
Streaming Commodity Forecasting with
Kolmogorov–Arnold Networks on the Edge

1st Dat Le
School of Information Technology

Deakin University
Geelong, VIC 3220, Australia

d.le@deakin.edu.au

2nd Sutharshan Rajasegarar
School of Information Technology

Deakin University
Geelong, VIC 3220, Australia

sutharshan.rajasegarar@deakin.edu.au

3rd Wei Luo
School of Information Technology

Deakin University
Geelong, VIC 3220, Australia

wei.luo@deakin.edu.au

4th Thanh Thi Nguyen
Faculty of Information Technology

Monash University
Clayton, VIC 3800, Australia
thanh.nguyen9@monash.edu

5th Minh Ngoc Dinh
School of Science,Engineering,Tech

RMIT University Vietnam
Ho Chi Minh City, 70000, Vietnam

minh.dinh4@rmit.edu.vn

6th Maia Angelova
Aston Digital Futures Institute

Aston University
Birmingham B4 7ET, United Kingdom

m.angelova@aston.ac.uk

Abstract—This paper introduces a lightweight, reproducible
pipeline for real-time commodity price forecasting at the network
edge, combining a Kafka-based streaming loop with compact
neural predictors. Using Kolmogorov–Arnold Networks (KAN)
alongside LSTM and TS-Mixer baselines, the system performs
one-step-ahead inference on futures contract for West Texas
Intermediate (WTI) crude oil, gold, silver, and copper. KAN
consistently achieves the highest accuracy across all assets while
maintaining low computational overhead. Importantly, end-to-
end latency is dominated by networking and coordination, not
by the model computation overhead, highlighting a key system-
level insight for edge deployment. The pipeline runs entirely
on a single local machine without cloud services, and is fully
reproducible, offering a practical and scalable solution for near-
real-time commodity forecasting.

Index Terms—Commodity forecasting, Streaming analytics,
Kolmogorov–Arnold Networks, Edge machine learning, Docker,
Kafka.

I. INTRODUCTION

Commodities markets today operate as highly intercon-
nected, large-scale networks where millions of transactions
and price updates propagate in real time across global ex-
changes [1]. Traditional batch forecasting pipelines struggles
to keep pace with this velocity, creating bottlenecks between
data ingestion and actionable insights [2].

Accurate and timely forecasting of commodity prices under-
pins decision-making in energy, manufacturing, and financial
markets [3]. As data pipelines migrate from batch processing
to online streams, the latency that matters to users increasingly
reflects system effects—network I/O, queueing, and consumer
coordination—rather than only model computation [4]. In this
setting, small models that run entirely on local hardware are
attractive, as they are easier to deploy as well as control, and
less vulnerable than cloud-heavy stacks, yet they still require
to deliver competitive accuracy under streaming constraints.

Despite rapid progress in sequence modeling, several practi-
cal gaps remain [5]. First, most studies evaluate models offline

on static train/test splits and report inference time in isolation,
leaving a disconnect between reported latency and the end-
to-end delay observed in real systems. Second, implementa-
tions that are lightweight and “edge-ready” are scarce; many
require customised infrastructure or cloud services, limiting
reproducibility on laptops or lab machines. Finally, multi-asset
streaming introduces contention and interleaving effects rarely
studied in isolation, yet common in practice when several
instruments/stocks are considered concurrently.

In order to address these limitations, this paper proposes a
compact, local, Kafka-based forecasting loop that ingests daily
ticks (minimum price movements for a commodity), maintains
a sliding window, and emits one-step-ahead predictions in
real time. The system compares four compact forecasters
under identical conditions including olmogorov–Arnold Net-
work (KAN), Long Short-Term Memory network (LSTM), and
Time-Series Mixer (TS-Mixer), using the same pre-processing,
window size, horizon, optimizer family, device configuration,
and evaluation protocol. Instrumentation records two comple-
mentary notions of time: (i) model-only inference per tick and
(ii) the true end-to-end latency from publish to consume to
forecast. This design isolates model behavior while exposing
the operational costs that dominate user-visible delay.

The evaluation targets multiple commodities to reflect re-
alistic portfolio monitoring: energy (West Texas Intermediate
(WTI) crude oil), precious and industrial metals (gold, silver,
copper), with the pipeline readily extensible to natural gas
and other assets. Results show that compact KAN models
achieve strong average accuracy across assets while keep-
ing computation lightweight on CPU. At the same time,
measurements indicate that end-to-end latency is governed
primarily by networking and coordination in the streaming
stack, making model computation a minor fraction of the total
delay perceived by end users.

This paper has three main contributions as follows:

455979-8-3315-7896-1/26/$31.00 ©2026 IEEE ICOIN 2026

Fig. 1. The pipeline runs end-to-end on a local Docker host. First, the
ingestor fetches market quotes from the data sources (Yahoo Finance, Stooq,
optional FRED) and produces JSON ticks—asset, price, ts—to Kafka topic:
ticks.raw (1). For model building, the Offline/On-Demand Training path
batch-exports from ticks.raw, then preprocesses (clean, align, split), scales
+ windows the series, and trains compact models (KAN/LSTM/TSMixer)
(2). The fitted artifacts—model.pt, scaler.pkl, manifest.json—are written to
the Model Registry, and the Online Serving process loads them on start or
hot-swaps when retrained (3). During live operation, the predictor consumes
ticks.raw, keeps a per-asset ring buffer (WINDOW), applies the saved scaler,
runs inference (KAN by default), and publishes predictions with timestamps to
topic: preds.out (4). A lightweight evaluator joins the next truth from ticks.raw
with preds.out to compute MAPE/RMSE/MAE and latency (inference ms,
end-to-end ms), enabling continuous, transparent monitoring of accuracy and
responsiveness on a single machine.

• Edge-ready streaming pipeline & deployment: A fully
reproducible, edge-ready forecasting pipeline that inte-
grates compact neural models with a realistic Kafka-
based streaming loop, enabling near-real-time commodity
price prediction without cloud infrastructure.

• Compact KAN with fair, online benchmarks: A
systematic evaluation of Kolmogorov–Arnold Networks
(KAN) as compact, CPU-efficient forecasters, demon-
strating superior accuracy across four major commodities
compared to LSTM and TS-Mixer under identical condi-
tions.

• Networking-aware evaluation & reproducibility: A
novel latency-aware benchmarking framework that de-
composes end-to-end delay into model compute and
system overhead, revealing that networking and coordi-
nation—not model complexity—are the dominant factors
in real-time responsiveness.

II. RELATED WORK

Prior studies consider pipeline design, model accuracy, and
deployment constraints, but often treat these aspects separately.
This section reviews the factors and the common assumptions
that influence real-time forecasting for commodity futures
(energy and metals).

A. Streaming time–series analytics.

Production forecasting has been shifting from batch jobs
to online streaming on message buses (e.g., Kafka [6], [7])
with stream processors (e.g., Flink/Spark Streaming) [8]. In
commodities, this shift reflects the need to combine daily
settlements and intraday ticks around exchange calendars,
contract rolls, and macro news releases. Systems related litera-
ture consider optimizing throughput, back-pressure, and fault-
tolerance. Forecasting related works aim to evaluate offline,

end-to-end per-tick latency (ingest → predict → next-tick val-
idation) and their decomposition into network, coordination,
and computation in a reproducible setup [9].

B. Neural forecasters for financial data.

Long Short-Term Memory (LSTM) models remain com-
mon for one-step commodity forecasting due to their se-
quential inductive bias and robustness under limited context
[10], [11]. TS-Mixer, inspired by MLP-Mixer, replaces recur-
rence/attention with lightweight time–channel mixing, yielding
competitive accuracy and very low CPU inference cost, which
are useful for edge deployments considering daily futures for
oil, gas, and metals [12]. Within a Kafka loop [6], these classes
can be trained offline and hot-swapped online for per-tick
accuracy/latency evaluation across assets.

C. Kolmogorov–Arnold Networks (KAN).

Kolmogorov–Arnold Networks (KAN) have been proposed
as compact universal approximators using additive compo-
sitions and kernel/spline-like bases [13], [14]. Their small
parameter budgets are appealing for edge inference on volatile
commodities where noise, seasonality (e.g., winter gas de-
mand), and structural breaks (e.g., supply shocks) penalize
heavy models. Existing KAN related work is largely offline
and on small regression suites [15], [16], while systematic, on-
line comparisons against LSTM and TS-Mixer in a streaming
commodity setting with identical preprocessing and per-tick
scoring remain limited [17].

D. Edge inference and networking constraints.

Edge-centric machine learning (ML) emphasizes shrinking
models (distillation, pruning, quantization), batching, and op-
erator fusion to meet CPU/NPU latency and energy budgets
[18]. For real-time commodity data, networking-aware ML
needs to account for transport overhead, serialization formats,
consumer-group coordination, and topic/partition design [19].
Few studies consider a lightweight forecaster with a realis-
tic producer/consumer loop (including next-tick truth joining
across futures calendars) and report both inference time and
end-to-end latency under a single, reproducible protocol.

E. Data sourcing and reproducibility.

Commodity studies often rely on a single public source
(e.g., Yahoo Finance) or proprietary feeds, risking rate-limits,
silent gaps, and roll-over inconsistencies across front-month
contracts [20]. Reproducibility improves with documented
fallbacks (e.g., Stooq for end of day (EOD) stock, Federal
Reserve Economic Data (FRED) for macro series) [21], [22],
deterministic windowing, explicit holiday calendars, and a
model registry that pins scalers and artifacts per asset for
repeatable edge runs.

F. Commodities forecasting.

Forecasting in commodity markets has long been studied
due to their economic importance and inherent volatility.
Energy commodities, such as crude oil and natural gas are
strongly influenced by geopolitical risks, Organization of the

456

Petroleum Exporting Countries (OPEC) decisions, weather
shocks, and inventory reports, making short-term price fore-
casting a key challenge [23]. Metals such as gold, silver,
and copper, meanwhile, are driven by macroeconomic cy-
cles, currency fluctuations, and safe-haven demand [12], [24].
More recently, machine learning approaches including LSTM
and Mixer-style networks have been introduced to capture
complex temporal patterns in commodity data, showing im-
proved accuracy compared to classical baselines [25]. Despite
these advances, most prior work remains focused on offline,
batch evaluations. Studies that integrate commodity forecast-
ing with streaming infrastructures and edge-ready models
remain scarce, limiting applicability in real-time decision-
making contexts, such as trading, risk management and hedg-
ing.

In summary, the literature on streaming analytics, neural
forecasters, and edge deployment provides ingredients for real-
time commodity prediction, but rarely integrates them end-to-
end. This work addresses that gap by embedding a compact
KAN forecaster in a Kafka-based pipeline and benchmarking
per-tick accuracy and latency across key energy and metals
assets under identical conditions.

III. METHODOLOGY

This work develops a compact and reproducible forecasting
pipeline that integrates Kolmogorov–Arnold Networks with
a real-time streaming infrastructure. The system is designed
to operate on a local machine, containerized using Docker,
and orchestrated through Apache Kafka to handle continuous
price ticks. The primary contribution lies in demonstrating the
efficiency of KAN in an edge-friendly streaming environment.

A. Problem Formulation

Let {pt}Tt=1 denotes a univariate commodity price series
(e.g., WTI crude oil, gold, silver, copper). The goal is to
predict the next tick pt+1 based on the past W observations:

xt = [pt−W+1, . . . , pt], p̂t+1 = fθ(xt), (1)

where fθ is the forecasting model parameterized by θ. In this
study, fθ is instantiated by KAN, and baseline forecasters
(LSTM, TS-Mixer) are used for comparative evaluation.

B. Data Preprocessing

Historical data are retrieved from multiple public sources
(Yahoo Finance, Stooq, and optionally FRED for robustness).
Each series is cleaned, aligned, and resampled to daily fre-
quency. A Min–Max scaler is then applied:

pscaled
t =

pt − pmin

pmax − pmin
, (2)

ensuring values remain within [0, 1]. Supervised learning pairs
(xt, pt+1) are constructed via a sliding window of size W .

C. Kolmogorov–Arnold Networks (KAN)

KAN [26] builds on the Kolmogorov–Arnold representation
theorem, which states that any multivariate continuous func-
tion can be expressed as a sum of univariate functions. This
property allows KAN to approximate nonlinear mappings with
compact parameterization. Given input xt, the model predicts:

p̂t+1 =
H∑
i=1

ϕi(xt; θi), (3)

where ϕi are kernelized spline functions with adaptive knots,
and H is the hidden dimension. Unlike recurrent or attention-
based models, KAN relies on local function approximations
that reduce complexity and improve efficiency on CPU-only
setups. This makes it particularly well suited for edge devices
and local streaming deployments.

D. Streaming Integration with Kafka and Docker

To evaluate models in a realistic streaming environment, the
pipeline is fully containerized with Docker [27] and connected
through Kafka [28] topics:

• Producer: Continuously emits normalized price ticks
in JSON format (asset, value, timestamp) to the
Kafka topic ticks.raw.

• Consumer: Maintains a ring buffer of the last W ticks
per asset, retrieves the trained KAN model and corre-
sponding scaler from a local model registry, and performs
online inference.

The Dockerized setup ensures reproducibility across ma-
chines, while Kafka decouples data ingestion, inference, and
evaluation, allowing realistic measurement of delays caused
by networking and coordination in addition to model compu-
tation.

E. Training and Loss Function

Offline training is performed using the Mean Squared Error
(MSE) loss:

LMSE =
1

N

N∑
i=1

(pi − p̂i)
2, (4)

where N is the number of training samples. Training is carried
out until convergence with early stopping to prevent over-
fitting. Trained artifacts (model weights, scaler parameters,
metadata) are saved to a local registry for later loading during
streaming inference.

F. Evaluation Metrics

Performance is quantified using standard forecasting met-
rics [29]–[32]: MAPE = 100

N

∑N
i=1

∣∣∣pi−p̂i

pi

∣∣∣ , RMSE =√
1
N

∑N
i=1(pi − p̂i)2, MAE = 1

N

∑N
i=1 |pi − p̂i|.

In addition to predictive accuracy, end-to-end latency (pro-
ducer → consumer → evaluator) is recorded. These measure-
ments capture both algorithmic efficiency and system-level
responsiveness.

457

G. Baselines

For fairness, baseline forecasters, namely LSTM and TS-
Mixer, are implemented under identical preprocessing, train-
ing, and evaluation protocols. Their inclusion enables a con-
trolled comparison, but the central analysis emphasizes the
advantages of KAN in terms of accuracy and suitability for
edge streaming deployment.

IV. EXPERIMENTAL SETUP

The code, configuration files, and processed datasets used
in this study would be shared directly upon reasonable request
from: https://github.com/anhdatle/.

A. Local Deployment Feasibility

Experiments were conducted on a personal laptop equipped
with an Apple M1 CPU (8 cores, 16 GB unified memory,
512 GB SSD storage), running macOS with Docker containers
for Kafka services. Kafka provided a lightweight message bus
for producing asset ticks and consuming predictions in real
time. Each run instantiated a fresh topic to ensure isolation and
reproducibility. The entire pipeline, including data ingestion,
preprocessing, model training, and streaming inference, was
executed without access to GPUs or external cloud resources.
Models (KAN, LSTM, TS-Mixer) were implemented in Py-
Torch, with training carried out on the CPU. Each trained
model occupied less than 20 MB on disk, and the Kafka
broker persisted topics locally with storage overhead below
200 MB per asset stream. This confirms that the architecture
is lightweight and can be reproduced on commodity hardware,
making it suitable for edge deployments where compute and
memory budgets are constrained. Unlike prior work that often
depends on distributed clusters or cloud-based pipelines, the
present design validates the feasibility of accurate and efficient
forecasting on a single personal machine.

B. Data Sources

Historical daily close prices were retrieved using
yfinance [33] with fallbacks to Stooq and FRED in
case of missing data. Five assets were collected:

• WTI Crude Oil (CL=F) – futures contract for West
Texas Intermediate crude oil.

• Gold (GC=F) – gold futures contract.
• Silver (SI=F) – silver futures contract.
• Copper (HG=F) – futures contract for high-grade copper.

For the main evaluation, four assets (WTI, gold, silver,
copper) were highlighted. Each dataset spans January 2018
to Sep 2025, yielding 1900 trading days per asset. After
scaling with MinMax, sequences were prepared using a sliding
window of 16 days and a one–day prediction horizon.

C. Models

The study focused on KAN as the proposed forecaster.
Baseline models included LSTM and TS-Mixer All models
were implemented in PyTorch and trained under identical
preprocessing conditions. Training used Adam optimizer with
learning rates tuned per model class (KAN: 10−2, LSTM:

10−3, TS-Mixer: 2x10−3). The learning rates differ across
models because each architecture has distinct gradient dy-
namics and stability requirements, requiring tuning to ensure
both fast and stable convergence. Each model was trained for
100 steps with early stopping, splitting 80% of the series for
training and 20% for testing.

D. Streaming Protocol

After offline training, fitted models were exported into a
local registry (/models) with artifacts (model.pt, scaler,
manifest). Online evaluation used a Kafka-based producer to
replay test windows as ticks and a consumer to perform predic-
tions. Each prediction was joined with the next observed tick to
compute accuracy per step. End-to-end latency was measured
from tick ingestion to next-tick validation, decomposed into
inference time and system overhead.

E. Evaluation Metrics

Three accuracy metrics were reported: Mean Absolute Per-
centage Error (MAPE), Root Mean Squared Error (RMSE),
and Mean Absolute Error (MAE). Latency was reported by
end-to-end latency per tick (ingest → predict → validation)
[29], [30].

V. RESULTS AND ANALYSIS

This section presents the empirical evaluation of forecasting
accuracy and latency across four commodity assets (WTI crude
oil, gold, silver, and copper). Accuracy is measured using
Mean Absolute Percentage Error (MAPE), Root Mean Squared
Error (RMSE), and Mean Absolute Error (MAE). Latency
is reported by end-to-end (E2E) streaming latency per tick,
including data transport and coordination overhead. The best
results for each metric are highlighted in bold.

A. Accuracy Analysis

1) WTI Crude Oil: As shown in Table I, KAN achieved
the best performance with a MAPE of 1.83%, RMSE of 1.60,
and MAE of 1.41. This significantly outperformed TS-Mixer
(MAPE = 3.81%) and LSTM (MAPE = 6.89%), demonstrating
that KAN captures oil price dynamics with high precision
and reduces forecasting error by more than half compared to
LSTM.

TABLE I
FORECASTING ACCURACY ON WTI CRUDE OIL (TEST SET).

Model MAPE (%) RMSE MAE

KAN 1.83 1.60 1.41
TSMixer 3.81 3.29 2.98
LSTM 6.89 5.73 5.38

2) Gold: Table II shows that for gold, KAN achieved
the best performance across all three metrics, with a MAPE
of 2.36%, RMSE of 69.64, and MAE of 50.07. This is
substantially better than LSTM, which recorded a high error
(MAPE = 15.84%), and also outperformed TS-Mixer, which
achieved slightly higher errors (MAPE = 2.66%, RMSE =

458

70.85, MAE = 56.08). These results highlight that KAN is
especially effective in forecasting gold prices, even within the
volatile precious metals category.

TABLE II
FORECASTING ACCURACY ON GOLD (TEST SET).

Model MAPE (%) RMSE MAE

KAN 2.36 69.64 50.07
TSMixer 2.66 70.85 56.08
LSTM 15.84 333.68 328.84

3) Silver: The results for silver are presented in Table III.
KAN outperformed both baselines with a MAPE of 2.17%,
RMSE of 0.62, and MAE of 0.51. TS-Mixer followed with
3.08% error, while LSTM lagged significantly at 8.13%.
These results demonstrate KAN’s robustness for forecasting
moderately volatile assets such as silver.

TABLE III
FORECASTING ACCURACY ON SILVER (TEST SET).

Model MAPE (%) RMSE MAE

KAN 2.17 0.62 0.51
TSMixer 3.08 0.91 0.73
LSTM 8.13 2.05 1.91

4) Copper: Table IV highlights that KAN delivered the best
performance on copper with a MAPE of 1.54%, RMSE of
0.07, and MAE of 0.06. TS-Mixer showed competitive re-
sults (MAPE = 1.74%), whereas LSTM underperformed with
5.73%. This underscores KAN’s effectiveness in modeling
base metals and achieving reliable accuracy across datasets.

TABLE IV
FORECASTING ACCURACY ON COPPER (TEST SET).

Model MAPE (%) RMSE MAE

KAN 1.54 0.07 0.06
TSMixer 1.74 0.08 0.07
LSTM 5.73 0.24 0.22

Across all four commodities, KAN consistently outper-
formed LSTM and achieved competitive or superior results
compared to TS-Mixer. KAN was strongest for WTI, silver,
and copper, while TS-Mixer was slightly better on gold. These
findings demonstrate that KAN is a strong, general-purpose
forecaster for streaming commodity prices, especially effective
for energy and base metals, while complementary models may
retain advantages in precious metals.

5) End-to-End Latency.: Table V reports the end-to-end
latency per tick, which includes the full Kafka streaming
pipeline (data ingestion, prediction, and next-tick validation).
Across all assets, the average latency is around 1.14–1.17
seconds, with median (p50) values close to 1.21–1.23 seconds
and tail (p95) delays between 1.79 and 1.83 seconds. The
results are consistent across WTI, gold, silver, and copper,
showing that networking and coordination dominate the total

latency, while the choice of forecasting model contributes only
marginally. This confirms that the system remains stable and
predictable in a streaming setting.

TABLE V
END-TO-END LATENCY PER TICK INCLUDING KAFKA STREAMING

OVERHEAD.

Asset Avg (ms) p50 (ms) p95 (ms)

WTI 1142.9 1231.8 1817.6
Gold 1146.8 1213.9 1807.3
Silver 1168.8 1236.8 1830.6
Copper 1165.0 1234.4 1794.7

VI. LIMITATIONS

A. Market and data scope.

The study uses end-of-day (EOD) settlement prices for
major commodities. Intra-day dynamics (microstructure noise,
liquidity shocks, cross-venue fragmentation) and transaction
frictions (bid–ask spreads, slippage, funding costs) are not
modeled. Futures contract specifics (roll conventions, holiday
calendars, and exchange trading halts) can introduce small
alignment errors across sources even after preprocessing. Data
gaps and late updates were mitigated with fallbacks (Stooq,
FRED) and forward-filling only within trading days, but
residual mismatches may remain.

B. Modeling assumptions.

All forecasters operate on univariate sliding windows with
a one-step horizon and MinMax scaling fitted on the training
split only. This deliberately avoids leakage but does not capture
cross-asset dependencies, regime switches, or structural breaks
explicitly. Hyperparameters were kept compact to reflect an
edge-oriented design rather than global optimum accuracy;
more aggressive tuning could further improve baselines or
KAN. The evaluation reports point forecasts only; uncertainty
quantification (prediction intervals) and risk-aware decision
metrics are out of scope.

C. System considerations.

Latency measurements reflect a single-node Docker/Kafka
setup on commodity CPU hardware. Results may vary with
different brokers (e.g., replication factor, retention policies),
OS scheduling, container runtime, and background I/O.

VII. CONCLUSION

This paper presented a compact, edge-oriented streaming
forecaster centered on Kolmogorov–Arnold Networks (KAN)
and embedded in a realistic Kafka loop. The design empha-
sizes small models, minimal infrastructure, and a reproducible
next-tick evaluation protocol. Across four commodities (WTI,
gold, silver, copper), KAN consistently delivered strong point-
forecast accuracy, surpassing LSTM and matching or exceed-
ing TS-Mixer on three of four assets in the reported runs.

A key systems result is that user-visible delay is dominated
by streaming overheads—serialization, broker coordination,

459

and consumer polling—rather than model compute. Inference
on CPU for all models contributed only a minor fraction
of the end-to-end path, suggesting that, for many practical
edge deployments, engineering attention should prioritize topic
design, batching/linger tuning, and consumer fetch policies
before further shrinking already-small models.

The combination of (i) a lightweight forecaster, (ii) a trans-
parent data and preprocessing pipeline with public fallbacks,
and (iii) an online, per-tick measurement harness provides a
practical template for network-aware ML at the edge. Fu-
ture work includes multi-horizon and probabilistic forecast-
ing, explicit regime/draft detection, cross-asset conditioning,
quantization and CPU vectorization for additional efficiency,
as well as broader sensitivity studies on broker parameters
(replication factor, retention, fetch/linger) to map system knobs
to latency/throughput trade-offs.

REFERENCES

[1] Walter C Labys and Peter K Pollak. Commodity models for forecasting
and policy analysis. Routledge, 2024.

[2] John Baffes and Peter Nagle. Commodity markets: evolution, challenges,
and policies. World Bank Publications, 2022.

[3] Lei Ge, Qiwei Huang, Fengshuang Zhu, and Shun Chen. Advanced time
series forecasting for commodities: Insights from the fedformer model.
Energy Economics, page 108513, 2025.

[4] Harshayu Girase, Nakul Agarwal, Chiho Choi, and Karttikeya Man-
galam. Latency matters: Real-time action forecasting transformer. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18759–18769, 2023.

[5] Dozdar Mahdi Ahmed, Masoud Muhammed Hassan, and Ramadhan J
Mstafa. A review on deep sequential models for forecasting time
series data. Applied computational intelligence and soft computing,
2022(1):6596397, 2022.

[6] Bill Bejeck. Kafka Streams in Action: Event-driven Applications and
Microservices. Simon and Schuster, 2024.

[7] Iynkaran Natgunanathan, Vicky Mak-Hau, Sutharshan Rajasegarar, and
Adnan Anwar. Deakin microgrid digital twin and analysis of ai models
for power generation prediction. Energy Conversion and Management:
X, 18:100370, 2023.

[8] Laura Melgar-Garcı́a, David Gutiérrez-Avilés, Cristina Rubio-Escudero,
and Alicia Troncoso. A novel distributed forecasting method based on
information fusion and incremental learning for streaming time series.
Information Fusion, 95:163–173, 2023.

[9] Tobias Meuser, Lauri Lovén, Monowar Bhuyan, Shishir G Patil,
Schahram Dustdar, Atakan Aral, Suzan Bayhan, Christian Becker, Eyal
De Lara, Aaron Yi Ding, et al. Revisiting edge ai: Opportunities and
challenges. IEEE Internet Computing, 28(4):49–59, 2024.

[10] Lixin Yan, Le Jia, Shan Lu, Liqun Peng, and Yi He. Lstm-based deep
learning framework for adaptive identifying eco-driving on intelligent
vehicle multivariate time-series data. IET Intelligent Transport Systems,
18(1):186–202, 2024.

[11] Margustin Salim and Arif Djunaidy. Development of a cnn-lstm
approach with images as time-series data representation for predicting
gold prices. Procedia Computer Science, 234:333–340, 2024.

[12] Javid Iqbal, Aneeza Ahmed, and Muhammad Ramzan. Forecasting the
nexus and impact of news sentiment on nyse, gold prices, and wti
oil using the neural network approach. Bahria University Journal Of
Management & Technology, 7(1), 2024.

[13] Dat Le, Sutharshan Rajasegarar, Wei Luo, Thanh Thi Nguyen, and
Maia Angelova. Navigating uncertainty: Gold price forecasting with
kolmogorov-arnold networks in volatile markets. In 2024 IEEE Confer-
ence on Engineering Informatics (ICEI), pages 1–9. IEEE, 2024.

[14] Ziming Liu, Pingchuan Ma, Yixuan Wang, Wojciech Matusik, and Max
Tegmark. Kan 2.0: Kolmogorov-arnold networks meet science. arXiv
preprint arXiv:2408.10205, 2024.

[15] Dat Le, Sutharshan Rajasegarar, Wei Luo, Thanh Thi Nguyen, and
Maia Angelova. Gold price forecasting in uncertain times: Integrating
sentiment analysis and external indices. In 2024 11th International
Conference on Soft Computing Machine Intelligence (ISCMI), pages
211–215, 2024.

[16] Dat Le, Sutharshan Rajasegarar, Wei Luo, Thanh Thi Nguyen, and Maia
Angelova. Hybrid kolmogorov-arnold and graph attention networks
for gold price forecasting under uncertainty. In Tianqing Zhu, Wanlei
Zhou, and Congcong Zhu, editors, Knowledge Science, Engineering
and Management, pages 443–454, Singapore, 2026. Springer Nature
Singapore.

[17] Sami Ben Jabeur, Salma Mefteh-Wali, and Jean-Laurent Viviani. Fore-
casting gold price with the xgboost algorithm and shap interaction
values. Annals of Operations Research, 334(1):679–699, 2024.

[18] Jiawei Shao and Jun Zhang. Communication-computation trade-off in
resource-constrained edge inference. IEEE Communications Magazine,
58(12):20–26, 2021.

[19] Hamed Z Jahromi, Andrew Hines, and Declan T Delanev. Towards
application-aware networking: Ml-based end-to-end application kpi/qoe
metrics characterization in sdn. In 2018 Tenth International Conference
on Ubiquitous and Future Networks (ICUFN), pages 126–131. IEEE,
2018.

[20] J Efrim Boritz and Won Gyun No. How significant are the differences
in financial data provided by key data sources? a comparison of xbrl,
compustat, yahoo! finance, and google finance. Journal of Information
Systems, 34(3):47–75, 2020.

[21] Stooq. Stooq financial data portal, 2025. Accessed: 2025-09-25.
[22] Federal Reserve Bank of St. Louis. Fred: Federal reserve economic data,

2025. Accessed: 2025-09-25.
[23] Baris Kocaarslan and Ugur Soytas. How do the reserve currency and

uncertainties in major markets affect the uncertainty of oil prices over
time? International Journal of Finance & Economics, 2024.

[24] Guanghao Wang, Chenghao Liu, Erwann Sbai, Mingyue Selena Sheng,
Jinhong Hu, and Miaomiao Tao. Interrelations between bitcoin market
sentiment, crude oil, gold, and the stock market with bitcoin prices:
Vision from the hedging market. Studies in Economics and Finance,
2024.

[25] Srilekha Nallamothu, K Rajyalakshmi, and P Arumugam. Gold price
prediction using skewness and kurtosis based generalized auto-regressive
conditional heteroskedasticity approach with long short term memory
network. Journal of The Institution of Engineers (India): Series B, pages
1–13, 2024.

[26] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James
Halverson, Marin Soljačić, Thomas Y Hou, and Max Tegmark. Kan:
Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756, 2024.

[27] Docker, Inc. Docker: Accelerated, containerized application develop-
ment. https://www.docker.com/, 2025. Accessed: 2025-09-25.

[28] Apache Software Foundation. Apache kafka: A distributed streaming
platform. https://kafka.apache.org/, 2025. Accessed: 2025-09-25.

[29] Rob Hyndman and Anne Koehler. Another look at measures of forecast
accuracy. International Journal of Forecasting, 22:679–688, 2006.

[30] Francis Diebold and Roberto Mariano. Comparing predictive accuracy.
Journal of Business & Economic Statistics, 13(3):253–263, 1995.

[31] Tilmann Gneiting and Adrian Raftery. Strictly proper scoring rules, pre-
diction, and estimation. Journal of the American Statistical Association,
102:359–378, 03 2007.

[32] Cort J Willmott and Kenji Matsuura. Advantages of the mean absolute
error (mae) over the root mean square error (rmse) in assessing average
model performance. Climate research, 30(1):79–82, 2005.

[33] Ran Aroussi. yfinance: Yahoo! finance market data downloader. https:
//github.com/ranaroussi/yfinance, 2018. Accessed: 2025-09-26.

460

