selective Gradient
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Diffusion (SGD) approach that incorporates low-rank adapters
(LoRA) within the cross-attention units of the U-Net so as to
facilitate parameter-efficient fine-tuning without full retraining
of the diffusion backbone. In our model, a region-weighted
noise prediction loss is utilized to target updates within user-
specified or automatically identified masks such that edits
are confined to the desired region and minimize changes in
background regions. To complement further selectivity, we
propose a gradient-masking strategy that limits parameter
updates to the most important neurons, avoiding irrelevant
drift in global representations. Unlike traditional inpainting
approaches that use pixel-level blending alone, our framework
is fully conducted in the latent space, where semantic struc-
tures are maintained, and edits can be effectively controlled.
This blend of LoRA-based adaptation, spatially sensitive loss,
and gradient control at the neuron level enables SGD to attain
text-guided, fine-grained image-to-image augmentation that is
efficient in terms of computation, robust, and effective in
interior design, where structural fidelity preservation is of the
highest concern.

II. RELATED WORK

Kim et al., [18], introduced the DiffusionCLIP model,
which performs text-driven image manipulation by combining
diffusion models with CLIP loss. This approach achieves
performance comparable to GAN-based methods while pro-
viding superior inversion capabilities and enabling manip-
ulation across unseen domains. The approach successfully
handles diverse real images from ImageNet and supports
multi-attribute manipulation through novel noise combination
techniques. For data augmentation applications, diffusion mod-
els have proven effective in generating diverse, contextually
rich training data. Shin et al., [19], demonstrate that text-to-
image diffusion models using rich-text prompts, multi-object
generation, and inpainting techniques significantly improve
classification accuracy on Oxford-IIIT Pets and Caltech-101
datasets, with inpainting particularly excelling at handling
class imbalances. Custom-Edit addresses precision issues in
text-guided editing by customizing diffusion models with
reference images, discovering that customizing only language-
relevant parameters with augmented prompts maintains source
similarity while improving reference similarity [20]. Dong et
al., [21] introduced two-stage text-drive image editing model.
In the first stage, they represented the input image as a
learnable conditional embedding by prompt tuning inversion,
and in the second stage they used classifier-free guidance to
sample the edited image. In this the conditional embedding
is computed by linearly interpolating between the target em-
bedding and the optimized embedding achieved in the first
stage. In the extension of this research, Ruiz er al, [22]
proposed DreamBooth technique for text-to-image diffusion
models. This technique fine-tunes pretrained models using just
a few reference images to bind a unique identifier with a
specific subject. The method employs an autogenous class-
specific prior preservation loss to enable synthesis of subjects
in diverse contexts while preserving key features. DreamBooth

often overlooks learned concepts when integrating them into
new prompts, attributed to incorrect learning of embedding
alignment and it also suffering with overfitting. Brooks et al.,
[23], introduced a novel approach called InstructPix2Pix for
image editing from human instructions by combining GPT-3
and Stable Diffusion to generate training data, enabling quick
edits without per-example fine-tuning. The model performs
edits in a single forward pass without requiring per-example
fine-tuning, enabling quick image editing in seconds. Several
extensions have been developed to improve its capabilities
like InstructPix2Pix [24]. Building on these models, Instruct-
NeRF2NeRF extended instruction-based editing to 3D scenes
by iteratively editing input images with InstructPix2Pix while
optimizing the underlying NeRF representation in [25]. The
recent research noted with numerous approaches to text-
guided image editing using diffusion models, each addressing
different aspects of control and precision. Zhang et al., [26]
introduced a new approach, Forgedit: a vision-language joint
optimization framework that reconstructs images in 30 sec-
onds while proposing a vector projection mechanism in text
embedding space to separately control identity similarity and
editing strength. The method discovers that U-Net encoders
learn space and structure while decoders learn appearance and
identity, leading to forgetting mechanisms that tackle overfit-
ting issues, but lacks explicit spatial masking and region-level
control, limiting precise localized modifications compared to
newer selective diffusion approaches. Liu et al., [27], proposed
S?Edit, which focuses on personalized editing with precise
semantic and spatial control by fine-tuning models to embed
identity information into learnable text tokens while enforcing
orthogonality constraints to disentangle identity from editable
attributes. Hu et al., [28] introduced DCEdit, it is a Precise
Semantic Localization strategy using visual and textual self-
attention to enhance cross-attention maps, coupled with a
Dual-Level Control mechanism operating at both feature and
latent levels. Li et al., [29] proposed a mask matching module
with fusion-diffusion technique that creates masks correspond-
ing to textual descriptions to guide localized editing.

III. PROPOSED FRAMEWORK

The over all flow of proposed selective gradient diffu-
sion (SGD) for text guided image to image augmentation
is shown in figure 1. This architecture builds upon a latent
diffusion backbone, but introduces three novel components
to achieve localized and identity-preserving edits. First, a
region-weighted noise prediction loss emphasizes modifica-
tions within specified masks while suppressing changes out-
side the target area. In this approach, masks are generated au-
tomatically using rectangular regions whose size and position
vary across samples. These masks serve only as guidance to
localize the editable region during training. While rectangular
masks are uneven, the SGD framework remains robust because
the region-weighted loss and gradient-masking mechanism
restrict updates strictly to the masked area, preventing un-
intended global changes. Second, low-rank adapters (LoRA)
are embedded within the cross-attention layers of the U-
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Net, enabling parameter-efficient fine-tuning conditioned on
text prompts. Finally, a gradient masking strategy constrains
weight updates to selected neurons, ensuring that edits remain
spatially localized and preventing unintended global modifi-
cations. Together, these components form a lightweight yet
effective pipeline for precise, text-driven image augmentation.

Let x € RH*WX3 denote the input image, and Fy(-)

U-Net Denoiser
+ Cross-Attn + LoRA

D(30) - &

VAE Decoder

Gradient Masking

ion Steps
o

Update LoRA only

n Path
with LoRA — decode

Fig. 1. Overview of the selective gradient diffusion. The three major
innovation, specified mask design, LoORA embedded U-Net and weight updates
for selective neurons.

and Dgy(-) represent the encoder and decoder of the VAE,
respectively. The image is first projected into the latent space
as:

thwxd

Zo = E¢(X), Zg €

where h < H, w < W, and d is the latent dimension.

In the forward diffusion stage, Gaussian noise is gradually
added to the latent space zy over 7' steps according to the
following equation:

Zt:\/O_[tZ0+\/1*O_ét€,

where &; = H::l «; is the cumulative product of noise
scheduling coefficients.

For each time step, the added noise to the image is shown
in Figure 2, and the reconstruction errors in terms of MSE are
reported in Table 1.

The Mean Squared Error (MSE) is computed as:

e~N(O,I), tefl,.. . T}

1 5
MSE = N ;(ZO,Z’ — Z(),i>2

The total number of time-steps utilized to gradually add and
eliminate noise during the forward and reverse procedures is
indicated by the parameter T. To guarantee that the model
learns to denoise over the whole range of noise levels, from
mildly affected images to almost pure Gaussian noise, a large
value of T=1000 is frequently used during training. However,
it is computationally prohibitive to carry out the opposite
procedure throughout all 1000 stages at inference. Rather,
effective samplers like DDIM enable precise reconstruction
with fewer steps, usually between 25 and 50, maintaining
output quality while drastically cutting down on generation

time.
During the reverse process in the second stage, a U-Net
denoiser parameterized by 6 predicts the added noise.

(1)

Conditioned on timestep t and the text embedding ¢ obtained
from a transformer based text encoder.

To achieve localized editing, we introduce a region-weighted
noise prediction loss.

Lusgion = 3 [ M ey = é0(z1:,€) i
,J

+ A1 = Mg ) e, — €o(zet,¢)

ég(Zt, t7 C)

2

where M € {0,1}"*% is the binary mask specifying the edit
region, and A < 1 controls the preservation of non-target
regions.

For parameter-efficient fine-tuning, we embed low-rank
adapters (LoRA) into the cross-attention layers of the U-Net.
Given an attention projection weight W € R%*? LoRA re-
parametrizes it as,

W' =W + AW, AW =2 4AB
r
AecR¥>" BeR™

r < d, risrank and « is LoRA scaling factor

A, B are low-rank matrices

9

3)
Such that only A and B are updated during training, while W
remains unchanged.
In the third stage, a gradient masking strategy is applied to
restrict weight updates to neurons associated with the masked
region. Formally, after completing the gradient Ay L, we apply,

Akl = GO ApL 4)

G € {0,1}% is a binary mask over parameters, and ©
denotes element-wise multiplication. This ensures that updates
are applied only to selected LoRA parameters, preventing
unintended global modifications.

These three elements work together to create a lightweight
yet powerful pipeline for accurate, text-driven image augmen-
tation: region-weighted loss, LoRA-based parameter-efficient
adaptation, and gradient masking. By combining these strate-
gies, the model is able to produce localized edits that ac-
curately represent the user’s textual instructions while main-
taining global image reliability. This differentiates this sug-
gested approach apart from previous diffusion-based edit-
ing techniques that depend on global or unconstrained pa-
rameter updates. LoRA-based parameter-efficient adaptation,
region-weighted loss, and gradient masking work together
to produce a lean yet effective pipeline for precise, text-
guided image augmentation. The suggested method differs
from current diffusion-based editing techniques that engage
in unconstrained or global parameter updates because of the
complementarity of these methods, which allow the model to
realize localized edits that faithfully capture the user’s text
inputs while preserving global image faithfulness.
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Forward Diffusion Noise at Different Timesteps

0 t=500

Fig. 2. Forward diffusion noise at different timesteps from 0 to 1000, at t=0
is original image from database and t=999 is the high noised image.

TABLE I

RECONSTRUCTION ERRORS AT EACH TIME-STEP

Index t a MSE_recon
0 0 0.9999 1.97 x 10~ 17
1 10 0.997806573  6.86 x 1017
2 50 0.969951494 2.58 x 1016
3 200 0.656347006  9.40 x 10—16
4 500 0.077796658  8.26 x 10— 15
5 900  0.000270245 2.33 x 1012
6 999 0.0000404 1.53 x 10~ 11

IV. EXPERIMENTAL ANALYSIS

The proposed approach selective gradient diffusion (SGD)
framework on text-guided image-to-image augmentation tasks
using the interior style [28] dataset. This dataset consists
of 7233 interior design images with text description; sam-
ple images are shown in figure 3. Experiments are con-
ducted with Stable Diffusion v1.5 as the backbone, and
our framework is compared against representative diffusion-
based editing methods, including Stable Diffusion Inpainting,
InstructPix2Pix, and DiffusionCLIP [18]. Evaluation metrics
include the Fréchet Inception Distance (FID) for image real-
ism, Learned Perceptual Image Patch Similarity (LPIPS) for
perceptual consistency, and CLIP-based similarity scores for
text-image alignment. In addition, qualitative comparisons and
a user study are conducted to assess the fidelity of localized
edits. The Fréchet Inception Distance (FID) [30] evaluates the
similarity between real and generated images by comparing the
mean and covariance of their feature distributions extracted
using the Inception-V3 model. Lower FID scores indicate
that generated images are closer to real images and thus
more realistic. LPIPS [31] is metric developed by NVIDIA to
measure the perceptual distance between images using deep
neural networks. The lower score indicates two images are
similar. CLIP based similarity [32] calculates the similarity
between CLIP embedding for an image to CLIP embedding
to the Text prompt. It uses the cosine similarity, and the
score ranges between 0 to 100, higher score indicates more
similarity. The results demonstrate that the proposed SGD
framework achieves precise object-level modifications (e.g.,
replace a bed with a sofa) while preserving the integrity
of the surrounding content. Unlike existing methods, which
frequently cause unintended changes in lighting, background
textures, or other objects, our approach confines modifications
to the masked region through region-weighted loss and gra-
dient masking. Furthermore, LoRA-based parameter-efficient
fine-tuning enables effective adaptation using significantly
fewer trainable parameters compared to full-model fine-tuning

strategies. The results are shown in figure 4.

Fig. 3. Sample images from Interior-design dataset. It has around 7.3k images
of interior designs.

B mu‘

mpt: replace the tv with a bookshelf

Prompt: replace the table with a glass dining table

Fig. 4. Results for the SGD for a given prompt, the left side image is an
original image and the right image is augmented image with respect to the
prompt given.

The results showed in Table 2, on Interior dataset demon-
strated that the proposed framework achieves superior percep-
tual quality and text alignment, outperforming existing base-
lines such as Stable Diffusion Inpainting, InstructPix2Pix, Dif-
fusionCLIP, and DreamBooth. Quantitatively, SGD achieved
an FID of 24.3, LPIPS of 0.165, and a CLIP score of
0.82, indicating significant improvements in both realism and
semantic consistency. Subjective user studies further validated
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the perceptual advantages, with 72% user preference for the
generated results. A detailed graphical representation for each
metric is shown in figure 5.

TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT METHODS
Method FID | LPIPS| CLIP Score T User Preference (%) 1
SD Inpainting [2] 32.1 0.218 0.71 45
InstructPix2Pix [23] 28.7 0.224 0.75 52
DiffusionCLIP [24] 27.5 0.210 0.77 56
DreamBooth [22] 26.2 0.235 0.79 58
SGD 24.3 0.165 0.82 72
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Fig. 5. Quantitative comparison with existing approaches to SGD.

V. CONCLUSION

In this paper, a new Selective Gradient Diffusion (SGD)
framework was introduced to obtain localized, text-guided
image-to-image augmentation with minimal structural distor-
tion. Unlike traditional diffusion-based editing techniques that
update model parameters globally, the introduced method in-
corporates Low-Rank Adaptation (LoRA) modules into cross-
attention layers of the diffusion U-Net to support parameter-
efficient fine-tuning. A region-weighted noise prediction loss
and gradient masking process were added to selectively limit
updates to the target region so that edits are kept spatially
localized while maintaining the integrity of the regions around
it.
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