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Abstract—The practical application of Multi-Task Federated
Learning (MTFL) in the financial domain is challenged by
a combination of class imbalance, Non-IID data, and tasks
with asymmetric failure costs. To address these compounded
challenges, this paper proposes a game-theoretic algorithm, the
Federated Risk-adjusted Nash Bargaining Solution (Fed-RNBS).
Fed-RNBS negotiates an optimal model update by dynamically
incorporating task-specific risks and learning states. Experiments
on a real-world mortgage dataset show that the proposed model
improves the F1-Score by 46.6% on the highly imbalanced
delinquency prediction task compared to baseline models. This
demonstrates the effectiveness of Fed-RNBS in building robust
and reliable models for complex real-world financial environ-
ments.

Index Terms—Multi-Task Federated Learning, Financial Risk
Management, Gradient Conflict, Game Theory, Nash Bargaining
Solution

I. INTRODUCTION

Federated Learning (FL) [1] is a distributed learning
paradigm designed for collaboratively training models in en-
vironments where data is decentralized across multiple insti-
tutions or devices, ensuring privacy is preserved. Instead of
transferring local data externally, each client shares only the
model parameters learned locally with a central server. This
approach not only fundamentally guarantees data privacy but
also offers the advantage of mitigating persistent issues inher-
ent in traditional centralized learning, such as communication
overhead, computational bottlenecks at the central server, and
storage constraints.

The utility of Federated Learning can be further extended
when combined with Multi-Task Learning (MTL) [2]. MTL is
a methodology wherein a single model learns multiple related
tasks concurrently. By sharing knowledge across tasks, it can
achieve superior overall performance and efficiency compared
to training separate models for each task. The combination of
these two paradigms, Multi-Task Federated Learning (MTFL),
aims to build a single, powerful model capable of performing
multiple tasks simultaneously, without requiring clients to
share their privacy-sensitive data.

The financial sector represents one of the most ideal yet
challenging environments for applying the MTFL method-
ology. Financial institutions possess vast amounts of data
essential for building accurate and robust AI models. However,

they face a dilemma: this data is fragmented within each
institution’s firewall, and strict privacy regulations render inter-
institutional sharing virtually impossible [3]. Furthermore,
the financial domain is characterized by two significant data
challenges that impede the performance of federated learning.
The first is the Non-Identically and Independently Distributed
(Non-IID) nature of the data [4]. Each bank has a unique
customer base and product portfolio, leading to disparate
data distributions among clients (banks), which hinders the
convergence of the global model. The second is the problem of
severe class imbalance. In financial risk prediction, risk events
manifest as a very small number of minority samples. For
instance, in the delinquency prediction data (Task 1) addressed
in this study, actual delinquency samples constitute only 1.96%
of the entire dataset, making it extremely difficult for the
model to learn the patterns of the minority class.

Our prior work [5] validated the feasibility of MTFL in
finance using a shared encoder architecture with static loss
weighting. While this approach yielded promising results, we
also identified two critical limitations that impede its practical
application: (1) performance degradation caused by conflicting
gradients among different tasks, and (2) training instability
stemming from task-specific data imbalances.

To address these challenges, we propose Game Theory as
a solution. Game theory is a mathematical framework for an-
alyzing strategic interactions among multiple decision-makers
[6]. Although prior research has applied the Nash Bargaining
Solution (NBS) to multi-task learning to mitigate gradient
conflicts [7], this approach has a fundamental limitation: it
treats all tasks symmetrically. This symmetric treatment makes
it ill-suited for the financial domain, where tasks often have
asymmetric failure costs. For example, the cost of failing
to predict a loan delinquency is substantially greater than
that of incorrectly predicting a prepayment. Consequently, a
symmetric approach can lead to an unstable model from a risk
management perspective. More recently, an asymmetric ap-
proach (AuxiNash) that automatically learns task preferences
through bi-level optimization has also been proposed [8], but
it assumes a general-purpose auxiliary learning environment.

The key contributions of this paper are as follows:
• We propose a novel algorithm, the Federated Risk-

adjusted Nash Bargaining Solution (Fed-RNBS), to si-
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Fig. 1: The overall framework of Fed-RNBS.

multaneously address the challenges of inter-task gra-
dient conflicts and data imbalance. Our method defines
the asymmetric failure cost of each task as ’risk’ and
incorporates it into the bargaining process, thereby en-
suring stable gradient updates tailored for the financial
environment.

• We demonstrate the effectiveness of Fed-RNBS on a real-
world mortgage dataset from Freddie Mac, which exhibits
both Non-IID and class imbalance properties. Our re-
sults confirm its superiority over existing algorithms in
handling extremely imbalanced data found in real-world
scenarios.

The remainder of this paper is organized as follows. Section
2 provides a detailed description of our proposed algorithm,
Fed-RNBS. Section 3 presents a comprehensive performance
evaluation, comparing our proposed algorithm against several
baseline models. Finally, Section 4 summarizes our findings
and discusses future research directions.

II. PROPOSED METHOD

The overall framework of Fed-RNBS is illustrated in Fig.
1. Each client employs risk-adjusted bargaining to resolve
inter-task gradient conflicts during local training, while the
central server aggregates the model parameters. Under this
coordination, each client (e.g., a financial institution) updates
its model using a Non-IID and class-imbalanced dataset.

A. Problem Formulation: MTFL for Financial Tasks

The framework of our study assumes a standard federated
learning setting, which consists of multiple clients and a
single central server. Each client trains its model independently
without sharing raw data externally. We assume that the data
held by each client is statistically heterogeneous, exhibiting
Non-IID properties, and that severe class imbalance exists
within each task.

For multi-task learning, our model adopts a Shared Encoder
and Task-specific Decoders architecture. The shared encoder is
responsible for learning a common feature representation from
the input data that is beneficial for all tasks. The feature vector
processed by the encoder is then fed into separate decoders
for each task to perform the final predictions. In this work, we
define two critical binary classification tasks in financial risk
management as follows:

Task 1: Delinquency Prediction. The objective of this task
is to predict whether a loan will become delinquent for two or
more months at any point during its entire term. It represents
one of the most critical challenges in risk management for
financial institutions and is considered a high-risk task due
to the significant costs associated with prediction failures.
The target variable is defined using the ‘CURRENT LOAN
DELINQUENCY STATUS’ feature from the monthly perfor-
mance file. This task is characterized by a severe class imbal-
ance, with the positive class accounting for only approximately
1.96% of the entire dataset.

Task 2: Prepayment Prediction. The objective of this task is
to predict whether a borrower will exhibit a prime repayment
pattern, specifically by making an additional payment of
$1,000 or more beyond the scheduled monthly installment.
This information is crucial for financial institutions in man-
aging liquidity and formulating product strategies. The target
variable is defined by the ‘EARLY REPAYMENT INDEX’,
which is calculated by combining data from the origination
and monthly files. Compared to delinquency prediction, this
is considered a relatively low-risk task.

B. The Challenge of Gradient Conflicts

When training a multi-task model with a shared encoder,
each task aims to update the model parameters in a direction
that most effectively minimizes its respective loss function.
However, a gradient conflict arises when the preferred update
directions—that is, the gradients—for each task diverge.

Conventional approaches, including our prior work, typi-
cally optimize a simple weighted sum of the task-specific
losses. However, this method fails to adequately account
for the complex interactions among tasks. It can lead to a
phenomenon known as ’negative transfer,’ where the gradient
of one task interferes with the learning process of another,
ultimately degrading the model’s overall performance.

C. Proposed Algorithm: Fed-RNBS

In this paper, we frame the gradient conflict problem as a
cooperative game where multiple tasks negotiate to find an
optimal update direction. To solve this, we propose the Fed-
erated Risk-adjusted Nash Bargaining Solution (Fed-RNBS).
Fed-RNBS comprises two key mechanisms: (1) dynamically
calculating the bargaining power for each task at every training
step to reflect its current state, and (2) an iterative Nash
bargaining process that determines the optimal task weights
based on the calculated bargaining power.

The Nash Bargaining Solution (NBS) [9] is a concept
in cooperative game theory for finding a fair and efficient
optimal agreement among players. However, the standard
NBS assumes that all players have equal bargaining power,
which makes it difficult to apply directly to financial tasks
characterized by asymmetric failure costs.

To overcome this limitation, we dynamically adjust the
bargaining power, denoted as β, as shown in Equation (1),
considering both the current learning state and stability of
each task. The bargaining power βk, defined below, for each
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task k is determined by the product of the following three
components:

βk = (Ik · Lnorm,k) ·
(

1

Var(gk) + ϵ

)
. (1)

1) Pre-defined Importance (Ik): This represents the static
importance of a task, which is based on domain knowl-
edge. For instance, in this study, we assign a higher Ik
value to the delinquency prediction task (Task 1) due to
its greater risk (I1 > I2). This component reflects the
’Risk-adjusted’ aspect of our proposed methodology.

2) Normalized Loss (Lnorm, k): This metric indicates the
difficulty of a task at the current training stage. It func-
tions as an adaptive learning mechanism by temporarily
granting higher bargaining power to tasks with higher
loss values—that is, those that are lagging and require
more training. This encourages the model to focus on
underperforming tasks.

3) Inverse of Gradient Variance ( 1
Var(gk)+ϵ ): This term

serves as a regularizer to control training stability. A
large gradient variance (V ar(gk)) for a task within a
given batch indicates that the training signal is unstable
and noisy. By reducing the bargaining power of such
tasks, this component prevents the model from updating
in inconsistent or erratic directions, thereby enhancing
overall training stability.

Based on the dynamically computed bargaining power vec-
tor β = [β1, . . . , βK ], Fed-RNBS determines the final task
weight vector α = [α1, . . . , αK ]. Instead of approximating
this process with a closed-form solution, we employ an
iterative negotiation method, as detailed in Algorithm 1, to
progressively find the optimal solution. This process repeats
for a pre-defined number of iterations (Tnegotiate). It defines an
’error’ that measures how much the current weights α deviate
from the ideal Nash equilibrium condition (M ·α ∝ β/α), and
slightly updates α in the direction of the steepest descent (the
negative gradient) of this error. Through these incremental up-
dates, the weight vector α converges to an optimal bargaining
solution that satisfies the requirements of all tasks.

III. PERFORMANCE EVALUATION

In this section, we present the experimental setup, baseline
models, and comprehensive performance analysis conducted
to validate the effectiveness of our proposed algorithm, Fed-
RNBS.

A. Experimental Setup

To accurately replicate a real-world financial environment,
we utilized the Single-Family Loan-Level Dataset provided
by the U.S. Government-Sponsored Enterprise (GSE), Freddie
Mac [10]. This dataset is constructed based on actual residen-
tial mortgage loan information, ensuring a high degree of real-
ism. Furthermore, it includes loan data acquired from various
financial institutions, which is advantageous for securing data
diversity and generalizability. We used approximately 180,000
loan records collected over about 21 months, starting from the

Algorithm 1 Asymmetric N-Player Nash Bargaining Solver

1: Input: Set of task gradients {gk}Kk=1.
2: Vector of bargaining powers β = [β1, . . . , βK ].
3: Negotiation rounds Tneg , learning rate η.
4: Output: Final weight vector α = [α1, . . . , αK ].

5: Initialization:
6: G ← [g1, g2, . . . , gK ]
7: M ← G⊤G
8: α ← [1/K, . . . , 1/K]⊤

9: Iterative Negotiation:
10: for iteration τ = 1, . . . , Tneg do

▷ Measure disagreement from the ideal Nash condi-
tion

11: error ← ||M · α− β/α||2
▷ Calculate gradient of the disagreement

12: grad error ← ∇α(error)
▷ Update weights to reduce disagreement

13: ∆α ← −grad error
14: α ← α+ η ·∆α

▷ Project weights back to the simplex (sum to 1)
15: α ← α/

∑K
i=1 αi

16: end for

17: return α

first quarter of 2023. The data consists of an Origination file,
containing information at the time of loan inception, and a
Monthly Performance file, which includes monthly updated
information.

To simulate the real-world scenario where financial institu-
tions possess distinct customer bases, we partitioned the entire
training dataset among five clients in a non-uniform (Non-IID)
manner using a Dirichlet distribution (α=1.0). Moreover, the
persistent issue of class imbalance inherent in financial data
was also reflected in our experiments. Table 1 shows the state
of severe data imbalance for the two tasks in this study. For
Task 1, which predicts the core risk, the proportion of the
positive class is a mere 1.96%, making performance evaluation
on the minority class a significant challenge.

TABLE I: Dataset Statistics and Class Distribution for Each
Task

Statistic Task 1 Task 2

Total Samples: 185,849 185,849
Negative Samples (Label 0) 182,214 (98.04%) 163,101 (87.76%)
Positive Samples (Label 1) 3,635 (1.96%) 22,748 (12.24%)

The model employed in our experiments follows the shared
encoder and task-specific decoder architecture, as described in
Section 2. The shared encoder consists of three fully connected
layers with 256, 128, and 64 neurons, respectively, each
followed by a ReLU activation function. Each task-specific
decoder is composed of four hidden layers and an output
layer with a Sigmoid function to compute the final binary
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classification probability. All experiments were conducted for
15 global rounds, with each client performing 3 epochs of
local training in each round. To evaluate the performance
of our proposed model, we conducted comparisons with the
following baseline models.

B. Results and Analysis

Table 2 compares the personalized performance of our
proposed Fed-RNBS with that of the baseline models for each
task. The experimental results demonstrate that Fed-RNBS
outperforms both baseline models on most key metrics, with
the exception of Accuracy on Task 2. Furthermore, it proved
to generate a much more robust model, particularly in the
Non-IID environment and under conditions of severe data
imbalance.

TABLE II: Performance Comparison of Fed-RNBS with Base-
line Models on Financial Prediction Tasks

Task Metric MTFL Nash-MTL Fed-RNBS

Task 1
(High Risk) Accuracy 0.801± 0.10 0.807± 0.11 0.834± 0.10

F1-Score 0.266± 0.14 0.214± 0.22 0.313± 0.26
Recall 0.411± 0.15 0.370± 0.26 0.421± 0.32
Precision 0.204± 0.13 0.171± 0.19 0.252± 0.22

Task 2
(Low Risk) Accuracy 0.762± 0.18 0.638± 0.10 0.752± 0.13

F1-Score 0.337± 0.30 0.425± 0.08 0.583± 0.34
Recall 0.367± 0.28 0.406± 0.05 0.553± 0.31
Precision 0.353± 0.36 0.512± 0.24 0.626± 0.37

Given the severe class imbalance inherent in financial
datasets, standard Accuracy can be misleading as it often
reflects the correct classification of the majority class rather
than the detection of risks. Therefore, we prioritize Recall and
F1-Score as the primary indicators of actual risk detection
capability. On these critical metrics, Fed-RNBS demonstrated
significant gains, achieving a 26.4% improvement in Recall
and a 40.2% improvement in F1-Score compared to Nash-
MTL. These figures represent the average performance im-
provement calculated across both tasks. This substantial gain
is attributed to the dynamic bargaining power mechanism of
Fed-RNBS, which effectively prevents the model from being
biased toward the majority class.

The superiority in F1-Score clearly highlights the key ad-
vantages of the proposed model. The significant performance
gap in Task 1, in particular, demonstrates that the approach of
Fed-RNBS—which goes beyond merely mitigating gradient
conflicts to concurrently consider asymmetric task importance
and training stability—is highly effective in real-world, imbal-
anced financial environments. Furthermore, achieving the top
performance on the relatively low-risk Task 2 confirms that
our model finds a stable trade-off, maximizing performance
on the high-risk task without sacrificing the performance of
the other.

IV. CONCLUSION

In this paper, we aimed to address the challenges that arise
when applying Multi-Task Federated Learning (MTFL) in real-
istic financial environments, where Non-IID data distributions,
extreme class imbalance, and asymmetric risks among tasks
coexist. To this end, we proposed a novel game-theoretic algo-
rithm, the Federated Risk-adjusted Nash Bargaining Solution
(Fed-RNBS). Fed-RNBS dynamically computes the bargain-
ing power for each task by holistically considering its pre-
defined importance, current learning difficulty, and gradient
stability. By applying this power within an iterative Nash
bargaining process, it effectively resolves gradient conflicts
between tasks. Furthermore, through experiments on a real-
world residential mortgage dataset, we demonstrated that the
proposed Fed-RNBS outperforms conventional MTFL and
symmetric Nash bargaining-based models. It achieved a par-
ticularly significant performance improvement on the high-risk
and severely imbalanced delinquency prediction task, confirm-
ing that our proposed methodology operates effectively and
robustly in challenging real-world financial data environments.
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