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Abstract—Container ports provide a critical supply chain
component between marine and land transport systems. The
transported cargos are carried within uniformly sized shipping
containers and landside handled by standardized handling equip-
ment. This equipment moves and positions containers within
storage yards, with deposition onto trailers for haulage onto ships
wharfs and hinterland deliveries. These handling activities often
require large numbers of mobile equipment consuming significant
quantities of diesel fuel for powering internal combustion engines
with exhaust carbon emissions. Quantifying these carbon emis-
sions is typically estimated by applying average emissions factors
onto the diesel usage records without measurement verification.
This paper discusses an IoT based portable and non-intrusive
sensor system for monitoring ports container handling equipment
activities and exhaust emissions. The sensor system was developed
and tested on Reach Stackers and Yard Tractor-Trailers in a
container port. The study approach ensured the applicability and
versatility of the sensor system for use on a range of equipment
types. A key attribute for collecting data was the use of action
cameras to capture screen numeric information for translation
into digital data. This was combined with an engine exhaust
gas analyzer, together with (when available) engine management
data from the Engine Control Unit, and dashcam recordings
of the vehicle activities. The port trials results proved the
deployability of the sensor system with sample duty-time profiles
that characterized the container handling equipment activities on
a seconds time basis. These duty-time profiles provide baseline
data for predicting diesel usage and exhaust emissions from the
monitored parameters. The trial results can assist in identifying
the potential for reducing fuel usage and emissions to decarbonize
ports container handling equipment.

Index Terms—IoT, Sensors, Ports, Container Handling Equip-
ment, Emissions and Activities Monitoring

I. INTRODUCTION

Portable Emissions Measurement Systems (PEMS) and
Portable Activity Monitoring Systems (PAMS) are used to
monitor a vehicle’s emissions, track its activities, with profiling
of the machinery operations and parameters. These systems
combine exhaust gas analyzers, engine intake or exhaust gas
flow metering, Global Positioning System (GPS) locations and
movements, with engine management control and diagnostics
signals to provide real-world journey data with emissions
tests [1].
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From the Internet of Things (IoT) perspective, which rep-
resents a paradigm of connecting multiple sensors to the
internet [2], these systems integrate various sensing units for
data collection, monitoring, exchange and analytics to enhance
operational improvements. Vehicle attached PEMS capable
of providing real-time data can considered IoT devices for
sampling engine exhaust emissions, while PAMS are used to
record machinery activities and performance. Overviews of
PEMS technologies are presented in [3] and PAMS in [4].

Notably most new heavy duty vehicles include PAMS tech-
nologies from accessing engine management control and diag-
nostics signals which are standardised through the worldwide
protocol SAE J1939, a guiding introduction is presented in [5].
Examples of the use of PEMS and PAMS specifically intended
for port mobile heavy duty equipment are presented by [6], [7]
for Yard Tractors and [4], [8] for Drayage Trucks. Vehicle type
specific systems can be developed by transferring and applying
sensor systems used for cars and light commercial vehicles, an
example being [9]. Additionally commercial PAMS products
are available to include dashcam imagery combined with
vehicle telematics for operational monitoring, an example is
presented in [10].

This paper summarizes a study to develop, undertake in-port
trials, process results data, devise analytical tools, and deliver
example results from using an IoT-enabled PEMS-PAMS-
camera monitoring system on ports diesel fueled internal com-
bustion engines for container handling equipment. The aim
was to provide extra information and versatility for capturing
and characterizing port handling equipment duty-time profiles.
This approach is useful for when, vehicle engine control
system and status signals are inaccessible, avoids accessing
protected signals and confidential data, and can monitor older
vehicles with limited instrumentation. These were all practical
issues encountered and mitigated by this study’s approach.

II. StubYy Focus

Therefore the study focus was to develop and implement
a portable and non-intrusive sensor system which included
cameras for monitoring in-port container handling equipment
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diesel fuel usage, available vehicle operational parameters, ex-
haust emissions, and duties on the seconds time scale covering
idle, laden and unladen periods. The in-port trial results were
intended to provide a baseline dataset for characterizing diesel
powered container handling equipment duty-time profiles.

III. SENSOR SYSTEM DEVELOPMENT FOR PORT TRIALS

For the delivery of the in-port trials (Section V) the devel-
oped sensor system was specified to conform with two key
criteria. Firstly it was to minimally intrude on handling equip-
ment and port operations, avoid distractions to the drivers, with
fast and safe attachment for minimal vehicle downtime. The
second, were that the system needed to be; low cost, portable,
flexible, lightweight, used portable rechargeable battery pack
or dashboard power, weather protected, reliable with sensors
redundancy, be safe, and compliant with airline passenger
weight, size, and battery regulations for carriage to and from
the port.

The sensor system trials also required the permission from,
and cooperation with, a container port. This was provided
by the Kuching Port Authority for their Senari Container
Port, Sarawak, Malaysia. The port uses a standard terminal
layout with ships berthing at its single wharf with quay cranes
used for the ships loading and unloading of containers. The
containers were hauled by Yard Tractor-Trailers between a
storage yard area and the wharf. The containers were then
stored in stacks of up to three 20 or 40 ft containers high, and
up to five rows deep, with the in-stack positioning undertaken
by either Reach Stackers or Rubber Tired Gantry Cranes, [11].
The containers landside haulage also required their loading and
unloading with Road Truck-Trailers from outside of the port.

This paper focuses on ground based Reach Stackers and
Yard Tractor-Trailers. These equipment types cover a container
ports key handling tasks, spanning a wide annual average
load factor range (reported at typically 39 to 59% respec-
tively, [12]), resulting in diesel fuel usage with engine exhaust
emissions typically ranging from 2 to 23% respectively of a
ports total estimated emissions, [13]).

This study’s devised sensor system was comprised of, 1)
the vehicle Energy Management Signals (EMS) available data
which was video recorded by action-cameras, 2) the recording
of vehicles activities by front and rear video dashcams, with 3)
an Exhaust Gas Analyzer (EGA). Each sensor had a dedicated
data logger, time referencing and power supply within a
decentralized system. For the Reach Stackers direct access
to the EMS signals was unavailable and so the dash-display
information was video recorded, whereas for the Yard Tractors
the EMS data was accessible through an EMS signals reader
and the reader screen information was videoed. The port trials
sensor locations attached to the port equipment are shown in
Figures 1 and 2.

Notably, extra sensors for measuring ambient weather con-
ditions, engine exhaust or engine air intake flows with gas
density were deliberately excluded from the developed sensor
system as the intent was to minimize the; airline carriage
weight, additional instrument calibration and setup times, and

the intrusion on the port vehicles scheduling and current
engine performance. Therefore and firstly, an open source
online local weather station dataset was identified to provide
hourly averaged weather data for the port locality. Then
secondly, as the EGA sampled the engine exhaust gases on a
percentage by volume basis these are convertible to chemical
molar weights mass ratios with conversion into mass flows
using the combined engine intake or exhaust gases mass flow
rate. The engine exhaust mass flow rate may be estimated
based on the vehicle engines known cylinder displacement and
scaled by an assumed typical volumetric efficiency and turbo-
charger mass flow scaling that increases with the recorded
engine speed, plus an adjustment for the engine intake gas
density. This estimation approach, although less accurate than
by using direct parameters measurement, enabled the trials to
be practically undertaken in an operational port. The approach
highlights this study’s compromise made between minimizing
the intrusion on the port activities versus the results accuracy.
Note also that to manage this paper’s content the EGA results
are shown on a percentage by volume basis in Section V.

IV. PORT TRIALS DATA COLLECTION & PROCESSING

The sensors system was installed on two Reach Stackers
and two Yard Tractors in the Senari Container Port in 2024.
A total of 16 separate trials, with 8 trials per vehicle type
were undertaken. Each vehicles activities were monitored in
handling containers to a typical maximum of 38 tonnes using
the ports’ weighbridge. The trials provided 8.31 hours of data
for the Reach Stackers and 7.68 hours for the Yard Tractors,
with example results for a Reach Stacker shown in Figure 3.
The sensor system typically took 45 minutes to install, and 20
minutes to remove from, a Reach Stacker, or a Yard Tractor,
and did not significantly delay operations.

After the vehicles normal port activities had been monitored
and recorded from each trial run, the sensors data loggers (see
Figures 1 and 2) were downloaded for data processing and
quality reviewed prior to analysis. The data processing differed
between the EGA and the action cameras. The EGA data
was timestamp recorded every 0.5 secs from a reference time
and logged onto a Raspberry Pi in Comma-Separated Values
(CSV) text file format. This text data was then converted to
numeric within a spreadsheet. A time adjustment was then
assessed and imposed on the time data to align with the vehicle
camera recorded activities due to the EGA gas sampling time
lag. The action camera’s video data from the EMS reader,
cabin dashboard and cabin dash-display screens were stored
on SD cards and after downloading required new software
tools to extract specific video frames every 0.5 secs. To then
translate the video frames number images into numeric digits
for spreadsheet analysis required this study to specifically
develop a set of Python code algorithms.

The camera video image translation process for obtaining
numeric data was undertaken in seven steps using open-
sourced algorithm codes as referenced. The steps were, 1)
Image extraction, for a sequence of image frames each with
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Front View Dashcam Rear View Dashcam

Fig. 1. Sensors system devised and installed on the Reach Stackers

Yard Tractor (YT)

Exhaust Gas Analyzer & Sample Probe locations

Exhaust Probe Gas Analyzer

Front View Dashcam Rear View Dashcam

Dashboard parameters

Engine OBD
Test Port

Fig. 2. Sensors system devised and installed on the Yard Tractors.

reference timestamps, using [14]. The frame rate was deter-
mined by, and the total number of frames was obtained from
using [15]. 2) Object Detection, to detect the image focus area,
each extracted frame was analyzed using an object detection
algorithm from [16], and a custom trained YOLOvVS8 algorithm
was used to detect the display screen image areas, [17],
[18]. 3) Region of Interest (ROI) extraction, YOLO models
are trained to detect an entire object rather than an objects
sub-image, therefore color filtering was used to extract sub-
imagery from the regions of interest and converted to Human
Visual System (HVS) color space [19]. To facilitate extraction
color-based segmentation enabled the cropping of images for

the required information. 4) Detailed Cropping, A detailed
cropping step was applied to the previous ROI extraction step
to orientate and extract more specific areas of interest. 5)
Image Processing, was then used to improve the image quality
for text recognition software. Each cropped image required
several processing steps to ensure readable text that maximized
the data extraction accuracy. This processing was dynami-
cally adjusted for each frame based on the original image
characteristics by using grayscale conversion [19], applying
levels of gray thresholding [20], swapping black and white
pixels using [21], and removing white noise around characters
using [22], together with reinforcing of the characters structure

518



Sub-figure I: EGA Vehicle Exhaust CO2 % by volume (with time adjusted for EGA gas sampling lag)
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Sub-figure E: OCR Dash-display Diesel Fuel Usage

Sub-figure D: OCR Dash-display Vehicle Speed
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Fig. 3. Examples of the sensor system combined EGA-OCR-Dashcam (Front) time-series port trial results for a Reach Stacker.
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and connecting any broken components using [22]. 6) Optical
Character Recognition (OCR), the pre-processed images were
then data extracted using pytesseract [23], [24]. A custom
OCR configuration limiting the recognition to digits and
special characters was used to improve the recognition accu-
racy [25]-[27]. Binary thresholding was applied using [26],
to control the text contrast from its background, and by
conversion into either white or black based on a threshold
range. The extracted data was then listed in a CSV file with
its reference frames and temporal ordered timestamps. In 7)
Manual Verification and Refinement was undertaken with the
extracted CSV file data manually checked against the video
extracted images with any poor results re-run through steps 3,
4 and 5 by using adjusted settings. The first OCR run had an
average correction requirement for 22% of its dataset, reducing
to 15% in a second run, which was still a significant quantity
of data to manually review.

Therefore a disadvantage of this study’s approach was the
significant time and effort required for the OCR data process-
ing, although these times would be reduced in future trials by
using the learnings’ to improve the process and software tools.
Importantly, the study approach key advantage is that it has
delivered a practical and quickly deployable sensor system for
obtaining real vehicle duty-driving time profile data. This was
achieved with minimal intrusion on port and vehicle operations
for the example results shown in the next Section V.

V. PORT TRIALS EXAMPLE RESULTS & DISCUSSION

Figure 3 has nine sub-figures A to I showing the monitored
duty-time profiles for a Reach Stacker over a sample period
of 8.5 minutes, at 0.5 sec time increments. The results data
from the EGA is in the top four sub-figures F to I with
the green lines, then the OCR data is in the middle four
sub-figures B to E with blue lines. At the bottom is sub-
figures A and B showing the front dashcam information for
the vehicle activities together with the Reach Stacker dash-
display reported container weight sourced from the OCR
translation dataset. The container types, sizes, general location
movements with duty periods are shown in Figures 3 - A and
B, with example front dashcam images in Figure 3 - B.

The Reach Stacker laden and unladen periods are shown in
Figures 3 - A, - D and - E, with colored vertical dash lines
to highlight the laden activities for moving two 40ft and then
three 20ft containers. The larger size, weight and bulk of the
40ft containers take longer to move than the 20ft containers
irrespective of the container pickup and deposit heights, Figure
3 - A. In Figure 3 - E not unexpectedly shows the greater peak
fuel usages associated with the heaviest container movements,
which are typically up to double the fuel usage of that for the
unladen vehicle. Typical fuel usages lie in the range of 10 to 20
Litres/hour for both laden and unladen activities. The vehicle
speeds in Figure 3 - D for container haulage show a repeatable
consistency between the laden and unladen periods. Notably
the OCR sourced fuel usage, vehicle speed, and engine speed
(indicating the the engine loading) have repeatable and aligned
profiles across the Figures 3 - C to E. Engine idling periods

are shown by the minimum engine speeds of 600 to 700 rpm
in Figure 3 - C. Notably the moving of Container-3 (20ft size
and 26.2 Tonnes) from a trailer to the highest yard stack level
of three containers high (Figure 3 - A) shows the associated
peak engine loading and fuel usage in Figure 3 - C and E. The
derived metric for fuel usage per vehicle total weight in Figure
3 - B, shows peak usages whilst laden are not significantly
greater than the unladen periods. This is indicative of the
minimum energy required to move a Reach Stacker of 69.5
Tonne service weight, which for example increases by 45%
when laden with Container-2 at 31.5 Tonnes, Figure 3 - A.

The monitored exhaust gas profiles within the group of
Figures 3 - F to I have alignment in their peaks and troughs
with each other over time. Some of these features align with
the OCR dataset profiles in Figures 3 - C to E, although
generally the EGA data peaks appear to lag those for the
OCR, which is indicative of the time lapse between the engine
activities through to the resulting exhaust gas profiles. Notably
the CO2, CO and NOx peaks shown in the center and ongoing
into the right side of Figures 3 - G, H and I coincide with
vehicle activity changes across the Figure 3 profiles.

Therefore the port trials of the sensor system has proved
its practical deployment with results that characterize the
duty-time profiles of selected container handling equipment
activities on a seconds time basis. The profiles provide ref-
erenceable data for predicting fuel usages and emissions by
activity task based on the trials monitored parameters. These
predictions by activity task also then define the business-as-
usual baseline scenarios, which are both vehicle fleet scalable
and applicable to most container ports. These baseline results
will then enable comparisons with the predicted performances
for vehicles using alternative fuels and power-drives that are
being considered for decarbonising ports.

VI. CONCLUSIONS

This paper presents a variant on heavy duty vehicles
combined PEMS and PAMS by including action cameras
to monitor and record port container handling equipment
display screen information. The developed sensor system and
setup was deployed through in-port trials to reveal container
handling equipment duty and driving profiles that include real-
world factors. This paper’s results present a Reach Stackers
time-series profiles for its diesel engine loading, vehicle speed,
fuel usages and exhaust emissions, together with operational
duties on very short time scales that capture the representative
characteristics. These duty-time profiles also provide baseline
data for predicting and assessing the potential for reduced
diesel usage and exhaust emissions through assessing port
decarbonisation options.

In summary, this study has devised a portable, deployable,
and flexible IoT-Enabled PEMS-PAMS-camera monitoring
system for ports container handling equipment. The systems
sensors, monitoring approach, trials methodology, and data
collection, with analysis tools form the basis for an IoT
device. A learning is that the OCR tools need refinement to
reduce the data processing times. Based on the port trials the
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sensor system approach can be deployed in other ports and is
adaptable to other types of container handling equipment.
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