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Abstract—As human-computer interaction systems rely on
accurately recognizing and identifying emotional states in order
to provide adaptive and personalized user experiences, traditional
models for recognizing emotion have isolated the facial modality
from the vocal modality, viewing them as unrelated information
streams. Although ensemble models aim to integrate modalities,
they usually fail to create deep connections between the modalities
or utilize the connections when facial expressions and speech
signals co-occur, which will often typically degrade accuracy in
recognition, especially as the environments become more natu-
ralistic and when emotional expressions incorporate multimodal
cues that are intertwined. Thus, this paper proposes Fused-
HGNN—a framework aimed at creating independent hypergraph
representations of both facial and audio modalities. Each hyper-
graph is developed to represent complex emotional dependencies
with the use of specialized hyperedges. The proposed method
aligns and integrates these hyperedges leading to a cohesive
multimodal representation that accounts for critical cross-modal
dependencies in emotion perception or recognition. Fusion occurs
within dedicated hypergraph convolutional layers, and rich
joint embeddings are developed that represent complex, holistic
affective states. Empirical evaluation of the MEAD (Multi-view
Emotional Audio-visual Dataset) indicates that Fused-HGNN
significantly outperforms unimodal or ensemble-based baselines
by significant margin. The model achieves an accuracy of 98.5%
with a loss of 2.3%, this will lead to measurable improvements
of 1.4% and 0.8%, respectively, over existing ensemble methods.

Index Terms—Hypergraph Neural Network (HGNN), Multi-
modal Emotion Recognition, Hypergraph Convolution, Hyper-
edge Fusion, Cross-modal Integration, Affective Computing.

I. INTRODUCTION

Technology usage related to machine learning has trans-
formed many sectors including healthcare diagnostics, enter-
tainment and intelligent security systems [20]. Among this
broad spectrum of application, multimodal emotion recogni-
tion has become an important area of research, allowing inter-
actions with computers to be context-sensitive and adaptive.
By analysing both facial behaviour and speech, systems can
determine emotional states with greater accuracy and enhance

a range of applications including assistive communication
technologies; immersive entertainment; and advanced surveil-
lance [14].

Despite continuous advancements, there are still ongo-
ing issues to be solved which limit both deployment and
scalability. Multimodal data is inherently complicated and
high-dimensional, making it challenging to model complex
relationships between modalities [1]. Traditional approaches
(particularly ensemble techniques as well as simple feature
concatenation, for example) do not have satisfactory capability
of capturing nuanced relationships between auditory and visual
channels [2].

In many cases these approaches apply a pairwise modeling
which oversimplifies the dependence of the modalities [3]–[5],
[7]. Graph based fusion approaches as well as concatenation
approaches do not accurately represent higher order depen-
dencies that are characterized by modality (intrapersonal) and
between each modality. Therefore, emotion may be incom-
plete.

In order to mitigate these issues, we present the Fused
Hypergraph Neural Network (Fused-HGNN), a model specifi-
cally designed to exploit the structural richness of hypergraphs
for multimodal fusion. In distinction to existing ensemble
methods, our strategy leverages hypergraph-based representa-
tions to capture not only within-modal relationships, but also
inter-modal relationships, for a more thorough representation
of emotional interactions across facial and audio features.
Fused-HGNN enables a strong and interpretable fusing of
the emotional signals by forming separate hypergraphs for
each modality and merging them at the hyperedge level.
The hypergraph representations are further facilitated through
hypergraph convolutional processing and validated through
improved recognition accuracy and system resilience.
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II. RELATED WORKS

Recent studies in multimodal emotion recognition have
focused on developing improved amalgamation techniques,
representation learning, and interpretability. The M3SA frame-
work utilizes multi-scale feature extraction and multi-task
learning with channel attention, fusing modalities by weigh-
ing and emphasizing relevant information with fusion layers.
This results in superior performance compared with baseline
architectures [1]. Transformer-based architectures have also
seen a rise in popularity, particularly systems that model the
interaction of facial expressions and physiologic signals, result
in improving accuracy across multiple benchmark datasets [2].

In the area of autonomous driving, detecting driver emotions
has been recognized as an important feature of adaptive safety
features and coupling speech cues with facial metrics provides
better monitoring of emotional state for reliability and im-
proved user satisfaction. Most of the current methods leverage
attention based facial encoders and speech emotion recognition
models multimodal representations [7]. These systems perform
well on these benchmark datasets RAVDESS (Ryerson Audio-
Visual Database of Emotional Speech and Song) and SAVEE
(Surrey Audio-Visual Expressed Emotion), achieving good
precision and specificity [3].

Most of these methods, however, follow pairwise modeling
strategies, which may fail to adequately represent complicated
relational dependencies. Thus, Hypergraph-based formulations
have recently emerged as a useful alternative, allowing infor-
mation to be modeled beyond traditional pairwise relations.
Because of hypergraph generalizations of spectral clustering
methods, embedding and classification performance have im-
proved over traditional graph structures in settings with multi-
relational data [4].

Using these ideas, the Hypergraph Collaborative Network
(HGCN) improves the learning process by utilizing vertex and
hyperedge information, as well as incorporating reconstruction
error as a regularization term. The HGCN model has been
shown to be useful for semi-supervised classification prob-
lems, including evaluations on several benchmark datasets [5].
More recent advances have applied hypergraph-based methods
to multimodal fusion, especially for complex diagnostic and
perception tasks. For example, Hypergraph-based Multi-Modal
Fusion leverages similarity matrices to encode high-order
relationships among heterogeneous modalities such as imaging
and genetic data. This method incorporates intra-modality
and inter-modality regularization to achieve better diagnostic
accuracy of neurological disorders, such as schizophrenia,
but also to discover latent interactions between genetic, en-
vironmental, and neurophysiological factors [9]. In the same
vein, hypergraph convolutional networks have been applied to
hyperspectral image classification by incorporating multiple
structural representations. By including CNN-based branches
which jointly encode spectral and spatial information, hyper-
graph convolutional networks improved accuracy on standard
benchmark data [6].

III. PROPOSED WORK

The suggested framework proposes a new way of doing
emotion recognition, referred to as Fused-HGNN (Fused Hy-
pergraph Neural Network) that is specifically designed to
overcome the issues of aggregating and modeling multimodal
data. The Fused-HGNN comprises three main components
that collectively facilitate efficient feature representation, mul-
timodal aggregation, and improving the process of learning
emotion-related tasks.

A. Overview of the Framework

The first component, Hypergraph Construction, creates its
own hypergraph representations for audio and facial modal-
ities. Each hypergraph accounts for unique structural re-
lationships: the hypergraph for the facial data takes into
consideration spatial and temporal dependencies while the
hypergraph for audio facilitates the learning of temporal-
semantic patterns. The second component: Hypergraph Fusion,
combines the two hypergraphs for the specific modalities
into a single representation maintaining the complementary
features and fostering the interaction between modalities. The
final part, Hypergraph Convolution, applies a convolutional
layer to propagate multimodal information through the fused
hypergraph structures, learning higher order representations
that improve motion classification accuracy and robustness.

Figure 1 shows how the Fused-HGNN model works, illus-
trating the three-stage pipeline from modality-specific feature
encoding to hypergraph-based fusion, and a convolutional
learning stage.

B. Hypergraph Construction

In this stage, we formulate hypergraphs that are saliently
distinctive with respect to face and audio features, to preserve
the dynamic properties of each modality. Each hypergraph
is denoted by sets of vertices and hyperedges capturing the
features driving emotional representation.

1) Construction of Facial Hypergraph: The facial hyper-
graph illustrates the relationships among different facial rep-
resentations. Each representation is treated as a vertex, and
collections of related representations form connections known
as hyperedges. These hyperedges represent facial components
that tend to co-move or co-vary.

Let:
• x = a facial feature point or descriptor,
• ϵ = a hyperedge representing a group of related facial

descriptors.
Formally, the incidence matrix of the facial hypergraph,

denoted by Efacial, defines the relationship between vertices
and hyperedges as:

Hf (x, ϵ) =

{
1, if x ∈ ϵ,

0, otherwise.
(1)

To determine the most salient facial representations, the
degree centrality of each vertex is computed as:
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Fig. 1. Architectural overview of the proposed Fused-HGNN framework
for multimodal emotion recognition. The figure illustrates the three-stage
pipeline: (1) modality-specific feature encoding from facial and audio in-
puts through separate encoders, (2) construction of independent facial and
audio hypergraphs where nodes represent feature descriptors and hyperedges
capture higher-order intra-modal relationships, and (3) hyperedge-level fusion
to form a unified multimodal hypergraph. Hypergraph convolutional layers
subsequently propagate information across nodes and hyperedges, enabling
the learning of rich joint multimodal embeddings, which are finally passed
through a fully connected layer to produce the predicted emotion label.

Cd(xi) =
∑
ϵ∈Ef

Hf (xi, ϵ), (2)

where Cd(xi) represents the number of hyperedges con-
nected to vertex xi. A higher degree centrality indicates that
the vertex is more influential within the facial network since it
participates in more relational connections. Vertices with high
degree centrality values are grouped together into compact
clusters to form dense sets of representations that signify
expressive facial patterns associated with emotion.

2) Construction of Audio Hypergraph: The audio hyper-
graph models relationships among different acoustic features
over time. Each audio feature—such as pitch, loudness,
or Mel-Frequency Cepstral Coefficients (MFCCs)—is repre-
sented as a vertex, while hyperedges capture the interactions
and co-variations among these features across time.

Let:

• v = an audio feature descriptor,
• e = a hyperedge connecting similar audio descriptors.

The incidence matrix of the audio hypergraph is defined as:

Iaudio(v, e) =

{
1, if v ∈ e,

0, otherwise.
(3)

Hyperedges are constructed using a k-nearest neighbors (k-
NN) approach, which connects each vertex to its most similar
neighbors based on temporal or acoustic similarity:

ei = vi ∪ NkNN(vi), (4)

where NkNN(vi) denotes the set of k nearest neighboring
features of vi. This captures both temporal continuity and
feature-level similarity across the audio signal.

Finally, the overall audio hypergraph is represented as the
combination of all hyperedges:

Haudio = e1 ∥ e2 ∥ . . . ∥ eN , (5)

where ∥ denotes the concatenation operator. The resulting
structure represents how groups of audio features jointly ex-
press emotion or contextual information through their temporal
and spectral relationships.

C. Hypergraph Fusion

The fusion stage merges two hypergraphs, each specific to
a modality, into one coherent multimodal hypergraph, Hfused,
which consolidates modality-specific information while incor-
porating explicit intermodal relationships through hyperedge
concatenation and adjacency alignment with weights.

Vfused = Vfacial ∪ Vaudio, (6)

Efused = Efacial ∪ Eaudio. (7)

Algorithm 1 Hypergraph Fusion via Concatenation
Input: Hfacial,Haudio
Output: Hfused

1) Initialize empty sets Vfused and Efused.
2) Merge nodes and hyperedges from both modalities:

• Vfused ← Vfacial ∪ Vaudio
• Efused ← Efacial ∪ Eaudio

3) Return Hfused = (Vfused, Efused).

This fusion mechanism ensures the preservation of both
intra-modal coherence and inter-modal complementarity, es-
tablishing a foundation for joint feature learning.

D. Hypergraph Convolution

In the last step, hypergraph convolution is used on the fused
hypergraph to obtain compact, discriminative embeddings us-
ing information from neighboring nodes and hyperedges to
capture high-order correlations.

Let:
• F (l) = node feature matrix at layer l,
• Ifused = fused incidence matrix,
• W (l) = learnable weight matrix at layer l,
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• σ = nonlinear activation function,
• Dv, De = vertex and hyperedge degree matrices.
The convolution operation is defined as:

F (l+1) = σ
(
D

− 1
2

v IfusedW
(l)I⊤fusedD

− 1
2

e F (l)
)
. (8)

To incorporate modality-specific contributions:

Φ = D
− 1

2
v IfacialWfacialI

⊤
facialD

− 1
2

e +

D
− 1

2
v IaudioWaudioI

⊤
audioD

− 1
2

e ,
(9)

where Φ captures the combined effect of both modalities,
Ifacial and Iaudio are the incidence matrices for facial and audio
hypergraphs respectively, and Wfacial and Waudio are modality-
specific learnable weight matrices.

The feature update rule becomes:

F (l+1) = σ
(
ΦF (l)

)
, (10)

and the final representation after two convolutional layers
is:

ZHGNN = σ
(
ΦF (1)W (2)

)
. (11)

Finally, a fully connected layer produces the classification
output:

Z̃HGNN = σ (WfcZHGNN + bfc) , (12)

where Wfc and bfc are the weight matrix and bias vector of
the fully connected layer.

This comprehensive architecture facilitates effective learn-
ing of multimodal relationships while guaranteeing stability,
flexibility and improved accuracy of emotion recognition.

IV. RESULTS

We carried out a substantial series of experiments to validate
the performance of the proposed Fused-HGNN model us-
ing the MEAD (Multi-view Emotional Audio-visual Dataset)
benchmark, which is widely used in the field of multimodal
emotion recognition. The dataset contained a variety of emo-
tional expressions, both visual and auditory. For the evalua-
tions we trained the model on 10% of labeled samples per class
and allocated an additional 10% for validation (hyperparameter
tuning) and the other 80% for testing. The hyperparameters
were optimised carefully (learning rate was set to 0.001 and
training was done through 100 epochs).

To ensure a fair performance comparison, we applied an
ensemble baseline which included three models trained in-
dependently: the facial feature extraction was completed by
a CNN model, a LSTM model was used to model temporal
dependencies in audio, and a SVM model was used to classify
over the fused features. The predictions from the ensemble
were then averaged by specific modality weights that we used
based upon validation so that all modalities contribute equally.
While our ensemble can promote modularity, it is unable to

Fig. 2. Accuracy vs. Number of Epochs.

discover higher order dependencies that the hypergraph-based
Fused-HGNN can explicitly learn.

All experiments were developed and ran in PyTorch and
executed on a high-performance computing cluster. Model
optimization and grid search were utilized and the model was
initialized with a batch size of 32 for 100 epochs. Evaluation
metrics included accuracy, loss, precision, and F1-score, in
order to give a holistic comparison of performance.

Figure 2 shows the results of comparison between the
proposed Fused-HGNN and the reference ensemble model
when it comes to accuracy over 100 epochs. The proposed
model yields greater accuracy across the entire training period
compared to the ensemble, achieving an overall accuracy
of 98.5% compared to 97.1%. This significant improvement
represents the proposed model’s stronger ability to model high-
order multimodal relations through hypergraph fusion.

Fig. 3. Loss vs. Number of Epochs.

Figure 3 shows that both models experience a quick drop in
loss during the first few epochs followed by a gradual stabiliza-
tion. The Fused-HGNN maintains a lower loss curve through-
out training, ending with a loss of 2.3%, compared to the
ensemble model at 3.1%. This suggests that the hypergraph-
based learning framework not only converges quicker, but
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exhibits optimized stability as well.

Fig. 4. Cumulative Training Time vs. Number of Epochs.

Figure 4 compares total training time between the two mod-
els and shows the proposed approach to take less computation
time to complete the training. The Fused-HGNN requires less
time during each epoch and was able to achieve convergence
in 350 minutes as opposed to the ensemble model which
took 480 minutes. This fact that the Fused-HGNN took less
time to converge compared to the ensemble is because of the
model’s ability to use end-to-end hypergraph convolutional
architecture to learn compact representations across modalities
simultaneously.

Fig. 5. Memory Utilization vs. Time.

Figure 5 compares the memory usage of the proposed
Fused-HGNN with the ensemble model, and the total memory
consumption of the proposed model is significantly lower,
reaching a maximum capacity of 1.5%, while the ensemble
model reached 2.2%. This is an important finding, as it points
to the scalability and suitability for deploying hypergraph
models without excessive memory constraints.

The proposed model is able to run with less computational
demand and train effectively faster, because of their unified
architecture, whereby both modalities are fused together from
the beginning through hypergraph convolutional layers. The

ensemble model, in contrast to the proposed model, trained
separate independent models from the beginning, which nat-
urally takes longer for training time and demand greater
memory resources.

Overall, the experimental results suggest that the Fused-
HGNN outperformed all ensemble-based systems in three
dimensions, including accuracy, convergence speed, and effi-
ciency. The hypergraph representation successfully exploited,
characterized, and represented complex high-order relation-
ships between facial and auditory features, which improved
generalization and robustness for the emotion recognition tasks
using the MEAD dataset.

V. CONCLUSION

This research presents Fused-HGNN, a hypergraph-based
framework designed to improve multi-modal emotion recog-
nition by capturing higher-order dependencies between the
facial and audio modalities. This approach overcomes the
shortcomings of unimodal and ensemble strategies through
a single representation learned using hypergraph fusion and
convolution. Results on the MEAD benchmark dataset demon-
strate the model’s superiority, with a classification accuracy of
98.5% (loss metric 2.3%), surpassing ensemble baselines by
1.4% accuracy and 0.8% loss. The framework is extremely
efficient in computational resource utilization as training was
completed after spending just 350 minutes in contrast to 480
minutes in the ensemble. The results of resource utilization
also shows feasibility, where the peak memory is 1.5% and
baselined system 2.2%. The usage of hypergraphs support ef-
ficient encoding of intra-modal and cross-modal dependencies
using dedicated convolutional operations, in support of the
Fused-HGNN for richer and integrated joint representation. In
addition, Fused-HGNN uses modality specific weight matrices
that’s embedded in the convolutional layers, so there can
be evenly balanced contribution of facial and audio features
improving robustness for classification.

Future directions should be to test the model in real-time,
affective computing contexts; broaden the adaptability in rate-
latencies in contexts such as emotion aware virtual agents,
intelligent surveillance systems, and human-computer interac-
tion contexts. Lastly, there are broader possibilities to expand
lightweight hypergraph formulations, or adaptive fusion. These
two possibilities could be another approach to improve scale
and responsiveness in context, and proposal.
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