
Reliable Cache Control in Unreliable Edge
Environments Using Reinforcement Learning

Zheng Li
Graduate School of Information Science and Engineering

Ritsumeikan University
Osaka, Japan

gr0693ek@ed.ritsumei.ac.jp

Noriaki Kamiyama
Graduate School of Information Science and Engineering

Ritsumeikan University
Osaka, Japan

kamiaki@fc.ritsumei.ac.jp

Abstract—Mobile edge caching (MEC) deploys edge servers
(ESs) at wireless base stations to cache popular contents close
to users, reducing search latency, backhaul traffic, and requests
to remote providers. However, because a large number of base
stations must be equipped, many ESs are low-cost and less
reliable, which increases unavailability due to failures. Existing
work improves availability via erasure coding but typically
assumes static pre-placement of contents, whereas practical ESs
employ dynamic replacement (e.g., LRU). We propose a method
that combines LRU-based dynamic replacement with erasure
coding while accounting for ESs unavailability, and optimizes
per-content cache insertion probabilities fm via reinforcement
learning (RL) so that the actual hit rate hm approaches the
target ĥm. Numerical experiments show that, compared with
two baseline policies, including always caching upon a miss (fm
= 1.0),our RL-optimized policy significantly improves the average
successful recovery rate, i.e., the ratio of contents reconstructed
using only chunks retrieved from ESs.

Index Terms—Mobile edge caching (MEC), erasure coding,
reinforcement learning, LRU, unreliable edge servers

I. INTRODUCTION

Mobile edge caching (MEC) places servers close to end
users to reduce latency and alleviate backhaul traffic, and
has thus become an essential component of modern content
delivery systems. In practice, MEC platforms deploy a large
number of geographically distributed edge servers (ESs), many
of which are low-cost and therefore subject to failures or
temporary inoperability. As a result, ensuring content recov-
erability in the presence of unreliable ESs is a key challenge.

To address this issue, prior studies [6] have applied erasure
coding to improve availability by distributing coded chunks
across multiple ESs. However, these approaches rely on static
pre-placement of contents and therefore do not reflect the
dynamic replacement behavior of real MEC systems, which
typically adopt online strategies such as LRU. How to incor-
porate redundancy control into dynamic cache replacement―
while considering ES inoperability―remains an open problem.

This paper tackles this problem by integrating erasure cod-
ing with LRU-based dynamic replacement. We first translate
the optimal redundancy levels obtained in [6] into per-content
target hit rates under the LRU model. Then, we optimize
the cache insertion probability fm for each content using a
lightweight reinforcement learning (RL) framework, which

adjusts fm so that the actual hit rate hm approaches the target
ĥm despite ES failures.

Through extensive simulation evaluations, the following
findings were confirmed:

• The proposed RL-based optimization successfully drives
the actual hit rate hm toward its target ĥm, enabling an
appropriate configuration of fm under LRU even when
ESs are unreliable.

• When compared with two representative baselines―
always caching upon a miss (fm(1.0)) and a popularity-
proportional probabilistic policy (fm(LHD))―the pro-
posed method achieves a higher average content recovery
success rate across a wide range of ES availability levels
and popularity distributions.

II. RELATED WORK

In MEC, a cooperative edge caching network is formed
among neighboring edge servers (ESs) that are located in close
proximity. By caching popular content on ESs near users, it
becomes possible to reduce search latency and network traffic.

Guo et al. proposed a diversified cooperative caching
scheme in which multiple edges collaborate to cache content.
By retrieving content cooperatively among neighboring ESs
in the event of a cache miss, they confirmed improvements
in both overall hit rate and latency reduction [9]. However,
these studies do not address detailed control considering ESs
availability or the recovery threshold of erasure coding.

In recent years, distributed data storage systems capable
of redundancy while maintaining high reliability have gained
increasing attention [4]. The simplest redundancy technique
is replication, where identical copies of the same content are
stored across multiple nodes to enable recovery in the event
of a failure. However, this approach suffers from low storage
efficiency because each node must store a complete copy of
the data.

To overcome this limitation, erasure coding has been widely
adopted. In this method, data is divided into multiple frag-
ments, and additional redundant fragments (erasure codes) are
generated and distributed across multiple nodes. Even if some
fragments are lost, the original data can be reconstructed. This
technique enhances fault tolerance, reliability, and durability

504979-8-3315-7896-1/26/$31.00 ©2026 IEEE ICOIN 2026

under node failures or fragment loss, while achieving higher
storage efficiency since complete duplication is not required.

Therefore, in order to address unreliable ESs, erasure coding
can be utilized to enhance the reliability of cached files.
However, maximizing the amount of data retrievable from
unreliable ESs remains challenging for the following reasons.

Since the cache capacity of each ES is limited, there exists a
trade-off between the reliability of cached files and the number
of files that an ESs can store.

• Different files have different levels of popularity, and
maintaining more popular files in the cache may provide
greater benefits to users compared to less popular ones.

• The failure probability of ESs varies, and therefore the
reliability of each file also depends on the locations of
its chunks.

To address these challenges, it is necessary to appropriately
determine the amount of redundancy added to each file, as well
as the number and placement of chunks, under the constraint
of limited cache capacity. Accordingly, a cache placement
algorithm has been proposed for distributed cooperative edge
caching systems that operate with unreliable resources [6].

In particular, Liu et al. [6] formulated a distributed coopera-
tive caching system with unreliable edge resources and derived
an optimal chunk allocation strategy under a static request
model. Their work provides an offline redundancy design, but
does not consider dynamic cache replacement such as LRU,
which is widely used in practice. In this paper, we use only
the optimal number of chunks per content obtained in [6] as a
target redundancy level, and we do not repeat the algorithmic
details of their dynamic programming method. The reader is
referred to [6] for the full formulation and solution of the
cache placement problem.

III. DEC SYSTEM AND OPTIMAL CHUNK ALLOCATION

In unreliable edge caching environments, redundant chunk
placement is essential to ensure that each content can be
reconstructed even when a subset of edge servers (ESs)
becomes unavailable. Liu et al. [6] formulated this problem
as a distributed cooperative caching (DEC) system, where
contents are encoded using an MDS code and the resulting
chunks are distributed across ESs with limited capacity and
non-zero failure probability.

A key modeling assumption in [6] is that each ES stores
at most one chunk of a given content. This is consistent
with the properties of MDS codes: placing multiple chunks of
the same content on one ES does not increase recoverability,
since the failure of that ES would simultaneously remove all
colocated chunks. We adopt the same assumption to maintain
consistency with the DEC model.

The cache placement problem (CP) in [6] determines the
optimal number of chunks

y∗m, (1)

assigned to each content m, under homogeneous ES capacity
and availability. The objective is to maximize the expected

amount of recoverable data from ESs using a dynamic-
programming-based algorithm.

In this paper, we do not reproduce the algorithmic details of
the CP solver. Instead, we use only the optimal chunk counts
obtained in [6] and define

Tm = y∗m, (2)

interpreting Tm as the target expected number of chunks of
content m that should effectively reside on the ESs in our
dynamic LRU environment. In [6], y∗m is the optimal chunk
allocation obtained by solving the HomoCP problem. We
directly set Tm = y∗m and treat it as the target expected number
of cached chunks in the dynamic LRU environment.

In the next section, we describe how the target chunk counts
Tm are translated into target hit rates and subsequently realized
by optimizing the content-wise insertion probabilities under
LRU replacement.

IV. PROPOSED METHOD

We consider a cooperative edge caching system consisting
of N homogeneous edge servers (ESs). Each ES has cache
capacity s and availability rate r, and contents are cached
under an LRU replacement policy. The demand for content
m is modeled by a request rate qm. Our goal is to determine
the cache insertion probability fm for each content m such
that the actual hit rate hm realized under LRU aligns with a
target hit rate ĥm, which in turn corresponds to the optimal
number of chunks Tm derived from the DEC formulation in
Section III.

To improve readability, Table I summarizes the key symbols
and parameters used throughout this paper.

A. Mapping Optimal Redundancy to Target Hit Rate

As discussed in Section III, we set Tm = y∗m as in (2) and
interpret Tm as the target number of cached chunks of content
m over all ESs.

In the homogeneous setting, each ES has availability rate
r, and the number of ESs that are simultaneously available
is modeled as a binomial random variable with parameters
(N, r). If each available ES stores at most one chunk of
content m, the expected number of available chunks of content
m can be approximated as

E[available chunks of m] ≈ Nrĥm, (3)

where ĥm is the steady-state hit rate of content m at an ES.
Note that fm is an insertion probability rather than a

residency probability. The steady-state presence of content m
in an ES is given by hm, not fm. Therefore, the expected
number of cached chunks is Nhm (or Nrhm when availability
is considered), rather than Nfm.

This approximation relies on the standard snapshot steady-
state interpretation of the Che model: under the IRM as-
sumption, the per-ES hit rate ĥm also represents the steady-
state probability that content m is resident in the cache at an
arbitrary time instant. Since each ES can store at most one
chunk of content m, the expected number of available chunks

505

TABLE I
NOTATION SUMMARY

Symbol Description Remarks
N Number of edge servers (ESs) All ESs are assumed homogeneous in capacity and availability.
s Cache capacity of each ES Measured in the number of chunks that can be stored at one ES.
r Availability rate of an ES Each ES is independently available with probability r.
M Number of contents Contents are indexed by m ∈ {1, . . . ,M}.
k Number of chunks required for recovery A content can be reconstructed if at least k chunks are obtained.
y∗m Optimal number of chunks for content m in DEC Obtained from the HomoCP solution in [6].
Tm Target expected number of chunks of content m Defined as Tm = y∗m and used as the redundancy target in our LRU-based model.
qm Request rate (popularity) of content m Requests follow a Zipf distribution with parameter θ unless otherwise stated.
θ Zipf parameter Larger θ indicates a more skewed popularity distribution.
fm Cache insertion probability of content m Decision variable optimized by the proposed method, subject to 0 ≤ fm ≤ 1.
hm Actual hit rate of content m at an ES Steady-state hit probability under LRU with insertion probability fm.
ĥm Target hit rate of content m Derived from Tm via the relation Tm ≈ Nrĥm.
tC Characteristic time of the LRU cache Determined by the Che approximation as the solution to the fixed-point equation.
L(f) Global loss function Popularity-weighted squared error L(f) =

∑
m qm(hm − ĥm)2.

em Hit-rate error for content m Defined as em = hm − ĥm; its bins form the RL state space.
∆f Step size for updating fm Actions are chosen from {−∆f, 0,+∆f} in the Q-learning optimizer.
Rm Reward associated with content m Defined as Rm = −qm(e′m)2, corresponding to the local contribution to L(f).
α Learning rate of Q-learning Controls the update speed of the Q-values.
γ Discount factor of Q-learning Balances immediate and future rewards in the value update.
ε Exploration rate in the ε-greedy policy Gradually decayed from an initial value ε0 to a minimum εmin.

is obtained by summing these residency probabilities over all
ESs and multiplying by the availability rate r, which yields (3).
By equating this expectation with the target chunk count Tm,
we obtain

Tm = Nrĥm, (4)

which yields the target hit rate

ĥm =
Tm

Nr
. (5)

Thus, the target hit rate ĥm is a direct translation of the optimal
redundancy level Tm computed in [6] into the LRU-based
caching context.

B. Hit Rate Modeling under LRU

To relate the insertion probabilities {fm} to the hit rates
{hm}, we adopt the well-known Che approximation for
LRU caching, which assumes an independent reference model
(IRM) for content requests. Under this approximation, the hit
rate of content m in a single LRU cache of capacity s is given
by

hm = 1− e−fmqmtC , (6)

where tC is the so-called characteristic time, i.e., the time
during which a content can remain in the cache without being
requested before it is evicted.

The characteristic time tC is determined by the cache
capacity constraint via the fixed-point equation

M∑
m=1

(
1− e−fmqmtC

)
= s, (7)

which states that the expected number of distinct contents
stored in the LRU cache equals its capacity s. Although
Che et al. originally applied this model to hierarchical Web
caching systems [7], the approximation in (6)–(7) has since

been widely used as a general model for single-level LRU
caches as well.

In our setting with N parallel ESs, each ES is modeled
as having the same capacity s and following the same LRU
policy. The hit rate hm in (6) is interpreted as the per-ES hit
rate for content m, which is then linked to the target number
of chunks Tm through (4).

C. Optimization Objective

To align the realized hit rates with the target hit rates in (5),
we define the following popularity-weighted loss function:

L(f) =

M∑
m=1

qm

(
hm(f)− ĥm

)2

, (8)

where f = (f1, . . . , fM), and hm(f) is given by (6) with tC
determined from (7). Minimizing L(f) encourages contents
with higher request rates to match their target hit rates more
closely, which is desirable for improving the overall successful
recovery performance.

This loss encourages contents with higher request rates to
more accurately match their target hit rates, consistent with
the goal of maximizing the overall success probability.

However, the optimization of (8) is challenging for the
following reasons:

• The characteristic time tC is defined implicitly by the
nonlinear fixed-point equation (7), which couples all
contents through the capacity constraint.

• The mapping from f to hm(f) is highly nonlinear.
• Analytical gradients of L(f) with respect to f are difficult

to obtain in closed form.

Therefore, a derivative-free search method is suitable for
approximately solving this optimization problem.

506

D. Reinforcement Learning as a Derivative-Free Optimizer

Optimizing the insertion probabilities fm by directly mini-
mizing the loss L(f) in (8) is difficult because the character-
istic time tC is implicitly defined by the nonlinear fixed-point
equation (7), which couples all contents.

For each content m, the optimization variable fm is adjusted
through a small discrete action set {−∆f, 0,+∆f}. The
resulting hit rate hm is recomputed after updating fm, and
the deviation from its target, em = hm − ĥm, is mapped to
a small number of error bins that form the state space. The
reward

Rm = −qm(e′m)2 (9)

represents the contribution of content m to the global loss
L(f), allowing Q-learning to act as a coordinate-wise op-
timizer. Although the Q-values follow the standard update
rule, they are not interpreted as long-term MDP values but
simply guide which local adjustment of fm tends to reduce
the weighted error.

Although the caching resource is shared through the com-
mon characteristic time tC , the dependence among contents is
already captured by the fixed-point equation (7). Therefore,
updating one coordinate fm at a time is equivalent to a
coordinate-descent optimization of the global loss (8), while
avoiding the complexity of optimizing an M -dimensional
action space.

Because each update modifies only one coordinate while
tC is computed efficiently from a one-dimensional fixed-
point equation, the resulting procedure is computationally
lightweight and scales well with the number of contents. The
method effectively searches for an f that aligns hm with ĥm

without requiring explicit gradient computation.

V. PERFORMANCE EVALUATION

In this section, we compare the target hit rate ĥm and
the actual hit rate hm for each content m, and verify that
the proposed method can appropriately determine the cache
insertion probability fm. Furthermore, we evaluate two cases
for the number of ESs (N) and compare the average successful
recovery rate (the ratio of contents that can be reconstructed
solely from chunks obtained from ESs) between the following
three cases:

• fm(RL): when fm is optimized using the proposed
reinforcement learning method, and

• fm(1.0): when content is always cached upon a cache
miss.

• fm(LHD): when fm is assigned in proportion to the
popularity qm, following the Leave-Hot-Down caching
rule.

We perform comparisons under varying ESs availability rates
r, and also under different request rate distributions by chang-
ing the Zipf parameter θ.

A. Evaluation Conditions

The number of contents m is set to 50, and the minimum
number of chunks required for content recovery k is set to 5.

The availability rate r of each ES is varied from 0.7 to 0.9 in
increments of 0.05. The cache capacity of each ES is s = 6,
and the number of ESs N is set to 20 and 30. When N = 20,
each can store 6 chunks, allowing a total of 120 chunks to be
cached across all ESs. Contents are requested according to a
Zipf distribution with parameter θ, and cache replacement is
performed based on the LRU policy.

Reinforcement learning (RL) is performed using indepen-
dent discrete Q-learning for each content. The number of
episodes is set to 400, the learning rate to α = 0.5, the
discount factor to γ = 0.9, the initial ε-greedy exploration rate
to ε0 = 0.3, the decay rate to 0.995, and the minimum ε to
0.02. The step size for updating fm is 0.02. The state space is
defined by dividing the error em = hm−ĥm into five intervals:
(−∞,−0.10], (−0.10,−0.02], (−0.02, 0.02], (0.02, 0.10], and
(0.10,∞).

B. Comparison Between Target Hit Rate ĥm and Actual Hit
Rate hm

Fig. 1 shows the optimal cache insertion probability fm
obtained through RL for each content m, arranged in descend-
ing order of popularity (i.e., smaller m corresponds to higher
popularity).

Fig. 2 compares the target hit rate ĥm and the actual hit rate
hm in the same order. It can be observed that hm approaches
ĥm under the proposed method, and the deviation between
them is small. Highly popular contents have large request
rates qm, and thus can achieve a high hit rate even when
fm is not excessively large. Under the capacity constraint,
however, fm is suppressed as popularity decreases, and in the
low-popularity region beyond a certain threshold, both fm≈0
and hm≈0 converge accordingly.

Fig. 1. Per-content fm (N = 20, r = 0.80, θ = 1.0).

C. Average Success Rate

Figures 3 and 4 show the average content acquisition
success rate (q-weighted) for N = 20 and N = 30, respec-
tively. Each plot compares the proposed method, where fm
is optimized by RL (fm(RL)), with two baseline policies:
(i) a strawman policy that always caches every content upon
a cache miss (fm(1.0)), and (ii) an LHD-type probabilistic
caching strategy, where insertion probabilities are assigned
according to content popularity. As the availability r of each
ES increases, the failure probability decreases, and the average

507

Fig. 2. Per-content hit rate (N = 20, r = 0.80, θ = 1.0).

success rate improves for all methods. Compared with the
naive baseline fm(1.0), the LHD policy already achieves a
noticeable gain by preferentially allocating cache resources to
popular contents. However, the proposed RL-based method
further improves the average success rate over both baselines
by learning a more fine-grained, per-content control of fm.

Fig. 3. q-weighted average success rate vs r (N=20): RL vs fm=1.0 vs LHD
baseline

Fig. 4. q-weighted average success rate vs r (N=30): RL vs fm=1.0 vs LHD
baseline

A slight non-monotonic decrease is observed in a narrow
region (e.g., r > 0.85 in some settings). This phenomenon
is not due to instability of the RL optimizer, but rather arises
from the interaction between ES availability and request skew-
ness. When θ is small, the popularity distribution becomes
flatter, and the learned fm concentrates more strongly on
head contents. As r increases in this regime, the success
probability of popular contents quickly saturates, while tail
contents remain under-replicated and contribute little to the
q-weighted objective. This imbalance may lead to a marginal
decline in the overall average success rate. The 3D surface

plot of success rate over (r, θ) (Fig.7) further confirms that
this behavior appears only in a limited part of the parameter
space, while the global trend remains increasing for commonly
observed values of θ.

D. Effect of Fixed f

Using the insertion probability vector obtained in the train-
ing environment (hereafter referred to as fixed f∗), we evalu-
ated the performance by varying the environmental conditions.
Figures 5 and 6 show the transition of the average success rate
with respect to the availability r and the Zipf parameter θ, as
well as the consistency between the per-content distribution of
fm and the hit rate. In this subsection, comparisons with the
baseline method are omitted, focusing only on the behavior of
fixed f∗.
(a) Characteristics with respect to r: As the availability
increases, the average success rate consistently rises, and a
tendency of saturation is observed in the high-availability
region. The transitions in the figures are smooth, showing
stable behavior with little fluctuation. Even with fixed f∗

alone, it can be observed that the performance naturally
follows the improvement of resource availability.

Fig. 5. Validation (fm fixed): r sweep (N = 20, θ = 1.0, training r = 0.80).

b) Characteristics with respect to θ: As the content popu-
larity distribution becomes more concentrated toward the head
(i.e., for larger θ), the overall average success rate increases.
On the other hand, in the case of a more dispersed distribution
(smaller θ), the rate of increase is limited, and the contribution
of tail contents becomes relatively small. This reflects the fact
that the allocation learned during training is consistent with
the popularity ranking of the contents.

The per-content insertion probability fm, when arranged
in order of popularity, shows a pattern of being higher for
highly popular contents and gradually decreasing as popularity
declines. The corresponding hit rates are generally consistent
with the intended target levels set during training, with little
under- or over-allocation for the most popular contents. In the
low-popularity region, a trade-off with the capacity constraint
causes the hit rate to be suppressed, but overall, it shows a
smooth decay trend.

Although the target redundancy levels Tm obtained from [6]
are static, the proposed RL-based insertion policy generalizes

508

Fig. 6. Validation (fixed fm): θ sweep (q-weighted) (N = 20, r = 0.80,
training θ = 1.0).

well under moderate popularity drift. As shown in Figs. 5
and 6, the learned insertion probabilities f∗

m exhibit smooth
performance transitions when the Zipf parameter θ varies,
indicating that the policy is not overfitted to a single popularity
snapshot. Instead, the RL optimizer learns a robust allocation
structure that remains effective across a range of request
distributions. For environments with rapid or substantial pop-
ularity changes, the RL training procedure can be re-executed
periodically at negligible computational cost.

E. 3D Success Rate Surface Over r and θ

Fig. 7 presents a 3D surface plot of the q-weighted average
content acquisition success rate as a joint function of the ES
availability r and the Zipf parameter θ. This visualization en-
ables us to examine the interplay between server reliability and
request skewness beyond the one-dimensional slices shown in
Figures 3 and 4.

Fig. 7. SuccessRate(r, θ) (N = 20, M = 50, s = 6, k = 5)

As expected, the success rate generally increases as r
becomes larger, because more available ESs lead to more
opportunities for recovering the required k chunks. The sur-
face also reveals that higher values of θ (i.e., more skewed

popularity distributions) tend to improve overall performance,
since the cache can focus more effectively on popular contents.

Importantly, the 3D surface clarifies that the slight non-
monotonic dip observed in some 2D plots (e.g., for r > 0.85
under small θ) is confined to a narrow region of the parameter
space. This effect is caused by saturation of popular contents
combined with insufficient replication of tail contents, and is
not due to instability of the RL optimization. Overall, the
surface confirms that the global trend is smooth and increasing
with respect to both r and θ.

VI. CONCLUSION

This paper presented a reinforcement-learning-based
method for optimizing cache insertion probabilities in an
erasure-coded MEC system with unreliable ESs. By mapping
the optimal redundancy levels from [6] to target hit rates under
LRU and adjusting fm accordingly, the method successfully
aligned actual hit rates with their targets.

Experiments showed that the proposed fm(RL) improves
the content recovery success rate over two baselines―fm(1.0)
and the popularity-proportional fm(LHD)―under various ES
availability and popularity distributions. Future work includes
extending the method to handle real-time popularity drift and
jointly optimizing redundancy and replacement.

ACKNOWLEDGEMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 25K03113 and 23K28078.

REFERENCES

[1] Y. Zeng, Y. Huang, J. Liu, and Y. Yang, “Privacy-preserving distributed
edge caching for mobile data offloading in 5G networks,” in Proc. IEEE
40th Int. Conf. on Distributed Computing Systems (ICDCS), Singapore,
2020, pp. 541–551.

[2] L. Ramaswamy, A. Iyengar, and L. Liu, “Cache clouds: Cooperative
caching of dynamic documents in edge networks,” in Proc. 25th IEEE
Int. Conf. on Distributed Computing Systems (ICDCS), Columbus, OH,
USA, 2005, pp. 229–238.

[3] Y. Liu, X. Shang, and Y. Yang, “Joint SFC deployment and resource
management in heterogeneous edge for latency minimization,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 8, pp. 2131–2143, Aug. 2021.

[4] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K.
Ramchandran, “Network coding for distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[5] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh,
“Asymptotic interference alignment for optimal repair of MDS codes in
distributed storage,” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 2974–
2987, May 2013.

[6] Y. Liu, Y. Mao, X. Shang, Z. Liu, and Y. Yang, “Distributed cooperative
caching in unreliable edge environments,” in Proc. IEEE INFOCOM,
London, U.K., 2022, pp. 1049–1058.

[7] H. Che, Z. Wang, and Y. Tung, “Hierarchical Web caching systems:
Modeling, design and experimental results,” IEEE J. Sel. Areas Com-
mun., vol. 20, no. 7, pp. 1305–1314, Sep. 2002.

[8] L. Ramaswamy, L. Liu, and J. Zhang, “Efficient formation of edge
cache groups for dynamic content delivery,” in Proc. IEEE Int. Conf. on
Distributed Computing Systems (ICDCS), Lisboa, Portugal, 2006.

[9] Y. Guo, Y. Sang, B. Wang, and Y. Xu, “Collaborative diversified caching
strategies for enhanced performance in edge server networks,” in Proc.
IEEE ASENS,Guangzhou, China,2025,pp. 282-285.

509

