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Abstract—Modern operating systems generate massive volumes
of complex log data, making it challenging to promptly detect
malicious activities and system anomalies. Traditional security
systems are primarily designed to counter high-volume attacks
but often fail to identify low-rate threats that blend into normal
traffic patterns. Existing anomaly detection methods typically rely
on feature-based models and struggle to capture the underlying
behavioral patterns reflected in logs. To address this gap, we pro-
pose a behavior-based anomaly detection system that leverages
log sequence analysis. By transforming log entries into unique
log sequences and modeling normal system behavior, the system
can identify subtle deviations indicative of malicious activity.
Experimental results demonstrate that the proposed approach
enables accurate, real-time detection.

Index Terms—Log Anomaly Detection, MITRE ATT&CK, Log
Sequence Analysis, Machine Learning

I. INTRODUCTION

Modern operating systems are frequent targets of malware
that constantly evolves to bypass traditional security defenses.
Attackers often design their methods to closely mimic normal
user or system behavior, making timely intrusion detection
more challenging. Conventional signature-based Intrusion De-
tection Systems (IDS) rely on fixed patterns and regular
updates, which limit their ability to detect zero-day attacks
[1]. To overcome these limitations, many studies have applied
Machine Learning (ML) techniques to automate malware
detection. However, most existing approaches rely on feature-
based models that require carefully engineered features, re-
stricting their scalability and adaptability. These models often
fail to generalize across different environments and perform
poorly when faced with novel or evasive threats [2], [3].
This gap highlights the need for behavior-based solutions that
analyze log sequences to provide more flexible, generalizable,
and interpretable detection.

Behavior-based detection methods offer a promising al-
ternative by shifting the focus from static features to the
dynamic behavior of processes and system interactions. By
analyzing sequences of system logs, these approaches can
uncover unusual activity patterns indicative of malicious in-
tent. Recent advances, such as graph-based sequence anomaly
detection, have shown strong results in capturing malicious
behaviors even when logs contain noise, making them valuable
for detecting malware in modern platforms [4]. However,

Matta Krishna Kumari
CSE Department
SRM Upniversity-AP
Amaravati, India
krishnakumari.m @srmap.edu.in

537

Nikhil Tripathi
CSE Department
IIT (ISM) Dhanbad
Dhanbad, India
nikhiltripathi @iitism.ac.in

graph-based approaches often suffer from high computational
cost, scalability challenges, and limited interpretability, which
hinder their practicality for real-time log analysis. Building on
this perspective, our work explores a lightweight, behavior-
focused strategy to strengthen malware detection in modern
operating systems.

In this work, we propose a hybrid framework for real-time
anomaly detection based on behavioral log sequence analysis.
Our key contributions are:

e« We capture a baseline of normal system behavior by

collecting logs from our own Windows 11 environment.
For malicious activity, we utilize a publicly available
malware log dataset aligned with the MITRE ATT&CK
framework.

o We adapt behavior-based log sequence analysis to detect
deviations from normal activity, enabling the identifica-
tion of malicious actions.

« We conduct extensive experiments across varying thresh-
olds and window sizes to evaluate detection accuracy,
recall, and Fl-score, demonstrating robust performance
under diverse conditions.

The rest of the paper is organized as follows. Section II
reviews related work. Section III details the proposed detection
technique, while Section IV presents the experimental results.
Finally, Section V concludes the paper and outlines future
directions.

II. RELATED WORK

System logs provide a chronological record of logs within
computing systems and are extensively used for troubleshoot-
ing, performance monitoring, and anomaly detection. In oper-
ating systems, logs (Application, Security, and System) con-
tain structured and semi-structured records of user activities,
system processes, and error conditions. They are valuable for
identifying security breaches, operational failures, and perfor-
mance issues [5]. However, the massive volume, heterogeneity,
and velocity of modern log data make manual inspection
infeasible [6], [7].

A. Statistical and Rule-Based Approaches

Early detection methods relied on statistical analysis and
threshold-based rules. Dwyer and Truta [5] applied standard-
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deviation—based thresholding to detect deviations in log fre-
quencies, enabling alerts for unusual login attempts or abnor-
mal error patterns. While interpretable and easy to implement,
such methods were limited to volume anomalies and ignored
temporal relationships between logs.

B. Machine Learning-Based Methods

With the growth of large-scale distributed systems, ML has
been employed to model normal log patterns and identify de-
viations. He et al. [6] evaluated six state-of-the-art supervised
and unsupervised approaches—including Logistic Regression,
Decision Trees, and clustering methods—demonstrating the
potential of unsupervised learning when labeled data is un-
available. Zeufack et al. [8] advanced this line of work with
a fully unsupervised real-time OPTICS clustering framework,
addressing latency limitations of batch detection.

Landauer et al. [9] reviewed widely used public datasets
(e.g., HDFS, BGL) and found that they often fail to reflect
the complexities of real-world logs, raising concerns about the
generalizability of ML-based methods trained on such data.

C. Deep Learning and Representation Learning

Deep learning approaches have been widely explored to
capture complex patterns in system logs, particularly the tem-
poral dependencies in sequential data. Sequence-based models
such as DeepLog [10] and LogRobust [11] leverage LSTM
networks to learn normal execution flows and flag deviations
as anomalies. However, these approaches depend heavily on
accurate log parsing, which is often error-prone due to evolv-
ing formats [12]. To overcome parsing limitations, NeuralLog,
proposed by Le and Zhang [12], uses a Transformer-based
architecture that processes raw log messages with BERT
embeddings, avoiding information loss from template extrac-
tion. More recently, Wu et al. [13] conducted a systematic
comparison of multiple log representation techniques and
demonstrated that the choice of representation, along with ag-
gregation strategies and parsing methods, significantly affects
anomaly detection performance. Despite these advances, deep
learning methods require large labeled datasets, incur high
computational costs, and often act as black boxes, limiting
their interpretability and practicality for heterogeneous logs.

D. Motivation for Log Sequence Analysis

Anomalies are often in the form of disruptions in log
order, missing steps, or irregular timing rather than as isolated
abnormal logs [9]. Sequence analysis preserves these temporal
dependencies, enabling detection of patterns that point-wise
or distribution-based ML methods typically miss [9]. Practi-
tioners also report that sequence-level approaches yield higher
accuracy and interpretability compared to single-log analysis
[7].

However, existing ML and deep learning methods show
critical drawbacks for log anomaly detection:

« Weak sequence modeling — Many methods treat logs as
independent points, missing ordering, timing, and depen-
dencies. This prevents detection of multi-step anomalies
where individual logs appear benign.

o Format sensitivity — Deep models depend on rigid
parsing, which fails under log diversity. Sequence-level
modeling is more robust, capturing behavior without strict
parsing.

o Limited practicality — Black-box deep models are
costly and hard to interpret. Sequence analysis enables
lightweight, low-latency detection with clearer explana-
tions.

By explicitly modeling log ordering, timing, and co-
occurrence, log sequence analysis addresses these limitations:
it captures behavioral anomalies overlooked by frequency-
based methods, maintains robustness across heterogeneous log
formats, and provides interpretable results suited for real-time
operational use.

III. PROPOSED DETECTION TECHNIQUE

The proposed detection technique uses log sequence analy-
sis to learn the normal behavioral patterns from structured log
sequences and identify deviations using lookahead pairs and
mismatch scoring [14]. The method operates in two phases: (1)
Offline Modeling (Learning) Phase, and (2) Online Detection
Phase, which evaluates new log sequences against the learned
model to identify anomalies.

A. Learning Phase

This phase builds a database of valid short-range log se-
quences from the benign lookahead database.

1) Log Normalization and Preprocessing: The dataset cap-
tured in our experiments was stored in CSV format and
contained the following fields:

e Timestamp — date and time when the log occurred.
e Log ID - unique numeric identifier for the log type.
e Level — severity of the log (Information, Warning, or
Error).
e Source — application or service that generated the log.
e Message — human-readable description containing con-
textual details such as usernames, file paths, or executed
actions.
e Log Name — category of the log (Application, Security,
System, Configuration, or Forwarded Logs).
Preprocessing refined the Message field by removing
volatile components such as timestamps, hexadecimal ad-
dresses, and session identifiers, followed by text normalization
to eliminate nonsemantic variations. Each refined Message
was mapped to a unique hash value, ensuring that different
instances of the same log type were consistently represented
in a canonical form.
2) Log Sequence Construction: Following preprocessing,
each hashed message was arranged in chronological order to
construct structured log sequences:

Ly —-Ly—---— Lg

where L; denotes the hashed representation of the i log and
S is the sequence length. This transformation produced a con-
sistent, noise-free representation of system activity, forming
the basis for transition mapping in subsequent steps.
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3) Lookahead Database Construction: The detailed pro-
cedure is presented in Algorithm 1. From each log se-
quence, a database of valid short-range sequences, denoted
as Diookahead, Was generated using a sliding window of size
n. For every position in the sequence, all possible log pairs
within the lookahead distance 1 < k£ < n were extracted in the
form (Lcurrents Liuture, k) (Steps 2-12). These lookahead pairs
capture localized behavioral patterns in normal system oper-
ation. The complete set of unique pairs forms the reference
database used during anomaly detection to identify deviations
from established benign patterns.

Algorithm 1 From Unique Log Sequence to Lookahead
Database

Require: normal_sequences: List of normal log sequences
Require: n: Lookahead window size
Ensure: Dj,oraneqq: Set of normal lookahead pairs

1: Initialize an empty set Djookahead

2: for all sequence € normal_sequences do

3: Initialize an empty set sequence_pairs

4: for i <— 0 to len(sequence) — 1 do

5: for k < 1 to n do

6: if i + k < len(sequence) then

7: pair + (sequenceli], sequenceli + kl, k)
8: Add pair to sequence_pairs

9: end if

10: end for

11: end for

12: Add all pairs from sequence_pairs t0 Diookahead
13: end for

14: return Djyokahead

B. Detection Phase

In the detection phase, incoming log sequences are eval-
vated against the database of benign lookahead pairs con-
structed during the learning phase to determine whether they
represent normal or anomalous behavior. The complete detec-
tion process is detailed in Algorithm 2.

1) Sequence Preprocessing and Pair Extraction: Incoming
log data undergo the same preprocessing steps as in the
learning phase: volatile elements in the Message field are
removed, the text is normalized, and each message is mapped
to its unique hash value. The resulting hashed sequence is
then processed using the same sliding window size n applied
during training, extracting all possible lookahead pairs in the
form (Lcurrema Liutures k) (Steps 1-6).

2) Detection Using Lookahead Log Sequences: Following
preprocessing, both normal and malicious datasets are trans-
formed into lookahead pairs, which capture short-range logs
transitions within a sliding window of size n. A database of
valid lookahead pairs, Djookaheads 1S constructed from the
normal dataset. During detection, incoming log sequences
lookahead is compared against this database, and any looka-
head pair not present in Djgokanead 1S counted as a mismatch
(Steps 7-13).

Algorithm 2 Anomaly Detection Using Lookahead Pairs

Require: test_sequence: Sequence of logs to be evaluated
Require: Dj,oraneqd: Database of normal lookahead pairs
Require: n: Lookahead window size
Require: t: Detection threshold
Ensure: Classification as Normal or Anomalous

1. L + len(test_sequence)

2: mismatches < 0

3: fori < 0to L—1do

4: for £k < 1 ton do

5: if i + k£ < S then

6: pair < (test_sequenceli], test_sequenceli +
k], k)

7 if pair ¢ lookahead_db then

8: mismatches < mismatches + 1

9: end if

10: end if

11: end for

12: end for

13: Compute MismatchScore using Equation 1
14: if MismatchScore > t then

15: return Anomalous

16: else

17: return Normal

18: end if

To account for variations in sequence length, the anomaly
indicator—termed the MismatchScore—is defined as:

. Number of Mismatches
MismatchScore = S I (1)
wx ()
where S denotes the total number of logs in the sequence.
The normalized MismatchScore is compared against a
predefined threshold ¢. If the score exceeds ¢, the sequence
is classified as anomalous; otherwise, it is classified as normal
(Steps 14-17).

IV. EXPERIMENT & RESULTS

This section presents the experimental study conducted to
assess the performance of the proposed detection approach.
The experiments were conducted on a Windows 11 worksta-
tion equipped with an Intel® Core™ i7 processor and 16 GB
RAM. The lookahead window size n was varied between 1
and 5 to study its impact on detection performance, and the
mismatch score threshold ¢ was tuned empirically based on
validation results from the normal dataset.

1) Normal Log Collection for Training: Normal logs were
collected from a Windows 11 system by capturing routine user
activities via the Windows Command Prompt. This process
generated over 100000 log entries covering a wide range of
benign system behaviors and including diverse Log ID’s,
Source’s, and severity Level’s. The logs were preprocessed
following the procedure described in Section III-A1 to remove
volatile components and ensure consistent log representation.
From the refined dataset, unique logs were extracted and
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Fig. 2: Lookahead pairs for various window sizes

organised into valid lookahead pairs as described in Sec-
tion III-A3, forming the lookahead database of permissible
short-range log sequences used for model training. Figures
1 and 2 illustrate the trends observed with the growth in
benign Windows log entries and lookahead pairs. It can be
observed from Figure 1 that the unique log sequence count
increases continuously as the number of benign log entries
increases. Thus, it is virtually infeasible to determine the exact
amount of benign Windows log traces required to capture the
complete normal behavior of the system [15], [16]. On the
other hand, Figure 2 shows the number of lookahead pairs
with respect to different log sequences. It is evident that the
number of lookahead pairs increases as the log sequences
grow, up to nearly 400 sequences. Beyond that point, almost
no new lookahead pairs are found. This suggests that the
lookahead pairs database can capture nearly complete benign
characteristics of Windows logs at that stage. The study also
concludes that the lookahead pairs database is more effective
in capturing the expected behavior of Windows logs than a
unique log sequence database.

2) Malicious Log Collection for Testing: The malicious
dataset, comprising more than 4200 log entries, was ob-
tained from an open-source repository on GitHub. These
logs were generated during controlled execution of mal-
ware samples mapped to relevant MITRE ATT&CK tech-
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Fig. 3: Mismatch score of benign and malicious sequences

niques (e.g., T1059 — Command and Scripting Interpreter,
T1105 — Ingress Tool Transfer) and include behaviors such as
process creation anomalies, unauthorised access attempts, and
suspicious system modifications. After applying the same pre-
processing and normalisation steps as for the benign dataset,
the logs were sequenced and transformed into lookahead
pairs. The mismatch score of each testing entry was then
computed using Equation 1, by comparing its lookahead pairs
against the benign lookahead database. Figure 3 shows the
Cumulative Distribution Function (CDF) of mismatch values
with a window size of five. Benign sequences remain tightly
clustered near zero, with almost all values below 0.2, whereas
malicious sequences span the full range (0.0-1.0), with a
significant proportion above 0.1.

A comparative analysis of lookahead pairs further reinforces
this separation: benign activity is dominated by repetitive, sta-
ble patterns (e.g., Information—Information), while
malicious traces frequently display irregular transitions such
as Error—Error or abrupt shifts between unrelated log
types. The malicious dataset also contained a higher proportion
of rare or previously unseen patterns, underscoring significant
deviations from normal behavior. These distinctions form the
foundation of the proposed detection method, which models
legitimate activity from benign lookahead pairs and flags
anomalous deviations during real-time monitoring.

A. Evaluation Metrics

The effectiveness of the proposed method is evaluated using
four performance metrics:

Accuracy — TP+ TN @)
MY = TP Y TN FP 1 FN’
TP
Precision — — 1+
recision TP+ FP 3)
TP
Recall = TP FN TFN’ 4
Fl-Score — 2 x Precision x Recall. 5)

Precision + Recall
Here, the symbols TP, F'P, TN, and F'N are defined as:
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TABLE I: Performance at varying thresholds (n = 3)

Threshold () | Accuracy | Precision | Recall | F1-Score
0.01 89.47% 82.61% 76.00% | 79.17%
0.05 96.84% 100% 88.00% | 93.62%
0.1 91.57% 100% 68.00% | 80.95%
0.15 95.78% 95.65% 88.00% | 91.66%
0.2 89.47% 100% 60.00% | 74.99%

TABLE II: Performance at different window sizes (t = 0.05)

Window Size (n) | Accuracy | Precision Recall F1-Score
3 96.84% 100% 88.00% 93.62%
5 96.84% 100% 88.00% 91.67%
7 95.79% 95.65% 88.00% 91.67%

o True Positive (TP): Anomalous sequences that are cor-
rectly classified as anomalies.

o False Positive (FP): Normal sequences that are incor-
rectly flagged as anomalies.

o True Negative (TN): Normal sequences that are correctly
classified as normal.

o False Negative (FN): Anomalous sequences that are
incorrectly classified as normal.

B. Results and Analysis

Table I shows the effect of varying the MismatchScore
threshold ¢ with window size n = 3. At very low thresholds
(t = 0.01), recall is higher (76.00%) but precision drops
(82.61%) because of a high number of false positives. In-
creasing the threshold to ¢ = 0.05 yields the best overall
performance, achieving 96.84% accuracy, 100% precision,
88.00% recall, and a 93.62% F1-Score. Beyond ¢ = 0.1,
recall decreases because of an increase in the number of false
negatives. Thus, ¢ = 0.05 offers the best trade-off in our
experiments.

We also varied the window size (n = 3,5,7) while fixing
t = 0.05. As shown in Table II, the method remained robust
across window sizes, with only minor performance differences.
Smaller windows (n = 3) performed slightly better and are
more efficient, making them preferable for real-time detection.

Finally, Table III compares our model with supervised and
unsupervised baselines. While unsupervised methods achieve
moderate recall, they suffer from poor precision because of
high false alarms. A supervised classifier improves accuracy
but still lacks precision. In contrast, our log sequence model
achieves the best overall balance, delivering high accuracy
(96.84%) and zero false positives (100% precision) while
maintaining strong recall.

C. Complexity Analysis

Lookahead pair extraction time: We experimented with
varying the window size to measure its impact on the time
required for extracting lookahead pairs from Windows log se-
quences. The results of this experiment are shown in Figure 4.

We observe that the extraction time grows almost linearly
with increasing window size, with larger windows significantly
increasing computational cost. This highlights the trade-off
between richer context (large w) and timely detection, making
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smaller to medium window sizes preferable for practical
deployment.

Processing overhead: We deployed the detection approach
on a Windows 11 machine with a 12th Gen Intel® Core9-
12900F processor and 64 GB RAM. CPU and memory usage
were monitored using the psutil library [17]. Figure 5
shows CPU utilization with and without the detection scheme
enabled. We find that CPU consumption remains comparable
in both cases, with slightly lower usage when the detection
module is active. Similarly, RAM usage increased initially
but stabilized at roughly double the idle baseline, still
well within system capacity. These results confirm that
the proposed framework introduces minimal computational
overhead, making it practical for real-time malware detection
in Windows 11 environments.

V. CONCLUSION

The modern operating systems produce rich logs of mes-
sages that record the system’s behavioral dynamics. We have
demonstrated that it is possible to model such logs based
on unique message transitions and lookahead pair analysis
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TABLE II: Comparison with baseline models

Category Model Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%)
Autoencoder 57.64 18.07 88.79 30.02
Unsupervised Isolation Forest 10.18 10.18 99.41 18.47
K-Means 31.73 11.99 89.38 21.14
Ensemble Method 68.87 18.94 62.24 29.04
Supervised Supervised Classifier 90.60 52.50 85.90 65.16
Log Sequence | Proposed Model 96.84 100.00 88.00 93.62

to build useful anomaly detectors. In controlled experimental
conditions, the benign activity had consistent and predictable
modes of operation, whereas injected malicious behavior
brought irregular shifts, which were precisely identified by
our method with high accuracy and high recall at the various
thresholds. Although the current dataset is based on a clear
distinction between normal and anomalous sequences, real-life
applications can be faced with a higher variability, which needs
adaptive profile construction to support different settings. In
general, this paper shows that behavior-based log sequence
analysis has the potential to improve security monitoring
system reliability and resiliency.
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