
 

Development and Deployment of AtomicGPT, a 
nuclear domain specific LLM for network 

constrained environments 
1st Yeom Seungdon 

Department of Artificial Intelligence 
University of Science and Technology (UST) 

Applied Artificial Intelligence Section (KAERI) 
Daejeon, South Korea 
tmdehs77@ust.ac.kr 

2nd Yu Yonggyun 
Department of Artificial Intelligence 

University of Science and Technology (UST) 
Applied Artificial Intelligence Section (KAERI) 

Daejeon, South Korea 
ygyu@kaeri.re.kr 

Abstract—Deploying Large Language Models (LLMs) in 
security-critical infrastructures presents unique challenges, 
particularly in network-constrained environments where cloud 
connectivity is prohibited. Research institutions like the Korea 
Atomic Energy Research Institute (KAERI) operate under strict 
isolation, shifting the computational burden entirely to on-
premises resources. This paper introduces AtomicGPT, a domain-
specific LLM for nuclear engineering, and proposes a secure on-
premises serving architecture optimized for fully closed networks. 
We evaluate the system using OpenWebUI with two serving 
frameworks: Ollama and vLLM. Experimental results 
demonstrate that AtomicGPT outperforms its base models 
(Gemma2-9B, Qwen2.5-7B) by up to 17 percentage points on a 
custom nuclear benchmark. Furthermore, a comparative analysis 
reveals critical system trade-offs between inference latency and 
GPU resource efficiency. The vLLM-based architecture achieved 
responses within 2 to 2.5 seconds, compared to about 20 seconds 
for Ollama—representing up to a 9 times faster speed 
improvement. However, this latency reduction required higher 
VRAM consumption (29–34 GB vs. 24 GB), identifying Ollama 
as a more resource-efficient alternative for hardware-constrained 
edge nodes. This study validates the feasibility of high-security 
LLM services and provides architectural guidelines for balancing 
model specialization, system latency, and hardware resources in 
isolated network environments. 
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I. INTRODUCTION  
The rapid progress of large language models (LLMs) 

has enabled intelligent services across a wide range of 
application domains, including healthcare, finance, and 
engineering. While general-purpose LLMs demonstrate 
remarkable capabilities in natural language understanding 
and reasoning, they often lack the accuracy and reliability 
required for domain-specific tasks in critical infrastructure. 
For example, nuclear engineering demands precise 
terminology and highly specialized knowledge that generic 
models cannot provide without adaptation. This motivates 
the development of domain-specific LLMs tailored for 
safety-critical environments.  

At the same time, deploying LLM services in secure 
research environments introduces unique challenges. 

Organizations such as nuclear research institutes operate 
under strict security constraints where external network 
access is restricted. In such settings, cloud-based APIs and 
externally hosted models are infeasible, necessitating on-
premises deployment solutions. Unlike cloud services 
where network transmission often dominates latency, in 
these air-gapped edge environments, the model inference 
time becomes the critical determinant of Quality of Service 
(QoS). Furthermore, limited computational resources in 
closed networks require serving architectures that balance 
inference performance, efficiency, and ease of integration.  

In this paper, we address these challenges through the 
development and systematic deployment of AtomicGPT, a 
domain-specialized LLM for nuclear engineering. We first 
describe the construction of AtomicGPT and demonstrate 
its effectiveness over base models, achieving up to 17 
percentage points improvement on domain-specific 
benchmarks. We then propose a secure on-premises serving 
architecture based on OpenWebUI, enabling chatbot-style 
interaction entirely within a closed network. Finally, we 
compare two popular serving frameworks, Ollama and 
vLLM, in terms of inference latency and GPU resource 
efficiency, showing that vLLM provides lower latency 
while Ollama offers lightweight deployment advantages.  

The contributions of this paper are threefold: (1) The 
design and evaluation of AtomicGPT, a domain-specific 
LLM for nuclear engineering, (2) A secure serving 
architecture for providing LLM services in restricted 
research networks using OpenWebUI, (3) An empirical 
comparison of serving frameworks (Ollama vs vLLM) in 
closed research environments, providing architectural 
guidelines for optimizing the trade-offs between inference 
latency, GPU VRAM usage, and ease of management. 

 

II. RELATED WORK 

A. Domain-Specific Large Language Models(LLMs) 
Recent advances in domain-specific large language 

models (LLMs) have demonstrated significant performance 
improvements over general-purpose models. For instance, 
healthcare-oriented models such as BioBERT achieve 
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notable gains in biomedical text understanding, while 
financial models like FinBERT show superior accuracy in 
financial sentiment analysis [2], [3]. However, existing 
research has primarily focused on model development and 
performance evaluation rather than on the practical 
deployment of such models in secure or resource-
constrained environments. In particular, there has been little 
research on domain-specific LLMs for the nuclear 
engineering field, where strict security requirements and 
data sensitivity pose unique challenges. 

B. LLM Serving framework 
Modern LLM deployment utilizes various serving 

frameworks optimized for different scenarios. OpenWebUI 
provides a user-friendly interface based on a containerized 
architecture, making it suitable for air-gapped deployments. 
Ollama focuses on simplified local deployment with 
minimal configuration, emphasizing resource efficiency. 
vLLM offers high-performance serving with advanced 
techniques such as PagedAttention and continuous 
batching, achieving superior throughput and lower latency 
[4]. However, few studies have systematically compared 
these frameworks under secure and resource-constrained 
conditions. 

 

III. MODEL DEVELOPMENT AND DEPLOYMENT 
In this study, we first developed a domain-specialized 

large language model tailored for the nuclear engineering 
domain. We then deployed this model in the secure, closed 
network environment of the Korea Atomic Energy Research 
Institute (KAERI), where external connectivity is strictly 
restricted. The deployment was realized on-premises using 
the OpenWebUI framework, enabling interactive chatbot 
services accessible to researchers without relying on 
external APIs. This approach ensures both domain 
reliability and security compliance while providing practical 
usability within restricted infrastructures. 

A. AtomicGPT Development 

 
Fig. 1. Overall research workflow for developing AtomicGPT. 

Fig. 1 illustrates the overall workflow of this study for 
developing AtomicGPT. The process is divided into three 
major stages: data preparation, model training, and 
evaluation. 

In the data preparation phase, we collected nuclear-
domain resources from multiple authoritative organizations, 
including Korea Hydro & Nuclear Power (KHNP) [5], [6], 
the Nuclear Safety and Security Commission (NSSC) [7], 
the Korea Atomic Energy Research Institute (KAERI) [8], 
[9], and the Nuclear Policy Center at Seoul National 
University [10]. The collected materials consisted of nuclear 
glossaries, regulatory dictionaries, research papers, and 
domain-specific knowledge bases. These resources were 
curated into two types of datasets: a pre-training corpus for 
continual pre-training (CPT) and an instruction dataset for 
instruction tuning (IT). In addition, a separate benchmark 
dataset was constructed for performance evaluation. Data 
augmentation was applied through bilingual translation 
(Korean ↔ English) to enrich the corpus, and data quality 
management steps such as deduplication, filtering, and 
expert review were performed to ensure reliability. The final 
dataset comprised approximately 50 million (M) tokens, 
which served as the foundation for adapting the base models 
to the nuclear domain. 

In the model training phase, we employed Qwen2.5-7B 
and Gemma2-9B as base models. Two strategies were 
applied: (1) continual pre-training (CPT) to inject nuclear-
domain knowledge, and (2) instruction tuning (IT) to 
enhance task adaptability. 

Finally, in the evaluation phase, we evaluated model 
performance using the nuclear QA benchmark, which 
included multiple-choice, short-answer, and descriptive 
questions [11].  

 

B. Deployment of AtomicGPT 

 
Fig. 2. Framework architecture for AtomicGPT model serving in KAERI 

internal network-constrained environment. 

Fig. 2 presents the deployment architecture of 
AtomicGPT within the secure research network of KAERI. 
The primary objective of this design is to provide domain-
specific LLM services in a closed environment without any 
dependency on external connectivity. 

At the frontend, researchers interact with the model 
through OpenWebUI, which offers a web-based chatbot 
interface. OpenWebUI allows users to submit queries and 
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receive responses seamlessly, while maintaining usability 
and accessibility within the restricted intranet. 

The backend serving layer is configured with two 
alternative frameworks: Ollama and vLLM. Ollama is 
lightweight and easy to configure, making it suitable for 
restricted systems that prioritize simplicity and portability. 
In contrast, vLLM is optimized for performance, featuring 
advanced memory management and scheduling 
mechanisms that reduce response latency under load. Both 
frameworks access the same AtomicGPT model, but they 
provide different trade-offs in terms of deployment 
efficiency and runtime performance. To further enhance 
reliability and manageability, the entire service stack is 
deployed using Docker containers. This containerized 
approach provides several advantages: 

- Environment isolation ensures that all dependencies 
are encapsulated, minimizing conflicts with the host system. 

- Reproducibility allows consistent deployment across 
different machines in the secure network. 

- Simplified management enables rapid updates, scaling, 
and rollback without interfering with the host environment. 

All components, including OpenWebUI, serving 
engines, and the AtomicGPT model deployment, operate 
strictly within the closed network environment, as indicated 
by the dashed boundary in Fig. 2. This ensures that no data 
or queries leave the internal infrastructure, thereby 
satisfying stringent security requirements while enabling 
practical AI services for nuclear research environments. 

 

IV. EXPERIMENTAL RESULTS 
In this section, we evaluate AtomicGPT in terms of 

domain-specific model performance and deployment 
efficiency. The evaluation consists of two parts: (1) model 
accuracy on nuclear QA benchmarks compared with 
baseline LLMs, and (2) response time and GPU usage under 
different serving frameworks (Ollama and vLLM). The 
experiments were conducted using two NVIDIA A100 
GPUs with 40GB memory each. 

 

A. AtomicGPT model performance 
The benchmark consisted of 328 questions, including 

100 multiple-choice, 100 short-answer, and 128 descriptive 
questions. This benchmark design provides a 
comprehensive assessment of knowledge understanding and 
problem-solving ability in the nuclear domain. 

We compared a total of four models: the base models 
(Qwen2.5-7B and Gemma2-9B) and their domain-adapted 
counterparts, AtomicGPT, which were trained with both 
continual pre-training (CPT) and instruction tuning (IT). For 
each question type, appropriate metrics were applied: Exact 
Match (EM) for multiple-choice, F1 Score for short-answer, 
and LLM-as-a-Judge (using the GPT-4o) for descriptive 
responses. 

 

 

 

TABLE I.  OVERALL PERFORMANCE BY MODEL AND EVALUATION 
QUESTIONS TYPE 

Model Multiple-
Choice (EM, 

%) 

Short-Answer 
(F1, %) 

Descriptive 
(LLM-as-a-
Judge, %) 

Qwen2.5-7B 28 15.37 36.7 
AtomicGPT -
Qwen2.5-7B 37 18.08 39.4 

Gemma2-9B 23 12.16 36.5 
AtomicGPT -
Gemma2-9B 40 27.44 46.7 

 

Table I presents the evaluation results. Across all 
benchmarks, AtomicGPT variants consistently 
outperformed their base counterparts. In particular, 
Gemma2-9B AtomicGPT achieved the highest 
performance, reaching 40% EM on multiple-choice, 
27.44% F1 score on short-answer, and 46.7% on descriptive 
evaluation, representing a maximum improvement of 17 
percentage points in EM score over the baseline. 
Additionally, to ensure the reliability of the GPT-4o-based 
evaluation, we conducted a human evaluation test on a 
random sample of 50 responses. The human expert's scoring 
aligned with the automated judge in over 80% of the cases, 
verifying the validity of our LLM-as-a-Judge methodology. 
These results confirm the effectiveness of combining CPT 
and IT to specialize LLMs for the nuclear engineering 
domain. 

 

 

Fig. 3. Ablation study of AtomicGPT variants. The performance 
comparison across Base, CPT-only, IT-only, and the final 
AtomicGPT (CPT+IT) models demonstrates the synergistic effect of 
combining domain knowledge injection (CPT) and task alignment 
(IT). 

To verify the contribution of each training stage, we 
conducted an ablation study as shown in Fig. 3. The results 
indicate distinct benefits from each phase: the CPT-only 
models showed consistent improvement in multiple-choice 
questions, reflecting enhanced domain knowledge 
comprehension. Meanwhile, the IT-only models 
demonstrated superior performance in descriptive 
questions, highlighting the importance of instruction tuning 
for generating coherent and detailed explanations. 
Ultimately, the AtomicGPT (CPT+IT) model achieved the 
highest scores across all metrics, confirming that combining 
continual pre-training with instruction tuning is essential for 
maximizing domain-specific performance. 

 

B. Serving Performance 
To evaluate deployment efficiency in secure and 

network-restricted environments, we compared two popular 
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serving frameworks, Ollama and vLLM, when running 
AtomicGPT with OpenWebUI as the frontend. In such 
closed networks, where external APIs cannot be utilized, 
selecting an optimal serving framework is critical to ensure 
both responsiveness and usability for researchers. 

 

Fig. 4. Comparison of average response time(inference latency) and 
GPU vram usage for AtomicGPT served with Ollama and vLLM. 

Fig. 4 summarizes the comparative results of our 
deployment performance measurements for AtomicGPT. 
Across both model variants—AtomicGPT-Qwen2.5-7B 
and AtomicGPT-Gemma2-9B—the vLLM framework 
consistently achieved significantly lower response latency 
than Ollama, confirming its advantage for performance-
sensitive deployments even under strict on-premises 
constraints. For instance, AtomicGPT-Qwen2.5-7B 
recorded an average latency of 18 seconds when served with 
Ollama, compared to only 2 seconds with vLLM; similarly, 
the Gemma2-9B model showed 20 seconds versus 2.5 
seconds, respectively. However, this speed improvement 
required higher GPU memory usage—approximately 29–34 
GB with vLLM, compared to 24–28 GB for Ollama—
highlighting the trade-off between response speed and 
resource efficiency. 

In addition, Fig. 5 presents the actual deployment of 
AtomicGPT within the OpenWebUI interface. The system 
provides a secure, interactive chatbot service entirely within 
the closed KAERI network, allowing researchers to query 
nuclear engineering knowledge and institutional data 
without any external connectivity. This configuration 
effectively demonstrates the real-world applicability of 
domain-specific LLMs in air-gapped infrastructures, 
combining security assurance with user-friendly 
accessibility. Furthermore, AtomicGPT enables future 
integration with autonomous agent workflows, where the 
model can assist researchers by automating document 
retrieval, report summarization, and data interpretation 
while maintaining full compliance with internal security 
policies. 

 

 
Fig. 5. On-premises deployment of the AtomicGPT-gemma2-9B model 

as a chatbot interface at the Korea Atomic Energy Research Institute 
(KAERI). 

V. CONCLUSION 
In security-critical research institutions such as the 

Korea Atomic Energy Research Institute (KAERI), public 
cloud-based LLM services like ChatGPT or Claude cannot 
be utilized due to strict network isolation. This constraint 
highlights the need for domain-specific language models 
that can be fully operated within air-gapped environments. 

This study introduced AtomicGPT, a nuclear domain-
specific LLM securely deployed using OpenWebUI, 
Ollama, and vLLM without external connectivity. 
Experimental evaluations demonstrated that interactive 
LLM services can be effectively implemented in closed 
networks, and that balancing GPU resource utilization and 
response latency is a key factor in deployment design. The 
vLLM deployment achieved rapid response times (2–2.5 s) 
with higher VRAM usage (29–34 GB), while Ollama 
provided greater resource efficiency (24–28 GB), 
underscoring the importance of selecting deployment 
frameworks that align with system constraints. 

In this study, we primarily focused on model accuracy 
and end-to-end response latency to validate the feasibility of 
on-premises deployment. For future work, we plan to 
conduct a more granular analysis of inference performance 
using metrics such as Time To First Token (TTFT) and 
generation throughput (tokens/s). This will allow for a 
deeper optimization of the trade-off between user 
interactivity (latency) and system efficiency (throughput) in 
resource-constrained network environments. Furthermore, 
we aim to extend AtomicGPT toward a domain-specific 
intelligent agent system that integrates nuclear engineering 
knowledge bases and supports researchers with tasks such 
as document retrieval, report summarization, and 
experimental data interpretation. Through sustainable on-
premises deployment and operational optimization, 
AtomicGPT aims to establish a foundation for intelligent 
research assistants in high-security scientific institutions. 
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