979-8-3315-7896-1/26/$31.00 ©2026 IEEE

A Density-Driven Anonymization Framework for
Privacy Preservation and Data Utility Optimization

Ayush Sharma
Department of CSE
IIIT Vadodara, Gujarat, India
ayushsharma@iiitv.ac.in

Abstract—Maintaining individual privacy and data utility is
a primary challenge in contemporary data analytics. Classic
anonymization models like k-anonymity and l-diversity ensure
strong privacy levels but usually involve high information loss,
impairing their analytical power. This paper presents a Density-
based Optimal Partitioning (DOP) framework that strikes a
better balance between privacy and utility. The new approach
unifies a privacy-sensitive, density-based clustering stage with an
Normalized Certainty Penalty-optimized recursive partitioning
stage to facilitate adaptive anonymization consistent with data’s
native structure. DOP is more task-agnostic and does not need
predefined target attributes or cluster numbers compared to
target-specific approaches, making it more flexible for handling
different datasets. Experimental tests on several real-world
datasets prove that DOP always has lower Normalized Certainty
Penalty (NCP) values than the classical Mondrian algorithm.
The findings attest that DOP is capable of efficiently reducing
information loss while ensuring strong privacy protection, and
thus it is a scalable and general-purpose solution for privacy-
preserving data publishing and analytics.

Index Terms—Data Privacy, Anonymization, k-Anonymity, 1-
Diversity, Information Loss, Density-Based Clustering

I. INTRODUCTION

Privacy is essentially the right of a person to manage access
to their own personal data, name, and decisions, such as
what information are disclosed, to whom, and under what
circumstances. With the era of big data where tremendous
amounts of personal information are constantly generated and
transmitted, issues on data protection and privacy have become
more important. Data privacy is concerned with safeguarding
personal or sensitive data from unauthorized use, exploitation,
or disclosure by means of mechanisms like anonymization,
encryption, and fine-grained access control.

Examples of such practical use include hospital informa-
tion systems limiting access to patient data by authorized
healthcare providers and e-commerce websites blocking unau-
thorized dissemination or sale of users’ information. With
the growth of digital technology at an exponential pace,
a larger percentage of such data now includes Personally
Identifiable Information (PII) or other sensitive data. Thus, the
size, sensitivity, and sharing of such data have in themselves
increased privacy threats quite substantially. Achieving an
optimal balance between data privacy protection and data
utility has thus become a key research problem in current data
management and analytics.
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Underlying every dataset are four fundamental types of at-
tributes: identifiers, quasi-identifiers (QIs), sensitive attributes,
and non-sensitive attributes. Identifiers (e.g., name, student
ID, mobile number, or email address) explicitly disclose an
individual’s identity. QIs (e.g., age, gender, address, ZIP code,
or date of birth) might not identify anyone by themselves but
can facilitate re-identification when integrated with auxiliary
data. Sensitive attributes (e.g., medical condition, income,
religion, biometric data, or criminal record) bear personal
information that requires robust protection against disclosure,
whereas non-sensitive attributes will usually include generic
or public data.

A data set that includes one or more sensitive attributes is
called a private data set, and its protection without loss of
analytical usefulness is one of the main challenges. While
encryption is helpful in achieving confidentiality in full, it
makes data useless for analytis. Therefore, anonymization and
delinking mechanisms are widely followed to alter quasi-
identifiers and sensitive attributes so that re-identification is
avoided at the cost of usability in data. Strong privacy models
like k-anonymity [1], I-diversity [2], and t-closeness [3] are
commonly used to make this trade-off, each providing different
balances between data utility and privacy strength.

State-of-the-art works have introduced target-aware
anonymization models with decision tree-based partitioning
for balancing privacy and analytic performance [4]. The
methods often suffer from target dependency, where
performance deteriorates when analytical goals or dataset
properties shift. In an effort to mitigate these constraints,
this research presents a generic anonymization framework
intended to provide strong privacy protection while sustaining
high utility of the data for a wide range of analytical purposes
and varied datasets. The proposed solution is meant to
provide a scalable, versatile, and application-independent
privacy-preserving mechanism for large-scale data domains.

The key contributions of this work are as follows:

« A target-independent anonymization model that best com-
bines the privacy and data utility through the joint use of
k-anonymity and I-diversity models.

¢ An in-depth comparison of data utility and information
loss across various datasets with different k-anonymity
and l-diversity parameters. The outcomes are compared
and examined with the baseline k-1 anonymization strat-
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egy [5] to show the performance gain of the proposed
framework.

In what follows, Section II summarizes the related work.
Section III discusses the problem statement and the goals of
the proposed framework. Section IV gives a detailed overview
of the proposed framework. Section V outlines the experimen-
tal evaluation and results. Section VI concludes this work.

II. RELATED WORKS

The k-anonymity framework proposed by Sweeney [1] is a
cornerstone achievement in data anonymization. This guaran-
tees every record in a dataset is unidentifiable from a minimum
of k—1 records through their quasi-identifiers (QIs) to prevent
individual re-identification [6]. This ensures identity disclosure
protection and has been the building block for many privacy-
preserving schemes. However, k-anonymity suffers from a
critical limitation: if considering a k-anonymous group where
all records share the same sensitive attribute value, such as
a particular medical condition, attribute disclosure can still
occur.

To overcome this limitation, I-diversity was proposed by
Machanavajjhala et al. [2], introducing the requirement that
each k-anonymous group must contain at least [ distinct
sensitive values. This improvement minimizes the likelihood
of homogeneity attacks by maintaining diversity of sensitive
attributes. Despite the enhancement of k-anonymity through
l-diversity, both are still prone to attacks in skewed or im-
balanced distributions of sensitive attributes. As a result, the
demand for more utility-aware and adaptive privacy models
has continued. This current research is specifically interested
in these two seminal anonymization models—k-anonymity and
I-diversity as a foundation for the development of an enhanced
generalized framework.

A number of early anonymization algorithms implemented
these models using generalization and suppression methods.
The Datafly algorithm [7] was the first to take this approach,
using full-domain generalization to substitute precise attribute
values with coarse categories (e.g., reducing all 5-digit ZIP
codes to 3-digit prefixes). Although successful at providing
privacy assurances, this method tended to incur too much
information loss due to uniform abstraction of entire attributes
regardless of data distribution.

To overcome these inefficiencies, partitioning-based algo-
rithms were developed. Among them, Mondrian [5] was a
prominent top-down, multidimensional partitioning algorithm.
It recursively partitions the dataset to create localized equiva-
lence classes for context-sensitive generalization that preserves
much higher data utility than full-domain generalization. Ex-
panding on this method, the k-1 Mondrian variant [5], [8]
extended the model to simultaneously meet both k-anonymity
and l-diversity. Each of these equivalence classes includes a
minimum of k records and [ sensitive values, thus balanc-
ing identity and attribute disclosure threats. Owing to their
efficiency and adaptability, the Mondrian and k-1 Mondrian
algorithms have been universally acclaimed as benchmark
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methods in privacy-preservation data publishing and have been
taken up as baseline models in the current work.

Later, Target-Aware Data Anonymization (TADA) [4]
proposed a target-based partitioning approach that adapts
anonymization to a particular predictive task. While this ap-
proach boosts utility for a particular target efficiently, it is
still target-dependent, and re-anonymization is needed when
the analytical task changes—therefore, not particularly useful
in general cases. Likewise, utility-oriented anonymization by
local recoding [9] optimizes data for specific query loads
but varies pervasively across diverse analytical settings. Tech-
niques such as sparse high-dimensional anonymization [10] try
to maintain utility in high-dimensional data but still come with
significant information loss, particularly in datasets that have
irregular or skewed distributions since they rely on uniform
partitioning schemes.

Unlike these heuristic-based or task-oriented techniques,
this work introduces an overall-purpose anonymization model
based on natural clustering that understands data’s inher-
ent structure. Unlike other models, the introduced technique
doesn’t depend on pre-specified targets or cluster numbers,
supporting flexible anonymization with improved information
preservation and utility and robust privacy assurance on a wide
range of data and analytics tasks.

III. PROBLEM STATEMENT AND OBJECTIVES

The central problem tackled in this research is that of finding
privacy preservation versus data utility balance in anonymiza-
tion. While k-anonymity and l-diversity models guarantee
effective prevention of identity and attribute disclosure, they
tend to result in significant information loss and, therefore,
lower the usefulness of the dataset for general analytical or
machine learning purposes. Therefore, the underlying issue
addressed in this research is: How do we provide k-anonymity
and l-diversity for a dataset with minimal information loss to
maintain maximum data utility for diverse analysis purposes?

The goals of this work are as follows:

o To maximize data usefulness throughout k-anonymity
and I-diversity model applications to ensure efficient
privacy protection with minimal analytical performance
degradation.

o To create a general-purpose anonymization framework
that is standalone of particular target attributes or analyt-
ical tasks to enhance flexibility and usability in diverse
data-driven contexts.

IV. PROPOSED DOP FRAMEWORK

Current anonymization models like k-anonymity and I-
diversity well protect individual privacy but frequently accom-
plish this at the cost of data utility. The newer approaches like
Target-Aware Data Anonymization (TADA) and utility-based
local recoding improve analytical performance by adapting
anonymization to a particular target or query. But their reliance
on pre-defined attributes or analytical goals confines them to
apply and adapt in different datasets.



To overcome these constraints, this research introduces
a Density-based Optimal Partitioning (DOP) framework, a
general-purpose anonymization solution that balances privacy
protection with maximum analytical useability. The frame-
work exploits natural data clustering to discover the inherent
structure of datasets and thus facilitate adaptive generalization
without reference to fixed target attributes or pre-specified
cluster numbers. Such design guarantees compliance with
privacy requirements like k-anonymity and 1-diversity while
minimizing distortion caused by anonymization.

The overall design of the proposed framework includes two
main parts: anonymization and grouping (clustering) of data.
Its modular nature facilitates integration with heterogeneous
datasets, analytical frameworks, as well as privacy models. In
the current implementation, k—I-based clustering and k—I-based
anonymization are used, as shown in Fig. 1.
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Fig. 1: System architecture of the proposed DOP framework.

To be adaptable, the underlying partitioning algorithm
should adjust to the natural, generally unseen, distribution of
the data instead of inflexible assumptions. This encouraged
the choice of a density-based clustering method over con-
ventional methods like k-means [11], that enforce spherical
cluster shapes and are not efficient with arbitrarily shaped
data structures. The DOP framework works by a two-phase
mechanism. Phase 1 sees the framework detect natural, dense
structures in the data to construct initial partitions. Phase
2 sees it perform optimized partitioning to meet privacy
requirements while preserving information loss to a minimum.
This method circumvents the inflexibility of traditional top-
down anonymization algorithms by initially modifying to the
natural data distribution prior to imposing privacy assurances.

A. K-L-based Clustering

For accommodating flexible partitioning, the design uses
natural clustering algorithms with no a-priori number of
clusters. These algorithms discover the inherent data struc-
ture and are better able to deal with outliers compared to
conventional clustering algorithms. k-means [11], hierarchical
clustering [12], and DBSCAN [13] are candidate algorithms.
k-means is inefficient for dealing with sparse or irregular data
because of its requirement of spherical cluster shapes, whereas
hierarchical clustering is more flexible but computational ex-
pensive on large datasets.

As opposed to DBSCAN, which is more suited to scal-
ability and capable of identifying clusters of any shapes
and effectively locating outliers, it is especially well-suited

to anonymization, where outliers typically disproportionately
affect information flows. The framework thus uses DBSCAN
for its merits in finding clusters naturally without knowing
their numbers in advance and in separating outliers as “noise”
in conformance with the goal of having general, data-driven
anonymization.
Density-Based Macro-Partitioning and Noise Handling:
The initial phase utilizes an adapted DBSCAN algorithm
to perform density-aware, privacy-sensitive clustering. The
process is made QI-aware by giving each attribute A; a weight
w; equal to its cardinality.
A;
j=114%

The distance d(z,y) between two records = and y is then

computed using a weighted Euclidean distance.

|1
d(z,y) = > w- (i —vi)? 2)
=1

To process datasets containing both numerical and categor-
ical quasi-identifiers (QIs), categorical attributes are prepro-
cessed by converting them to numerical values via ordinal
encoding. This conversion maps every category to a distinct
integer (e.g., assigning integers to “job” values like “admin” or
“technician” levels), allowing for the application of Euclidean
distance in the case of clustering. The weights are put in
place to prevent attributes with greater cardinality (e.g., “job”
with numerous categories) from overwhelming the distance
computation disproportionately. Yet, this process relies on the
assumption that numerical differences between the encoded
categorical values bear meaning, which might not always yield
semantic relations between categories.

This step separates the dataset into dense clusters and
outliers (noise points), as shown in Fig. 2. Dense clusters
with less than k records are attached to their closest valid
neighbor to satisfy privacy requirements. Noise points are
handled independently—if the noise group is k-anonymous
and l-diverse, it is kept as a final partition; otherwise, their
QIs are masked (replaced with “*”) to avoid compromising
overall anonymization quality.
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Fig. 2: An example of DBSCAN’s output. It picks out dense,
arbitrarily shaped clusters (blue and green) and separates them
from outlier points (black), which are regarded as noise.
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B. K-L-based Anonymization

During the second phase, all dense clusters from Phase 1
are anonymized using Modified (k,1) Mondrian anonymization
to impose the necessary privacy constraints in an information-
loss-minimizing way. In contrast to the basic Mondrian al-
gorithm, which is based on a naive heuristic, the approach
in this paper performs an exhaustive search of the best split.
To facilitate this, a Local Information Loss (LIL) measure
is proposed as a cost function to estimate the generalization
needed within partition P. For numerical quasi-identifiers,
LIL is defined as:

max(P;) — min(P;)
Global Range;

LIL(P) =

>

j €Numerical QIs

3)

Here, max(P;) and min(P;) represent the range of attribute j
within the partition, while Global Range; denotes its range in
the entire dataset.

For categorical quasi-identifiers, splits are ranked according
to their encoded values, which come from ordinal encoding
in preprocessing. Each unique value is taken as a candidate
for split points, partitioning the partition into two subsets,
with both being compliant with k-anonymity and [-diversity
constraints. In contrast with numerical quasi-identifiers, no
direct LIL cost is calculated for splits among categorical
quasi-identifiers; however, the overall LIL cost for a split
solely relies on the numerical quasi-identifiers in the derived
partitions. This ensures that splits on categorical attributes are
privacy-preserving and possible, with their information loss
quantified after anonymization during Normalized Certainty
Penalty (NCP) computation, as explained in Section V.

In recursive partitioning, all possible splittings of a partition
P into subpartitions P, and P, are computed by the total
cost LIL(P;) + LIL(P;). The algorithm takes the split of
minimum total cost, and thus the current decision is one that
minimizes loss of information. It repeats this process until no
split can be made without a violation of k or [ constraints.

The final, correct partitions are formed by the resulting
leaf nodes. A minimal generalization is then used to generate
the anonymized dataset, for example, substituting numerical
values with their respective [min, max] intervals. This two-
stage methodology allows the DOP framework to obtain ef-
fective privacy protection while maintaining optimal analytical
usefulness in diversified data settings.

V. EXPERIMENTAL EVALUATION

In order to evaluate the utility of the suggested DOP
framework, a set of experiments were conducted on various
benchmark datasets to compare its performance with the basic
Mondrian algorithm. The assessment was meant to capture the
privacy-data utility trade-off for different k£ and [ values based
on the NCP metric [14].

A. Datasets Used

The evaluation employed following three publicly avail-
able privacy-related datasets from the UCI Machine Learning
Repository [15]:

+ Bank Marketing:

Quasi-identifiers: age, job, marital, education, bal-
ance

Sensitive attribute: y (binary: Subscribed/Not Sub-
scribed)

Numerical QIs: age, balance

Categorical QIs: job, marital, education

o Heart Disease:

Quasi-identifiers: cp, trestbps, chol

Sensitive attribute: target (multi-class: 0—4 levels)
Numerical QIs: trestbps, chol

Categorical QIs: cp

¢ Student Performance:

Quasi-identifiers: age, Medu, Fedu, traveltime, study-
time

Sensitive attribute: G3 (numeric: final grade, 0-20)
Numerical QIs: age, Medu, Fedu, traveltime, study-
time

Categorical QIs: none

A short summary of the three datasets is given in Table I.

TABLE I: Summary of Dataset Attributes

Datasets Total Numerical | Categorical Sensitive
Datasets Attributes QI QI Attributes
Bank Marketing 17 2 3 1
Heart Disease 14 2 1 1
Student Performance 33 5 0 1

B. Setup and Metrics Used

All the algorithms were coded in Python 3.8 with the Pandas
and Scikit-learn libraries. Performance was measured against
the NCP, which measures the amount of information loss
during anonymization. For a dataset T” anonymized from T,
NCP is computed as:

LA span(7, )
|QI| ZZ span(T; @

For numerical quasi-identifiers, span(Ti’j) is the normalized
range of the generalized interval (e.g., [min, max]) against the
global range of attribute j. For categorical quasi-identifiers,
the span is defined as:

NCP(T")

|cat(T7;)| — 1
Tj)| =1

T ) =
Span( zg) |cat(

&)
where |cat(T};)| is the size of distinct categories in the
generalized set for record ¢ and quasi-identifier j, and |cat(7})]
is the size of the set of possible categories for quasi-identifier
7. The lower NCP values, the less information distortion and,
therefore, the higher the data utility.

C. Results

The suggested DOP algorithm was rigorously compared
with the Standard Mondrian anonymization technique under
the same (k, 1) settings on a series of benchmark data sets.
The comparative results, presented in Table II, uniformly show
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that DOP generates substantially lower NCP scores in all
test scenarios (illustrated in Figures 3-5). This decrease in
NCP captures DOP’s capability to preserve greater data utility
while guaranteeing the desired degrees of k-anonymity and
I-diversity.

As an example, in the Bank Marketing dataset, DOP had
an NCP of 0.2790 at (k=5, 1=2) against Mondrian’s 0.3959,
representing a remarkable 29% enhancement in preserving
utility. Similar performance improvements were noted in the
Heart Disease and Student Performance datasets, where DOP
had consistently lower NCP scores on rising &k values. The
improvements that were noticed were stronger for mixed or
continuous attribute datasets, which is indicative that DOP is
optimally suited for varied data types and distributions.

TABLE II: NCP Score Comparison Across Datasets

Datasets Methods (k,1)
(1,1) (2,2) (5,2) (10,2)
Bank Marketing Mondrian | 0.2054 | 0.4572 | 0.3959 | 0.4477
Proposed | 0.0000 | 0.3659 | 0.2790 | 0.3744
Heart Disease Mondrian | 0.0308 | 0.2488 | 0.3250 | 0.4193
Proposed | 0.0000 | 0.1683 | 0.2718 | 0.3652
Student Performance | Mondrian | 0.2115 | 0.2348 | 0.2834 | 0.3496
Proposed | 0.0000 | 0.0416 | 0.1226 | 0.2075

Bank Marketing
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NCP
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(k)

(10,2} (15,2)

Fig. 3: NCP Score vs. (k,l) on the Bank Marketing Dataset.

A deviation from the overall trend was detected in the
Bank Marketing dataset at (k=2, 1=2), where both algorithms
produced larger NCP values than other settings. This diver-
gence is due to the binary sensitive attribute of the dataset,
which limits potential I-diverse groupings and causes rash
generalization in partitions with smaller sizes. Nevertheless, as
k grows larger, the DOP framework competently balances by
creating more balanced partitions that naturally contain both
sensitive attribute values, thereby minimizing NCP.

The findings verify that the DOP framework delivers a
stronger and more flexible anonymization technique, which
always outperforms the Standard Mondrian approach in pre-
serving data utility, flexibility, and privacy.
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Fig. 4: NCP Score vs. (k,l) on the Heart Disease Dataset.
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Fig. 5: NCP Score vs. (k,l) on the Student Performance
Dataset.

D. Discussion

The DOP framework improves anonymization performance
through a two-stage design that overcomes the limitations of
heuristic-based methods. First, cardinality-weighted DBSCAN
clustering adaptively partitions the dataset using density-
sensitive macro-partitioning, leveraging intrinsic data distri-
butions to form utility-efficient and privacy-compliant clusters
with arbitrary shapes. This avoids fixed axis-aligned splits,
such as those by Mondrian, and excessive generalization
by isolating outliers, thus preserving statistical relationships
and minimizing information loss. Second, Optimal Mondrian
achieves recursive partitioning by exhaustive search and selects
the splits that minimize cumulative Normalized Certainty
Penalty defined by the Local Information Loss metric. This
provides highly homogeneous partitions with reduced distor-
tion of the quasi-identifiers, in contrast to heuristic approaches
that pick the largest span attribute, thus giving superior utility

514



consistently across various experiments.

Experimental observations bring out a number of key ob-
servations on how anonymization mechanisms behave with
different characteristics in the dataset. Binary sensitive at-
tributes in datasets like Bank Marketing show anomalies in
NCP evolution due to restricted diversity space that leads to
high NCP at low k values. In contrast, datasets with sensi-
tive multi-valued attributes, like Heart Disease and Student
Performance, demonstrate predictable monotonic increases in
NCP as privacy constraints are tightened, thus manifesting the
intrinsic privacy—utility trade-off of such models.

Another factor influencing performance is quasi-identifier
composition. Datasets with largely numeric QIs-for instance,
Student Performance-obtain smoother generalizations with
less NCP, while those containing categorical QIs-for example,
Bank Marketing-lose more information through hierarchy-
based generalization. Furthermore, those datasets where the
number of QIs is small when compared to the overall number
of attributes see higher utility maintained as the non-QI
attributes are not affected by anonymization. These results
indicate that the selection and weight assignment of QIs
depend on datasets and should be carefully performed in order
to optimally trade off between privacy and analysis utility.

Although DOP has apparent strengths in utility preservation,
the computation scalability issue originating from an exhaus-
tive search in Optimal Mondrian, makes the algorithm less
applicable to high-dimensional data. However, this limitation
is mitigated by parallel processing, GPU acceleration, or
approximation-based heuristics preserving near-optimal per-
formance at much lower cost. Similarly, the DBSCAN cluster-
ing step, is highly sensitive to parameter choice—most notably
the neighborhood radius (eps).

Finally, the current implementation maximizes general in-
formation loss which is achieved through NCP-without taking
into consideration the actual task-aware utility. Generalizing
the LIL objective function to a multi-objective optimization
problem that incorporates domain-conscious metrics, such as
Information Gain or classification accuracy, could facilitate
task-sensitive anonymization. This would enable DOP to
dynamically balance privacy and performance based on the
analytical context for which the data are intended, thus finding
wider use in both privacy-preserving machine learning and
domain-specific data publishing. The DOP framework sug-
gested in this proposal shows that the integration of density-
aware clustering with cost-driven optimal partitioning results
in significant utility preservation gains while providing good
privacy guarantees.

VI. CONCLUSIONS AND FUTURE WORK

The research introduced the Density-based Optimal Parti-
tioning (DOP) framework as a new anonymization technique
that efficiently addresses the disadvantages of conventional
partitioning-based methods. By categorically combining a
density-based privacy-conscious clustering step with an NCP-
optimized recursive partitioning step, the resulting framework

possesses superior privacy—utility balance. Experimental stud-
ies on various real datasets confirm that DOP tends to incur
lower information loss than the Standard Mondrian across
multiple real datasets and consistently produces more useful
data, thus validating its power to retain statistical integrity
while maximizing the data utility for various analytical pur-
poses.

Parallel or distributed configurations of the Optimal Mon-
drian component would significantly enhance scalability for
high-dimensional datasets. The addition of robust privacy
models like t-closeness or differential privacy would increase
resistance to more advanced inference attacks. In addition,
applying DOP to multi-modal and temporal datasets like
those produced by IoT systems, social networks, or financial
streams would expand its usage. Lastly, incorporating task-
agnostic utility measures into the NCP-guided optimization
procedure may facilitate tuneable anonymization approaches
that optimally balance overall data utility with the downstream
machine learning task performance demands.
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