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Abstract—Retrieval-Augmented Generation (RAG) that 
combines heterogeneous modalities—text, image, audio, and 
video—is increasingly used to deliver reliable answers in 
real-world applications. However, collecting, curating, and 
building evaluation sets by domain is costly and 
time-consuming, and manual evaluation pipelines do not reflect 
production conditions well and do not scale. This paper 
proposes an automated framework that measures the 
performance of multimodal RAG models objectively, 
reproducibly, and fairly by integrating modules for data 
preprocessing, auto-benchmark generation, API-based 
response collection, claim-level evaluation, and result reporting. 
The design features standardized preprocessing and indexing 
for multimodal corpora, requirement-controlled 
auto-benchmarking using LLMs, an API-only evaluation 
protocol that prevents direct data access, a claim-based metric 
suite extended to multimodality, and reporting with versioning, 
execution logs, and dashboards. The framework supports fair 
comparisons across domains and models, and provides 
actionable diagnosis for model iteration and quality control.  
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I. INTRODUCTION 
Large Language Models (LLMs) show strong 

performance across knowledge-intensive tasks, including 
open-domain question answering, but suffer from recency 
limitations and hallucination, which challenge their 
standalone reliability. Retrieval-Augmented Generation 
(RAG) mitigates these issues by combining external 
knowledge retrieved at inference time with generation, and 
has spread rapidly[1]. In practice, there is growing demand for 
multimodal RAG that leverages evidence beyond text (e.g., 
images, speech, and video). Yet standardized and automated 
evaluation methodology for multimodal RAG remains 
underdeveloped. Building domain-specific evaluation sets by 
hand is expensive, slow, susceptible to bias, and often 
misaligned with real usage scenarios. 

We introduce a framework that automates the full 
evaluation pipeline for multimodal RAG. The system unifies 

requirement-driven auto-benchmark generation, API-only 
response collection, and fine-grained claim-level diagnostics. 
The end-to-end pipeline follows a consistent flow(corpus 
upload → requirement analysis & specification → benchmark 
generation → API-based RAG connectivity → claim 
evaluation → reporting) and refines data structures and 
metrics to strengthen generality and extensibility for 
multimodal settings. 

II. RELATED WORK 
RAG’s structure and benefits have been widely validated. 

Recent studies on RAG benchmarking and automatic data 
generation demonstrate both the efficiency and controllability 
of LLM-based benchmark construction[2-9]. Auto-generated 
Q&A benchmarks tailored for enterprise settings show 
advantages for reproducibility and maintainability in 
production. RAGChecker[10] introduced claim extraction 
from answers and references to diagnose accuracy, 
hallucination, and context use at the claim level. 

Building on this line of work, our framework proposes a 
claim-based metric suite (Precision, Recall, Context 
Precision, Claim Recall, Context Utilization, Noise 
Sensitivity, Hallucination, Self-Knowledge, Faithfulness) and 
extends it to multimodality. To ensure fairness, we adopt an 
API-only protocol that blocks direct access to the evaluation 
data and standardizes request/response schemas. We 
generalize both theory and practice to the multimodal domain 
and provide a reference design that spans architecture, data 
modeling, and operational strategy. 

III. DESIGN GOALS AND PRINCIPLES 
Functional requirements include automated 

preprocessing-to-reporting, support for text and image 
(extensible to speech and video) embedding and indexing, 
requirement-controlled benchmark generation, API-only 
evaluation without data exposure, and claim-level metrics. 
Non-functional requirements include reproducibility 
(parameter and result versioning), security (PII masking and 
access control), observability (metrics and logs), and 
maintainability (modular boundaries and standard interfaces). 

Design principles: (1) separation of concerns across 
collection, indexing, generation, scoring, and reporting; (2) 
declarative configuration via structured data (e.g., 
YAML/JSON) to enable portability and automation; (3) 
deterministic defaults(fixed seeds, search parameters, prompt 
versions) to ensure reproducibility; (4) human-in-the-loop 
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inspection and error labeling without breaking the automated 
pipeline. 

IV. ARCHITECTURE OF THE AUTOMATED 
EVALUATION FRAMEWORK 

As illustrated by the framework diagram in the original 
manuscript (Fig. 1), the system comprises four layers: Data, 
Services, Orchestration, and Reporting. The data layer 
manages raw corpora, modality metadata, embedding indexes, 
and access policies for independently deployable RAG 
targets. The services layer includes preprocessing/embedding, 
benchmark generation, RAG connectors, and claim-based 
evaluation—exposed via standardized gRPC/REST 
interfaces. The orchestration layer uses a state-machine 
workflow manager and scheduler for distribution, retries, and 
monitoring. The reporting layer provides dashboards for 
aggregate metrics, component-wise breakdown (retriever vs. 
generator), and comparisons by modality and difficulty.  

Fig. 2 illustrates each layer’s constituent submodules and 
their detailed inter-module interactions. 

 

A. Multimodal Data Preprocessing and Indexing 
Text is chunked with respect to topic and length, bound 

with metadata, and embedded to support hybrid retrieval. 
Images are processed to extract captions and semantic tags 
(objects, relations, scenes), and visual embeddings are joined 
with text embeddings for combined indexing[11-14]. 
Audio/video are normalized into searchable form via STT, 

shot segmentation, and key-frame extraction. All artifacts are 
versioned for traceability. 

B. Auto-Benchmark Generation 
Benchmarks are generated from corpus analysis and 

explicit user requirements encoded in prompts. Parameters 
include user type, question difficulty, modality mix, answer 
format, and evaluation focus (fact recall, reasoning, 
explanation). The LLM produces question–answer–evidence 
triplets aligned with these requirements; quality control 
applies automatic filters for de-duplication, difficulty 
balancing, bias checks, and hard negative insertion. 

C. API-Based Evaluation  
To ensure fairness, the target RAG system is evaluated 

exclusively through a standardized RAG Connector API, and 
direct access to the benchmark corpus is not permitted. The 
request message comprises a question identifier, the query 
text, modality resources (e.g., image URIs), retrieval 
parameters (e.g., top-k), and execution metadata (e.g., run_id, 
benchmark_id). The corresponding response message 
contains the model’s output, citations (document identifiers 
and spans), retrieval results (document identifiers, scores, and 
modalities), and latency. The request–response specification 
is standardized to guarantee interoperability across 
heterogeneous RAG implementations. 

D. Claim Extraction and Multimodal Metrics 
The answer and reference are decomposed into claims at 

the sentence or phrase level. Each claim is labeled as true, 
false, or insufficient based on its consistency with the gold 
answer, the retrieved context, and visual evidence (e.g., 
captions, object tags, or regions). The claim-based evaluation 
metrics (Precision, Recall, Context Precision, Claim Recall, 
Context Utilization, Noise Sensitivity, Hallucination, Self-
Knowledge, and Faithfulness) are summarized in Table 1. For 
multimodal evaluation, we additionally introduce auxiliary 
metrics such as Visual Utilization (degree of reliance on visual 
evidence) and Cross-modal Consistency (absence of 
contradictions between text and images), as presented in Table 
2. Aggregation is performed at the levels of question, 
category, modality, difficulty, and run, and results are reported 
with confidence intervals and weighted means[15]. 

TABLE I.  Claim-based evaluation metrics 

Metric Definition / Meaning 
Precision The proportion of answer claims that are factually 

correct. A claim is counted as correct only if its 
entities, relations, numbers/units, and temporal 
qualifiers are accurate 

Recall The proportion of gold (reference) claims that the 
system reproduces correctly in its answer. 

Fig.1.   Automated evaluation framework architecture 

Fig.2.   Automated evaluation framework Top-level pipeline (Layers, Modules & Interaction) 
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Paraphrases that preserve meaning count as correct 
matches 

Context Precision A retrieval-quality measure: among all retrieved 
chunks, the share that are truly relevant to the gold 
answer 

Claim Recall An upper bound on answerability from retrieval: 
the share of gold claims that can be found 
somewhere in the retrieved set (regardless of 
whether the generator uses them) 

Context 
Utilization 

How much the generator actually relies on 
retrieved evidence when composing its answer. A 
claim is considered utilized if it is explicitly backed 
by at least one retrieved span (via citation or 
alignment) 

Noise Sensitivity Robustness to irrelevant (noisy) retrieval. Report 
the change in a target metric (e.g., 
Precision/Recall/F1) when distractor chunks are 
injected: more negative change indicates higher 
vulnerability 

Hallucination The share of answer claims that are incorrect and 
unsupported by the retrieved context(i.e., 
fabricated or contradicted by evidence) 

Self-Knowledge The extent to which the model can produce correct 
claims without retrieval 

Faithfulness The degree to which answer claims are entailed by 
(and not contradicted by) the retrieved evidence. 
Correct world knowledge that conflicts with cited 
context is treated as unfaithful 

TABLE II.  Additional Evaluation Metrics for Multimodal RAG 

Metric Definition / Meaning 
Visual Utilization Degree to which the answer materially uses the 

provided visual evidence (image/video) rather than 
relying only on prior text or world knowledge 

Cross-modal 
Consistency 

Absence of contradictions between textual content 
and the visual evidence. Evaluate each answer for 
conflicts such as wrong objects (“a red car” vs. 
blue car), wrong counts, swapped relations (“A left 
of B” vs. right), or temporal mismatches (claiming 
“door open” while frames show closed) 

Visual-Grounded 
Faithfulness 

Share of answer claims that are directly supported 
(entailed) by visual evidence. A claim is counted if 
at least one region/frame/segment entails it via 
detectors/segmenters/pose/ASR-OCR (for charts, 
text in image), or an LLM-VQA verifier 

E. Evaluation Results Reporting 
The reporting system supports cross-model comparison 

and component-wise decomposition (retriever vs. generator), 
and automatically produces diagnostic cards for each item—
including hallucination sources, unused context, and cross-
modal mismatches. In a dashboard interface, both aggregate 
and category-level metrics are visualized, analogous to a 
standard evaluation-results reporting UI. All evaluation runs 
are fully versioned and accompanied by detailed condition and 
result logs, ensuring reproducible outcomes. 

V. CONCLUSION 
The principal strengths of the proposed framework are 

fairness, reproducibility, and extensibility. By enforcing an 
API-centric evaluation protocol, the system eliminates direct 
data access, thereby reducing opportunities for cheating. 
Versioning of execution parameters and evaluation outputs 
enables like-for-like regression testing even after model 
updates. Modularization and standardized interfaces facilitate 
the seamless incorporation of new domains and modalities. 
Moreover, claim-level diagnostics disentangle failure modes 
of the retriever and generator, and allow early detection of 
multimodal-specific errors such as text–image 
inconsistencies. 

There are, however, limitations. Because claim extraction 
partially relies on LLMs, domain-specific expressions can be 
misjudged. Improving evidence alignment for video and audio 
further requires higher-order semantic matching—e.g., 
reasoning over object relations and scene transitions. For real-
time streaming evaluations, latency and cost control remain 
practical challenges. Future work includes evaluating tool-
using conversational agents (e.g., retrieval and code 
execution) and enhancing evidence–claim alignment via 
semantic grounding graphs. 

In summary, we present an automated framework for 
evaluating multimodal RAG models that integrates 
multimodal preprocessing and indexing, LLM-based 
automatic benchmark generation, API-based fair evaluation, 
fine-grained claim-level metrics, and versioned reporting. We 
also systematize operational strategies that reflect the 
characteristics of multimodal data across diverse domains, 
thereby ensuring generality and scalability. The proposed 
framework enables fair comparison, root-cause diagnosis, and 
regression testing across a wide range of applications, and can 
accelerate the industrial adoption of multimodal RAG. 
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