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Abstract—Deploying Large Language Models (LLMs) in
security-critical infrastructures presents unique challenges,
particularly in network-constrained environments where cloud
connectivity is prohibited. Research institutions like the Korea
Atomic Energy Research Institute (KAERI) operate under strict
isolation, shifting the computational burden entirely to on-
premises resources. This paper introduces AtomicGPT, a domain-
specific LLM for nuclear engineering, and proposes a secure on-
premises serving architecture optimized for fully closed networks.
We evaluate the system using OpenWebUI with two serving
frameworks: Ollama and vVvLLM. Experimental results
demonstrate that AtomicGPT outperforms its base models
(Gemma2-9B, Qwen2.5-7B) by up to 17 percentage points on a
custom nuclear benchmark. Furthermore, a comparative analysis
reveals critical system trade-offs between inference latency and
GPU resource efficiency. The vLLM-based architecture achieved
responses within 2 to 2.5 seconds, compared to about 20 seconds
for Ollama—representing up to a 9 times faster speed
improvement. However, this latency reduction required higher
VRAM consumption (29-34 GB vs. 24 GB), identifying Ollama
as a more resource-efficient alternative for hardware-constrained
edge nodes. This study validates the feasibility of high-security
LLM services and provides architectural guidelines for balancing
model specialization, system latency, and hardware resources in
isolated network environments.
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1. INTRODUCTION

The rapid progress of large language models (LLMs)
has enabled intelligent services across a wide range of
application domains, including healthcare, finance, and
engineering. While general-purpose LLMs demonstrate
remarkable capabilities in natural language understanding
and reasoning, they often lack the accuracy and reliability
required for domain-specific tasks in critical infrastructure.
For example, nuclear engineering demands precise
terminology and highly specialized knowledge that generic
models cannot provide without adaptation. This motivates
the development of domain-specific LLMs tailored for
safety-critical environments.

At the same time, deploying LLM services in secure
research environments introduces unique challenges.
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Organizations such as nuclear research institutes operate
under strict security constraints where external network
access is restricted. In such settings, cloud-based APIs and
externally hosted models are infeasible, necessitating on-
premises deployment solutions. Unlike cloud services
where network transmission often dominates latency, in
these air-gapped edge environments, the model inference
time becomes the critical determinant of Quality of Service
(QoS). Furthermore, limited computational resources in
closed networks require serving architectures that balance
inference performance, efficiency, and ease of integration.

In this paper, we address these challenges through the
development and systematic deployment of AtomicGPT, a
domain-specialized LLM for nuclear engineering. We first
describe the construction of AtomicGPT and demonstrate
its effectiveness over base models, achieving up to 17
percentage points improvement on domain-specific
benchmarks. We then propose a secure on-premises serving
architecture based on OpenWebUI, enabling chatbot-style
interaction entirely within a closed network. Finally, we
compare two popular serving frameworks, Ollama and
vLLM, in terms of inference latency and GPU resource
efficiency, showing that vLLM provides lower latency
while Ollama offers lightweight deployment advantages.

The contributions of this paper are threefold: (1) The
design and evaluation of AtomicGPT, a domain-specific
LLM for nuclear engineering, (2) A secure serving
architecture for providing LLM services in restricted
research networks using OpenWebUI, (3) An empirical
comparison of serving frameworks (Ollama vs VLLM) in
closed research environments, providing architectural
guidelines for optimizing the trade-offs between inference
latency, GPU VRAM usage, and ease of management.

II. RELATED WORK

A. Domain-Specific Large Language Models(LLMs)

Recent advances in domain-specific large language
models (LLMs) have demonstrated significant performance
improvements over general-purpose models. For instance,
healthcare-oriented models such as BioBERT achieve
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notable gains in biomedical text understanding, while
financial models like FInBERT show superior accuracy in
financial sentiment analysis [2], [3]. However, existing
research has primarily focused on model development and
performance evaluation rather than on the practical
deployment of such models in secure or resource-
constrained environments. In particular, there has been little
research on domain-specific LLMs for the nuclear
engineering field, where strict security requirements and
data sensitivity pose unique challenges.

B. LLM Serving framework

Modern LLM deployment utilizes various serving
frameworks optimized for different scenarios. OpenWebUI
provides a user-friendly interface based on a containerized
architecture, making it suitable for air-gapped deployments.
Ollama focuses on simplified local deployment with
minimal configuration, emphasizing resource efficiency.
vLLM offers high-performance serving with advanced
techniques such as PagedAttention and continuous
batching, achieving superior throughput and lower latency
[4]. However, few studies have systematically compared
these frameworks under secure and resource-constrained
conditions.

III. MODEL DEVELOPMENT AND DEPLOYMENT

In this study, we first developed a domain-specialized
large language model tailored for the nuclear engineering
domain. We then deployed this model in the secure, closed
network environment of the Korea Atomic Energy Research
Institute (KAERI), where external connectivity is strictly
restricted. The deployment was realized on-premises using
the OpenWebUI framework, enabling interactive chatbot
services accessible to researchers without relying on
external APIs. This approach ensures both domain
reliability and security compliance while providing practical
usability within restricted infrastructures.

A. AtomicGPT Development
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Fig. 1. Overall research workflow for developing AtomicGPT.

Fig. 1 illustrates the overall workflow of this study for
developing AtomicGPT. The process is divided into three
major stages: data preparation, model training, and
evaluation.
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In the data preparation phase, we collected nuclear-
domain resources from multiple authoritative organizations,
including Korea Hydro & Nuclear Power (KHNP) [5], [6],
the Nuclear Safety and Security Commission (NSSC) [7],
the Korea Atomic Energy Research Institute (KAERI) [8],
[9], and the Nuclear Policy Center at Seoul National
University [10]. The collected materials consisted of nuclear
glossaries, regulatory dictionaries, research papers, and
domain-specific knowledge bases. These resources were
curated into two types of datasets: a pre-training corpus for
continual pre-training (CPT) and an instruction dataset for
instruction tuning (IT). In addition, a separate benchmark
dataset was constructed for performance evaluation. Data
augmentation was applied through bilingual translation
(Korean <« English) to enrich the corpus, and data quality
management steps such as deduplication, filtering, and
expert review were performed to ensure reliability. The final
dataset comprised approximately 50 million (M) tokens,
which served as the foundation for adapting the base models
to the nuclear domain.

In the model training phase, we employed Qwen2.5-7B
and Gemma2-9B as base models. Two strategies were
applied: (1) continual pre-training (CPT) to inject nuclear-
domain knowledge, and (2) instruction tuning (IT) to
enhance task adaptability.

Finally, in the evaluation phase, we evaluated model
performance using the nuclear QA benchmark, which
included multiple-choice, short-answer, and descriptive
questions [11].

B. Deployment of AtomicGPT

FrontEnd
BackEnd

User

Ol

OpenWebUI

=)
©@

AtomicGPT

Closed Network Environment

Fig. 2. Framework architecture for AtomicGPT model serving in KAERI
internal network-constrained environment.

Fig. 2 presents the deployment architecture of
AtomicGPT within the secure research network of KAERI.
The primary objective of this design is to provide domain-
specific LLM services in a closed environment without any
dependency on external connectivity.

At the frontend, researchers interact with the model
through OpenWebUI, which offers a web-based chatbot
interface. OpenWebUI allows users to submit queries and



receive responses seamlessly, while maintaining usability
and accessibility within the restricted intranet.

The backend serving layer is configured with two
alternative frameworks: Ollama and vLLM. Ollama is
lightweight and easy to configure, making it suitable for
restricted systems that prioritize simplicity and portability.
In contrast, vLLM is optimized for performance, featuring
advanced memory management and scheduling
mechanisms that reduce response latency under load. Both
frameworks access the same AtomicGPT model, but they
provide different trade-offs in terms of deployment
efficiency and runtime performance. To further enhance
reliability and manageability, the entire service stack is
deployed using Docker containers. This containerized
approach provides several advantages:

- Environment isolation ensures that all dependencies
are encapsulated, minimizing conflicts with the host system.

- Reproducibility allows consistent deployment across
different machines in the secure network.

- Simplified management enables rapid updates, scaling,
and rollback without interfering with the host environment.

All  components, including OpenWebUI, serving
engines, and the AtomicGPT model deployment, operate
strictly within the closed network environment, as indicated
by the dashed boundary in Fig. 2. This ensures that no data
or queries leave the internal infrastructure, thereby
satisfying stringent security requirements while enabling
practical Al services for nuclear research environments.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate AtomicGPT in terms of
domain-specific model performance and deployment
efficiency. The evaluation consists of two parts: (1) model
accuracy on nuclear QA benchmarks compared with
baseline LLMs, and (2) response time and GPU usage under
different serving frameworks (Ollama and vLLM). The
experiments were conducted using two NVIDIA A100
GPUs with 40GB memory each.

A. AtomicGPT model performance

The benchmark consisted of 328 questions, including
100 multiple-choice, 100 short-answer, and 128 descriptive
questions.  This  benchmark design provides a
comprehensive assessment of knowledge understanding and
problem-solving ability in the nuclear domain.

We compared a total of four models: the base models
(Qwen2.5-7B and Gemma?2-9B) and their domain-adapted
counterparts, AtomicGPT, which were trained with both
continual pre-training (CPT) and instruction tuning (IT). For
each question type, appropriate metrics were applied: Exact
Match (EM) for multiple-choice, F1 Score for short-answer,
and LLM-as-a-Judge (using the GPT-40) for descriptive
responses.

534

TABLE L OVERALL PERFORMANCE BY MODEL AND EVALUATION

QUESTIONS TYPE

Model Multiple- Descriptive
Choice (EM, S”‘;ZA’;S)W" (LLM-as-a-
%) 7Y Judge, %)
Qwen2.5-7B 28 15.37 36.7
AtomicGPT -
Qwen2.5-7B 37 18.08 394
Gemma2-9B 23 12.16 36.5
AtomicGPT -
Gemma2-9B 40 27.44 46.7

Table I presents the evaluation results. Across all

benchmarks, AtomicGPT variants consistently
outperformed their base counterparts. In particular,
Gemma2-9B  AtomicGPT  achieved the  highest

performance, reaching 40% EM on multiple-choice,
27.44% F1 score on short-answer, and 46.7% on descriptive
evaluation, representing a maximum improvement of 17
percentage points in EM score over the baseline.
Additionally, to ensure the reliability of the GPT-40-based
evaluation, we conducted a human evaluation test on a
random sample of 50 responses. The human expert's scoring
aligned with the automated judge in over 80% of the cases,
verifying the validity of our LLM-as-a-Judge methodology.
These results confirm the effectiveness of combining CPT
and IT to specialize LLMs for the nuclear engineering
domain.

Ablation Study of AtomicGPT Variants
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Fig. 3. Ablation study of AtomicGPT variants. The performance
comparison across Base, CPT-only, IT-only, and the final
AtomicGPT (CPT+IT) models demonstrates the synergistic effect of
combining domain knowledge injection (CPT) and task alignment
7).

To verify the contribution of each training stage, we
conducted an ablation study as shown in Fig. 3. The results
indicate distinct benefits from each phase: the CPT-only
models showed consistent improvement in multiple-choice

questions, reflecting enhanced domain knowledge
comprehension. Meanwhile, the IT-only models
demonstrated superior performance in descriptive

questions, highlighting the importance of instruction tuning
for generating coherent and detailed explanations.
Ultimately, the AtomicGPT (CPT+IT) model achieved the
highest scores across all metrics, confirming that combining
continual pre-training with instruction tuning is essential for
maximizing domain-specific performance.

B. Serving Performance

To evaluate deployment efficiency in secure and
network-restricted environments, we compared two popular



serving frameworks, Ollama and vLLM, when running
AtomicGPT with OpenWebUI as the frontend. In such
closed networks, where external APIs cannot be utilized,
selecting an optimal serving framework is critical to ensure
both responsiveness and usability for researchers.

AtomicGPT Deployment Companson vLLM vs Ollama
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Fig. 4. Comparison of average response time(inference latency) and
GPU vram usage for AtomicGPT served with Ollama and vLLM.

Fig. 4 summarizes the comparative results of our
deployment performance measurements for AtomicGPT.
Across both model variants—AtomicGPT-Qwen2.5-7B
and AtomicGPT-Gemma2-9B—the VvLLM framework
consistently achieved significantly lower response latency
than Ollama, confirming its advantage for performance-
sensitive deployments even under strict on-premises
constraints. For instance, AtomicGPT-Qwen2.5-7B
recorded an average latency of 18 seconds when served with
Ollama, compared to only 2 seconds with vLLM; similarly,
the Gemma2-9B model showed 20 seconds versus 2.5
seconds, respectively. However, this speed improvement
required higher GPU memory usage—approximately 29-34
GB with vVLLM, compared to 24-28 GB for Ollama—
highlighting the trade-off between response speed and
resource efficiency.

In addition, Fig. 5 presents the actual deployment of
AtomicGPT within the OpenWebUI interface. The system
provides a secure, interactive chatbot service entirely within
the closed KAERI network, allowing researchers to query
nuclear engineering knowledge and institutional data
without any external connectivity. This configuration
effectively demonstrates the real-world applicability of
domain-specific LLMs in air-gapped infrastructures,
combining security assurance with  user-friendly
accessibility. Furthermore, AtomicGPT enables future
integration with autonomous agent workflows, where the
model can assist researchers by automating document
retrieval, report summarization, and data interpretation
while maintaining full compliance with internal security
policies.
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Fig. 5. On-premises deployment of the AtomicGPT-gemma2-9B model
as a chatbot interface at the Korea Atomic Energy Research Institute
(KAERI).

V. CONCLUSION

In security-critical research institutions such as the
Korea Atomic Energy Research Institute (KAERI), public
cloud-based LLM services like ChatGPT or Claude cannot
be utilized due to strict network isolation. This constraint
highlights the need for domain-specific language models
that can be fully operated within air-gapped environments.

This study introduced AtomicGPT, a nuclear domain-
specific LLM securely deployed using OpenWebUI,
Ollama, and vLLM without external connectivity.
Experimental evaluations demonstrated that interactive
LLM services can be effectively implemented in closed
networks, and that balancing GPU resource utilization and
response latency is a key factor in deployment design. The
vLLM deployment achieved rapid response times (2-2.5 s)
with higher VRAM usage (29-34 GB), while Ollama
provided greater resource efficiency (24-28 GB),
underscoring the importance of selecting deployment
frameworks that align with system constraints.

In this study, we primarily focused on model accuracy
and end-to-end response latency to validate the feasibility of
on-premises deployment. For future work, we plan to
conduct a more granular analysis of inference performance
using metrics such as Time To First Token (TTFT) and
generation throughput (tokens/s). This will allow for a
deeper optimization of the trade-off between user
interactivity (latency) and system efficiency (throughput) in
resource-constrained network environments. Furthermore,
we aim to extend AtomicGPT toward a domain-specific
intelligent agent system that integrates nuclear engineering
knowledge bases and supports researchers with tasks such
as document retrieval, report summarization, and
experimental data interpretation. Through sustainable on-
premises deployment and operational optimization,
AtomicGPT aims to establish a foundation for intelligent
research assistants in high-security scientific institutions.
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