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Abstract—Machine learning-based Intrusion Detection
Systems (IDS) often suffer from high false positive rates,
as they learn statistical correlations rather than the
underlying cause-and-effect dynamics of network traffic.
This paper introduces Causal-IDS, a novel framework that
addresses this gap by leveraging causal inference. Causal-
IDS first learns a Structural Causal Model representing
the normal operational mechanisms of a network from
benign data. Intrusions are then identified not as mere
statistical outliers, but as significant violations of these
learned causal laws, quantified by a Causal Anomaly
Score. We demonstrate that accurately modeling complex,
non-linear relationships is critical, as a naive causal model
with linear assumptions fails. Our enhanced Causal-
IDS, using Gradient Boosting, is evaluated on the CIC-
IDS2017 dataset, where it significantly outperforms tradi-
tional methods like Isolation Forest and Autoencoders.
Notably, it achieves a superior Area Under the ROC
Curve (AUC) of 0.84, showcasing its ability to reliably
distinguish attacks. By focusing on the disruption of causal
mechanisms, our work paves the way for a new class
of robust, interpretable, and more trustworthy intrusion
detection systems.

Index Terms—Network Intrusion Detection, Causal In-
ference, Anomaly Detection, Machine Learning, Network
Security.

I. INTRODUCTION

The proliferation of sophisticated cyber threats neces-
sitates the development of advanced Intrusion Detection
Systems (IDS) [1]. While machine learning (ML) has
become a cornerstone for automating threat detection,
many existing models are fundamentally limited by
their reliance on statistical correlations. This approach
renders them vulnerable to high false positive (FP)
rates, which leads to alert fatigue and diminishes oper-
ator trust [2]. For instance, a standard ML model might
learn a spurious correlation between high traffic volume
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and CPU load, consequently misclassifying a benign
flash crowd event as a malicious Distributed Denial-of-
Service (DDoS) attack because it fails to discern the
underlying cause-and-effect relationship [3].

This paper argues that the key to building more
robust and reliable IDSs lies in a paradigm shift from
correlational to causal reasoning. We posit that an attack
is not merely a statistical anomaly but an external inter-
vention that disrupts the natural causal mechanisms of
a network. A DDoS attack, for example, does not arise
from the network’s internal dynamics (e.g., a sudden
increase in legitimate users); it is exogenously imposed
by a botnet. This intervention breaks the established
causal chain between legitimate user activity and net-
work traffic, a fundamental distinction that correlation-
based models cannot inherently make.

To address this gap, we introduce Causal-IDS, a
framework grounded in structural causal inference [4].
The core principle is to first learn a model of a
network’s normal cause-and-effect relationships from
benign traffic. Intrusions are then identified as signifi-
cant violations of these learned causal laws. Our main
contributions are threefold:

• We design a novel, two-phase IDS framework
that separates causal graph discovery from the
learning of its functional mechanisms, enhancing
both model robustness and interpretability.

• We demonstrate the critical importance of ac-
curate mechanism modeling by showing that a
naive Causal-IDS with linear assumptions fails,
whereas our enhanced version using non-linear
models and data standardization achieves superior
performance.

• We conduct a rigorous comparative evaluation on
the CIC-IDS2017 dataset [5], showing that our en-
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hanced Causal-IDS significantly outperforms stan-
dard anomaly detection baselines with a superior
Area Under the ROC Curve (AUC) of 0.84.

The remainder of this paper is organized as follows.
Section II reviews related work. Section III details the
Causal-IDS framework. Section IV presents the experi-
mental evaluation. Section V discusses the implications
and limitations of our findings. Finally, Section VI
concludes the paper.

II. RELATED WORK

The application of machine learning to IDS has been
extensively studied, primarily following two paradigms:
supervised classification and unsupervised anomaly de-
tection. Supervised methods like Support Vector Ma-
chines (SVM) and Random Forests excel at detecting
known threats but fail to identify novel, zero-day attacks
[6]. To address this, unsupervised methods such as
Isolation Forest and Autoencoders have gained traction
by learning a model of normal behavior and flagging
significant deviations as potential intrusions [7]–[9].

Despite their successes, a fundamental challenge
persists across both paradigms: they are inherently
correlational. These models learn statistical regularities
but lack a deeper understanding of the system’s un-
derlying data-generating process. This ”correlation vs.
causation” gap is a primary contributor to high false
positive rates and limited model robustness, motivating
a shift towards a more principled approach [10].

Causal inference offers a direct theoretical solution to
this problem by focusing on discovering and modeling
cause-and-effect relationships from data. In network
analysis, its application has centered on management
and troubleshooting, where causal models have been
used for root cause analysis (RCA) of performance
degradations and failures [11]. These studies typically
employ causal discovery algorithms like the Greedy
Equivalence Search (GES) to construct a causal graph
from observational data [12].

However, applying these techniques to intrusion de-
tection is a largely unexplored frontier, and it is cru-
cial to distinguish our approach from prior causality-
informed methods. Some work, for instance, has used
Granger causality for time-series anomaly detection
[13]. Such methods primarily assess predictive causality
between pairs of time-series variables. In contrast, our
framework learns a comprehensive Structural Causal
Model (SCM) of the entire system [14]. This provides
a more holistic view, allowing us to detect an intrusion
not just as a disruption between two variables, but as
a violation of the underlying functional mechanisms
governing any feature given its direct causes.

While previous works focus on explaining system
behavior, our work pioneers the use of these SCM
violations as the primary signal for detecting external,

malicious interventions. This paper aims to fill this
critical gap by proposing a complete framework for
a causality-aware IDS that moves beyond pairwise
statistical prediction to a mechanistic understanding of
network operations.

III. THE PROPOSED CAUSAL-IDS FRAMEWORK

Our proposed Causal-IDS framework is designed to
detect intrusions by identifying violations of a learned
structural causal model. The framework operates in
two distinct phases: an offline training phase for model
construction and an online detection phase for real-time
scoring, as illustrated in Fig. 1.

Benign Data

Deployment

Learn Causal
Model

Learned
Model

New Traffic Calculate Anomaly
Score Decision

Benign Attack

Yes No

Offline Training Phase

Online Detection Phase

Fig. 1. The two-phase architecture of the Causal-IDS framework.
The offline phase learns a causal model from benign data, which is
then used by the online phase to score new traffic.

Let X = {X1, X2, . . . , Xn} be the set of n random
variables representing the network features. We assume
the data is generated from a Structural Causal Model
[14], which consists of a directed acyclic graph (DAG)
G and a set of functions {fi} describing the causal
mechanisms. The entire process is formally summarized
in Algorithm 1.

A. Phase 1: Causal Mechanism Training (Offline)

This phase leverages a dataset of purely benign
traffic, Dbenign ∈ Rm×n, where m is the number of
samples, to learn the SCM of a normally operating
network.

1) Causal Structure Discovery: The first step is to
discover the underlying causal graph G = (V,E). An
edge Xi → Xj in G signifies that Xi is a direct cause
of Xj . We employ the GES algorithm [15], a prominent
score-based method that heuristically searches the space
of essential graphs to find the one that maximizes a
scoring function. The objective is to find the graph G∗

that best fits the data:

G∗ = argmax
G

Score(Dbenign,G) (1)

In this work, we utilize the Bayesian Information Cri-
terion (BIC) as our scoring function, which balances
model fit with model complexity to prevent overfitting.

It is important to acknowledge that the validity
of the discovered graph G∗ hinges on several key
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Algorithm 1 The Causal-IDS Framework Algorithm
Input: Dbenign (Benign training data), Dtest (Test

data)
Output: Anomaly scores for Dtest

1: Phase 1: Training Phase
2: G∗ ← GES(Dbenign) {Discover causal graph}
3: Initialize an empty model set F = {}
4: for each feature Xi in Dbenign do
5: Pa(Xi) ← Get parents of Xi from G∗

6: if Pa(Xi) is empty then
7: f̂i ← mean(Xi) {Model is the mean}
8: else
9: Xparents ← Select columns for Pa(Xi)

10: f̂i ← GradientBoostingRegressor()
11: f̂i.fit(Xparents, Xi) {Train mechanism

model}
12: end if
13: Add f̂i to F
14: end for
15: Phase 2: Detection Phase
16: Initialize empty list Scores
17: for each instance x in Dtest do
18: total error ← 0
19: for each feature xi in x do
20: Get model f̂i from F corresponding to xi

21: Pa(xi) ← Get parent values of xi from x
22: x̂i ← f̂i.predict(Pa(xi))
23: error ← (xi − x̂i)

2

24: total error ← total error + error
25: end for
26: CAS ←

√
total error/n {Calculate Causal

Anomaly Score (RMSE)}
27: Append CAS to Scores
28: end for
29: return Scores

assumptions inherent to GES. These include acyclic-
ity (the absence of feedback loops), faithfulness (all
conditional independencies in the data are reflected
in the graph structure), and, most critically, causal
sufficiency (no unmeasured or hidden common causes
of the observed variables). While the acyclicity and
faithfulness assumptions are standard in many causal
discovery settings, causal sufficiency may be violated in
complex network environments. We proceed under the
working assumption that our selected features capture
the most direct causal influences, while acknowledging
the potential for hidden confounders as a limitation
of this study. We chose GES over constraint-based
methods like the PC algorithm due to its demonstrated
statistical efficiency and strong performance in finding
the correct equivalence class of graphs from finite data.

2) Causal Mechanism Learning: Once the optimal
causal graph G∗ is determined, we learn the functional

relationships for each variable. For each node Xi ∈
V , the SCM assumes that its value is generated by a
function of its parents, PaG∗(Xi), and an independent
noise term ϵi:

Xi := fi(PaG∗(Xi), ϵi) (2)

We train a predictive model f̂i for each variable Xi to
approximate this mapping. We investigate two distinct
approaches for this task:

• Causal-IDS (Linear): A baseline approach as-
suming linear relationships, where each f̂i is a
Linear Regression model.

• Causal-IDS (GBoost): Our enhanced approach
capable of capturing complex, non-linear relation-
ships. The data is first standardized, and each f̂i
is a Gradient Boosting Regressor model.

The complete learned model consists of the pair
(G∗, {f̂1, . . . , f̂n}).

B. Phase 2: Causal Anomaly Detection (Online)

For a new, unseen network flow instance x =
(x1, . . . , xn), we quantify its conformity to the learned
causal model. An intrusion is hypothesized to be an ex-
ternal intervention that forces one or more variables to
deviate from their natural causal mechanisms. For each
feature xi, we use its learned model f̂i to generate a
prediction based on the values of its parents, PaG∗(x):

x̂i = f̂i(PaG∗(x)) (3)

The final Causal Anomaly Score (CAS) [13] for the
entire instance is the Root Mean Squared Error (RMSE)
of these causal errors across all features:

CAS(x) =

���� 1

n

n∑
i=1

(xi − x̂i)2 (4)

A high CAS value indicates a significant violation of
the learned causal laws, signaling that the instance is
likely malicious. A threshold is then applied to the CAS
for classification.

IV. EXPERIMENTAL EVALUATION

In this section, we present a comprehensive eval-
uation of the proposed Causal-IDS framework. We
aim to answer two key research questions: (1) How
critical is non-linear mechanism modeling for a causal-
based IDS? (2) How does our enhanced Causal-IDS
perform against standard, non-causal anomaly detection
methods?

A. Dataset and Preprocessing

We conduct our experiments on the CIC-IDS2017
dataset [5], a widely recognized benchmark for evalu-
ating IDSs. To ensure focused analysis and manageable
computation times, we curated a representative subset
by combining traffic from three specific days:
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• Monday (Working Hours): Contains exclusively
benign traffic, ideal for training our models.

• Friday Afternoon (DDoS): Contains a large vol-
ume of DDoS attack traffic.

• Friday Afternoon (PortScan): Contains Port Scan-
ning attack traffic.

After cleaning invalid rows (containing NaN or Infinity
values), our final dataset consists of 1,041,288 flow
instances. The benign portion, comprising 754,459 in-
stances, is used for training all models, while the entire
dataset is used for evaluation. We selected the 12 key
numerical, flow-based features listed in Table I.

This feature subset was chosen based on established
practices in network traffic analysis and intrusion de-
tection research. The selected variables represent fun-
damental properties of a network flow, such as its dura-
tion, packet counts, byte rates, and inter-arrival times.
This approach prioritizes core traffic characteristics
while excluding highly correlated or redundant features
that can compromise the stability and interpretability of
causal discovery algorithms.

TABLE I
SELECTED FEATURES FOR EXPERIMENTS

Feature Name Feature Name

Flow Duration Flow Bytes/s
Total Fwd Packets Flow Packets/s
Total Backward Packets Flow IAT Mean
Total Length of Fwd Packets Fwd IAT Mean
Fwd Packet Length Mean Init Win bytes forward
Bwd Packet Length Mean Init Win bytes backward

B. Baselines and Evaluation Metrics
We compare our Causal-IDS variants against two

widely-used anomaly detection baselines:
• Isolation Forest (IF): A tree-based ensemble

method that identifies anomalies by their suscep-
tibility to isolation [8].

• Autoencoder (AE): A neural network that learns
a compressed representation of normal data, using
reconstruction error as the anomaly score [9].

Performance is assessed using Precision, Recall, F1-
Score, False Positive Rate, and the Area Under the
Receiver Operating Characteristic Curve. For threshold-
based metrics, we select the threshold as the 95th
percentile of anomaly scores on the benign training
data, targeting a 5% FPR.

C. Implementation Details
All models were implemented in Python. For

Causal-IDS, we used the ‘causal-learn‘ library for
GES discovery. The Linear model used ‘scikit-learn‘’s
‘LinearRegression‘, and the GBoost model used ‘Gra-
dientBoostingRegressor‘ with 50 estimators and a max
depth of 3.

For the baseline models, we ensured a robust compar-
ison by providing sufficient complexity and performing
basic hyperparameter tuning. The Autoencoder, built
with PyTorch, featured a symmetric architecture of
12-8-4-8-12 neurons with ReLU activation functions,
an encoding dimension of 4, and was trained for 10
epochs using the Adam optimizer and Mean Squared
Error (MSE) loss. For both the Isolation Forest and
the Autoencoder, key hyperparameters (e.g., the ‘con-
tamination‘ parameter for IF; latent dimension and
learning rate for AE) were selected based on common
practices and performance on a validation split of the
training data. All experiments were conducted on a
server equipped with an NVIDIA RTX 4090 GPU.

D. Results and Analysis

The comprehensive performance comparison is pre-
sented in Table II, with ROC curves shown in Fig. 2.
All reported AUC values are consistent across the text,
table, and figures.

TABLE II
PERFORMANCE COMPARISON OF ALL METHODS. OUR

ENHANCED CAUSAL-IDS (GBOOST) ACHIEVES THE HIGHEST
AUC WHILE MAINTAINING THE TARGET LOW FPR. ALL AUC

VALUES ARE CONSISTENT WITH FIG. 2.

Method Precision Recall F1-Score FPR AUC

Isolation Forest 0.2879 0.2923 0.2901 0.2748 0.6039
Autoencoder 0.6837 0.2843 0.4017 0.0500 0.6698

Causal-IDS (Linear) 0.0002 0.0000 0.0000 0.0500 0.4011
Causal-IDS (GBoost) 0.6872 0.2889 0.4068 0.0500 0.8400

Fig. 2. ROC Curve comparison. Causal-IDS (GBoost) demonstrates
superior discriminative power across all thresholds. AUC values in
the legend should be updated to match Table II: GBoost (0.84),
Autoencoder (0.67), Isolation Forest (0.60), and Linear (0.40).

The Importance of Non-Linear Modeling: The first
key finding is the stark contrast between the two Causal-
IDS variants. The Linear model completely fails (F1-
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Score ≈ 0, AUC ≈ 0.40), indicating that its assumption
of linear causal mechanisms is fundamentally flawed for
complex network traffic. In contrast, the GBoost version
achieves a strong F1-score of 0.4068. This result empir-
ically validates our hypothesis that accurately modeling
the complexity of causal mechanisms is as crucial as
discovering the causal structure itself.

Comparison with Baselines: The Isolation Forest
baseline suffers from an extremely high FPR (27.5%),
rendering it impractical for real-world deployment. The
Autoencoder is a much stronger baseline, achieving a
competitive F1-score at the target 5% FPR. Impres-
sively, our Causal-IDS (GBoost) model matches this F1
performance at the chosen threshold. However, the true
superiority of our causal approach is revealed by the
AUC metric. Our Causal-IDS (GBoost) achieves an
AUC of 0.84, significantly outperforming the Autoen-
coder (0.67) and Isolation Forest (0.60). This indicates
that the Causal Anomaly Score is a more robust and re-
liable indicator of malicious activity than reconstruction
error or isolation scores across all decision thresholds.

Fig. 3. Distribution of Causal Anomaly Scores for the enhanced
Causal-IDS (GBoost) model, showing a clear separation between the
scores of Benign and Attack traffic.

V. DISCUSSION

Our experimental results give rise to several im-
portant discussion points regarding the application of
causal inference to intrusion detection.

A. Why a Causal Approach Works

The superior performance of the Causal-IDS
(GBoost) model, particularly its high AUC, suggests
that a causality-based approach captures a more fun-
damental aspect of intrusions. While methods like
Autoencoders are adept at learning a low-dimensional
manifold for normal data, they are agnostic to the
underlying data-generating process. An attack that is
statistically novel but does not significantly deviate
from this learned manifold might be missed.

In contrast, our Causal-IDS focuses on the mecha-
nisms that produce the data. An attack, by its nature as

an external intervention, often manipulates a specific
feature (e.g., flooding a port, thus controlling packet
rates) while leaving its normal causes unchanged.
This breaks the learned functional relationship Xi ≈
f̂i(PaG∗(Xi)), resulting in a high Causal Anomaly
Score for that feature. This focus on mechanism vi-
olation, rather than just distributional rarity, provides a
more robust and direct detection signal.

B. Interpretability and Actionable Insights

A significant advantage of our framework is its
inherent interpretability, which operates at two levels:
the global causal graph and the local, instance-specific
score. While the individual Gradient Boosting models
are complex, the high-level causal graph G∗ is human-
readable, allowing an analyst to inspect the model’s
baseline assumptions about normal network behavior.
More importantly, when an alert is triggered, the Causal
Anomaly Score can be decomposed to provide action-
able insights.

1) An Interpretability Walkthrough: To make this
concrete, we provide a procedural walkthrough of how
an analyst could diagnose an alert for a DDoS attack.

• Inspect the Relevant Causal Sub-Graph: First,
the analyst examines the learned graph G∗.
Suppose it contains the plausible chain: Flow
Duration → Flow Packets/s → Flow
IAT Mean. This represents the normal mech-
anism where, for a given duration, the rate of
packets causally influences their mean inter-arrival
time.

• Decompose the Anomaly Score: A DDoS attack
instance triggers an alert with a high CAS. The
analyst’s first diagnostic step is to decompose the
total squared error, which defines the CAS, into
its per-feature contributions: (xi − x̂i)

2. They can
then rank features by the magnitude of this causal
error.

• Pinpoint the Violated Mechanism: In our DDoS
scenario, the analyst would likely find that the
feature Flow Packets/s has the largest causal
error. The observed value, xpackets/s, is exception-
ally high due to the attack flood. However, the
model’s prediction, x̂packets/s, which is based on the
value of its cause Flow Duration, would be
much lower, reflecting normal behavior for a flow
of that duration.

• Derive Actionable Insight: The large discrep-
ancy between the observed and predicted packet
rate provides a clear diagnosis: the mechanism
for Flow Packets/s has been violated. The
feature is being manipulated by an external force,
independent of its learned cause. This allows the
analyst to conclude not just that the traffic is
anomalous, but why: the packet rate is unnaturally

526



high for its context. This level of transparency is
absent in purely black-box models and is crucial
for building operator trust.

C. Limitations and Future Work

Despite the promising results, our work has several
limitations that open avenues for future research.

• Causal Discovery Accuracy: As discussed in Sec-
tion III, the performance of Causal-IDS depends
on the correctness of the discovered graph, which
hinges on assumptions like causal sufficiency.
While we proceeded by selecting features known
to be important, future work should explore ad-
vanced causal discovery algorithms that are robust
to hidden confounders or can incorporate expert
domain knowledge to constrain the graph search
space.

• Static Graph Assumption: Our current model
learns a single, static causal graph. However, net-
work behavior can be dynamic, and the underlying
causal relationships might change over time (con-
cept drift). Developing methods for dynamically
updating the causal model online is a crucial next
step for long-term deployment.

• Scalability: While demonstrated on a substantial
dataset, applying causal discovery to networks
with hundreds or thousands of features remains
computationally challenging. Exploring scalable
causal discovery techniques or feature selection
methods guided by causal principles would be a
valuable research direction.

VI. CONCLUSION

In this paper, we addressed the critical challenge of
high false positive rates in machine learning-based IDSs
by proposing a paradigm shift from correlational to
causal reasoning. We introduced Causal-IDS, a frame-
work that models a network’s normal behavior as a
Structural Causal Model and identifies intrusions as
violations of its learned cause-and-effect mechanisms.

Our extensive experiments on the CIC-IDS2017
dataset yielded two key findings. First, we demonstrated
that accurately modeling the complex, non-linear rela-
tionships in network traffic is critical, as a naive causal
model with linear assumptions failed entirely. Second,
our enhanced Causal-IDS, combining causal discovery
with robust Gradient Boosting models, proved highly
effective. It not only matched a strong Autoencoder
baseline at a fixed low false positive rate but also signif-
icantly surpassed all baselines in overall discriminative
power, achieving a superior AUC of 0.84.
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