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Abstract—We propose a Quantum Federated Autoencoder
for Anomaly Detection, a framework that leverages quantum
federated learning for efficient, secure, and distributed processing
in IoT networks. By harnessing quantum autoencoders for high-
dimensional feature representation and federated learning for
decentralized model training, the approach transforms localized
learning on edge devices without requiring transmission of raw
data, thereby preserving privacy and minimizing communication
overhead. The model leverages quantum advantage in pattern
recognition to enhance detection sensitivity, particularly in com-
plex and dynamic IoT network traffic. Experiments on a real-
world IoT dataset show that the proposed method delivers
anomaly detection accuracy and robustness comparable to cen-
tralized approaches, while ensuring data privacy.

Index Terms—IoT, quantum federated learning, anomaly de-
tection, quantum autoencoder, network security.

I. INTRODUCTION

With the recent accelerated growth of interconnected de-
vices, securing the network from attacks and timely detection
of emerging anomalies have become increasingly challenging
[1]. Conventional approaches require transmission of raw data
to a centralized server for model training, which introduces
severe privacy risks and creates a single point of failure; any
compromise of the server might expose the entire dataset.
Federated Learning (FL) [2], [3] mitigates this issue by
training models locally on devices and sharing only the model
parameters with a server, which then aggregates updates to
form a global model [4].

Recent advances in quantum computing provide new capa-
bilities for machine learning by exploiting superposition and
entanglement to process complex data more efficiently. Inte-
grating these capabilities into FL yields Quantum Federated
Learning (QFL) [5], where quantum models are trained locally,
and only parameter updates are communicated for aggregation.
QFL holds significant promise for enhancing both performance
and security in large-scale distributed networks, particularly
for anomaly detection.

The primary contributions of this work are summarized
below:

o We construct a fully operational hierarchical IoT network
using Raspberry Pi 3B+ devices and XBee transceivers,
enabling the generation of realistic, multilevel traffic
patterns. This testbed provides high-fidelity data streams
from which salient features for anomaly detection are
systematically extracted.
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Fig. 1: Quantum Federated Autoencoder Framework for
Anomaly Detection.

o We develop a new QFL architecture (Fig. 1) that enables
the local training of quantum autoencoders on edge
devices and supports both hierarchical and canonical Fe-
dAvg aggregation strategies. The framework is rigorously
benchmarked against an equivalent centralized quantum-
training baseline.

o Comprehensive experiments across heterogeneous IoT
devices show that the proposed QFL framework preserves
data privacy without degrading model utility, achieving
detection performance statistically indistinguishable from
fully centralized quantum training.

To the best of our knowledge, this work constitutes the first

demonstration of a quantum autoencoder adapted for anomaly
detection and deployed within a fully operational QFL setting.

II. RELATED WORK

Classical deep learning approaches have been extensively
used for anomaly detection in networks [6], leveraging both
supervised and unsupervised models. Many works have com-
bined autoencoders with temporal architectures to capture
dynamic traffic behavior. For instance, a PSO-Autoencoder-
LSTM framework [7] integrates autoencoders for feature
extraction with LSTMs for temporal dependency modeling,
while Particle Swarm Optimization (PSO) tunes hyperparam-
eters to improve detection accuracy and resilience against class
imbalance in intrusion detection tasks. Despite their effective-
ness, these approaches [6], [7] remain inherently centralized,

ICOIN 2026



Quantum Encoded

States (Input) Encoder Decoder

Ry T — 0 —

dg -
Output
Ry

—2 HPs -

e[o], e[1], e[2], (3], 8[4], e[5], e[6], 8[7] 8[0], 8[1), 8[2], 8[3], 814], 8IS, 8[6], e[7]
- 3

Fig. 2: Quantum Autoencoder with 4 qubits: 3 latent, 1 trash.

requiring raw data aggregation at a server, which exposes
sensitive traffic to privacy and security risks.

FL addresses these limitations by enabling decentralized
training without exposing raw data. Instead, clients train
models locally and transmit only parameter updates to a
central server for aggregation. Recent research has explored
FL-based anomaly detection in network data. For example,
Fed-ANIDS [8] deploys simple, variational, and adversarial
autoencoders across distributed clients, employing FedAvg or
FedProx for aggregation. Clients share model updates derived
from local benign traffic, while the global model uses recon-
struction error thresholds to detect anomalies. Such approaches
effectively preserve privacy while maintaining strong intrusion
detection performance.

Nevertheless, IoT traffic often exhibits highly complex,
nonlinear and high-dimensional patterns that classical mod-
els struggle to capture efficiently. QML offers a promising
alternative by exploiting superposition and entanglement to
model such complexity more effectively. Hdaib et al. [9]
demonstrated the potential of autoencoders for anomaly de-
tection, benchmarking their integration with quantum one-
class SVM, quantum k-nearest neighbor, and quantum random
forest classifiers. Their results showed that an autoencoder
combined with quantum kNN achieved superior performance,
underscoring the advantage of quantum models. Nevertheless,
existing QML methods are centralized and thus suffer from
the same privacy and scalability issues as classical deep
learning. To date, no study has explored a federated paradigm
that combines the privacy-preserving benefits of FL. with the
representational power of quantum autoencoders.

III. PROPOSED QUANTUM FEDERATED AUTOENCODER

Fig. 2 shows a minimal 4-qubit Quantum autoencoder
(QAE) for illustration. The experiments use a 10-qubit model
(8 latent, 2 trash) as described in Section IV-A. Different
from classical autoencoders, which reduce the dimensionality
of input data by learning a compact representation that can
be decoded to reconstruct the original input, QAEs extend to
the quantum domain, efficiently compressing quantum states
stored on n qubits into a smaller set of m < n qubits.

The proposed framework leverages QFL to enable dis-
tributed training of QAEs across local devices while preserving
data privacy. In the proposed QFL, each device trains a QAE
locally and transmits only model parameters to a central
server for aggregation. Aggregation can follow a standard

Algorithm 1 Federated Quantum Autoencoder Training

1: procedure TRAINQAE(X, d, n, R, F, I)

2: Input: Network traffic data X, PCA components d =
10, qubits n = 10, routers R = 3, federated rounds F' = 5,
local iterations I = 50

Output: Trained global QAE parameters Ogiobal
4: Perform PCA on X to reduce dimensionality to d
components
for r=1to R do
Encode PCA features into n qubits using angle
encoding ([?, rotations)

7: Initialize parameterized quantum circuit (RealAm-
plitude) as encoder
end for
: for t =1 to F do > Federated rounds
10: for » =1 to R do > Routers process in parallel
11: fori=1to I do > Local training iterations
12: Forward pass through QAE to compute
probabilities
13: Compute loss L(0): Equation (1)
14: Update parameters 6, to minimize L(6)
15: end for
16: end for
17: Routers send local parameters to coordinator
18: Coordinator performs hierarchical federated aver-
aging (hierarchical FL) or FedAvg to obtain @gjopal
19: Coordinator sends updated global parameters back
to all routers
20: end for
21: return Og]obal

22: end procedure

FedAvg or a hierarchical FL protocol. In the hierarchical
FL, updates from child nodes are first combined at parent
nodes before progressively forming a global model (See Fig. 1,
Algorithm 1).

A QAE compresses quantum states by mapping an input
|t) into a tensor product of compressed and “trash” qubits:

Ulyp) = |¢)c @ |0)r,

where |¢)¢ retains relevant information and |0)7 is the fixed
state for the trash qubits. Reconstruction is achieved by
applying the inverse unitary:

Ul(lg)c ® 0)1) = |¥).

Unlike classical autoencoders, QAEs cannot discard qubits,
so the network explicitly minimizes residual information in
trash qubits. For a system with n qubits, where the last &
qubits form the trash subsystem, we define a cost function
as the total probability of measuring “bad” states in the trash
qubits (all basis states except |[0)7):

train’

(D

N
1 i
L(6) = & > > Prftrash qubits in state b | X5, 0],

=1 bebad states
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TABLE I: Attack scenarios: C — Coordinator, A — Attacker, Rx — Router, Ex — Edge/Leaf device.

Scenario I Scenario 1T Scenario III
Normal | E1 — RI E2 — R1 E3 —-+R3 | E4—R2 | Rl = C R2 - C R3 - R2 | El — RI1 E2 — R1 E3—+R3 | E4—-R2 | R1—-C | R2—-C | R3—-C
Aftack | El 5 R2 | E2 5 R2 | E3 >Rl | B4 >Rl |RI 5R2 | RZ >Rl | R3>RI |El5A |E25A |E3—5A |EA—A |RISA | RZ—A|RISA
El -R3 | E2—-R3 | E3 -R2 | E4 -R3 | Rl - R3 R3 > C
El-C |E2—»C |E3—»C |E4—C
TABLE II: Performance metrics across routers for FL methods
Routers Method Accuracy | Precision | Recall F1
Hierarchical FL 0.91 0.94 0.91 0.92
R1 FedAvg FL 0.93 0.94 0.93 0.93
- + @ Centralized 0.88 0.93 0.88 | 0.90
! e Hierarchical FL 091 091 09T | 091
1
, target. R2 FedAvg FL 0.91 0.91 0.91 0.91
| «--—- Centralized 0.91 0.91 0.91 0.91
: H Hierarchical FL 0.99 0.99 0.99 0.99
e — o R3 FedAvg FL 0.94 0.96 094 | 095
1 messages to a new ' Centralized 0.99 0.99 0.99 0.99
1

parent.

Fig. 3: Network topology with Coordinator (C), Routers (R),
Edge nodes (E) and Attack node (A).

with Pr[-] obtained from the parameterized quantum circuit
and N the batch size. Minimizing this loss ensures that the
compressed qubits retain meaningful information while the
trash qubits converge to |0)r.

By adapting QAE into the QFL framework, our approach
achieves privacy-preserving, distributed quantum compression
and anomaly detection across IoT devices, combining the
representational power of quantum models with the scalability
of FL.

IV. EXPERIMENTAL SETUP

We have implemented a real-world IoT testbed consisting
of Raspberry Pi 3B+ devices equipped with XBee S2C ZigBee
modules for wireless communication [10]. The network was
modelled hierarchically, as illustrated in Fig. 3. One node
was designated as an attacker to launch security attacks and
generate both benign and malicious network traffic. Each edge
device (E) sends data packets with timestamps. Intermediate
routers (R) record reception timestamps before forwarding
packets to the next hop, while the coordinator (C) maintains
a complete log of packet paths and timings.

Initially, network traffic logs were recorded under normal
operating conditions. Relevant features were extracted for
each one-minute time window, including mean and first-hop
delay, delay quartiles, Shannon entropy, per-type and overall
communication counts, and average hops per communication.
Subsequently, redirection attacks were executed by exploiting
ZigBee attention (AT) commands, generating malicious traffic
for evaluation. Normal traffic was collected for 5 hours for
training, with an additional 1 hour for validation. Each attack
session included 20 minutes of normal traffic, 5 minutes of
attack traffic, and 10 minutes of normal traffic, in a sequence.
Three scenarios were created to generate attacks in the net-
work, as shown in Table I.

Features were computed locally at each router for federated
learning, whereas centralized training combined and shuffled
data from all routers (R1, R2, R3). Preprocessing included
MinMax scaling and principal component analysis (PCA),
fitted on training data and applied to validation and test
sets. For federated training, each router’s training set was
partitioned into 5 subsets corresponding to 5 FL rounds.

A. Training Configuration

Training was conducted in Python 3.11.7 using Qiskit on
a quantum simulator. The QAE utilized 10 qubits (8 latent, 2
trash), Ry rotations for feature transformation, and a RealAm-
plitude circuit as the parameterized encoder. Optimization
employed COBYLA with 50 iterations for FL experiments
and 100 iterations for centralized training. Federated learning
was conducted over 5 rounds across 3 clients, with MinMax
scaling and PCA for reducing 31 original features to 10
principal components. Experiments were conducted on an
Apple MacBook Pro (M2, 8-core CPU, 10-core GPU).

B. Thresholding for Anomaly Detection

Anomaly detection is performed using a threshold (7)
computed from the reconstruction fidelity on the validation set:
T = pu—40, where p and o are the mean and standard deviation
of fidelities. Test samples with fidelity below 7 are classified as
anomalies, providing a statistically robust cutoff that balances
sensitivity and variability in reconstruction performance.

V. EVALUATION: RESULTS AND DISCUSSION

We compared two different types of FL methods with a
centralized approach for anomaly detection in IoT networks.

Table II presents the performance metrics across the three
routers for different learning methods. Overall, federated learn-
ing approaches deliver performance on par with or exceeding
centralized training, demonstrating that the privacy-preserving
distributed learning can maintain high anomaly detection ef-
fectiveness without requiring raw data aggregation.

Examining individual routers provides further insight into
the strengths of hierarchical QFL. For Router 1, standard
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Fig. 4: Comparison of FL. methods for 3 devices over 5

FedAvg slightly outperforms hierarchical QFL, while the
centralized model shows marginally lower accuracy and F1-
score, suggesting that uniform local patterns allow standard
aggregation to perform well. For Router 2, all methods per-
form equivalently, indicating a simple or homogeneous data
distribution across clients. In contrast, Router 3 highlights the
advantage of hierarchical aggregation: both hierarchical FL
and centralized training achieve near-perfect scores, whereas
standard FedAvg falls slightly short. This demonstrates that
hierarchical FL more effectively captures local variations and
inter-node dependencies, which is particularly important in
heterogeneous or non-uniform IoT networks. Collectively,
these findings justify the adoption of hierarchical federated
learning as a robust, privacy-preserving approach capable of
matching or surpassing centralized methods.

Figures 4a and 4b show the evolution of training loss over
iterations. Initial spikes in the first round reflect the model
adapting to diverse local data distributions. In subsequent
rounds, the loss begins to decrease and converges more
smoothly, indicating that the models progressively internalize
the underlying patterns across clients. This trend confirms that
both standard and hierarchical QFL enable stable and effective
distributed learning, with hierarchical aggregation providing
additional resilience against local data heterogeneity.

Table II reveals that the federated approaches achieve ac-
curacy and Fl-scores comparable to the centralized base-
line, demonstrating that privacy-preserving training does not
compromise effectiveness. Router-specific outcomes further
validate data heterogeneity: while FedAvg slightly outperforms
in Router 1, hierarchical FL excels in Router 3, confirming
the benefit of topology-aware aggregation. Figures 4a and 4b
show a smooth convergence of training loss across rounds,
evidencing the stability of federated optimization.

rounds: (a) Hierarchical FL and (b) Standard FedAvg FL.

VI. CONCLUSION

We evaluated anomaly detection using quantum autoen-
coders in a federated learning framework with both hierar-
chical and standard aggregation. Using data collected from
a real Raspberry Pi 3B+ testbed, we showed that the QFL
approaches achieve performance comparable to a centralized
approach while preserving data privacy.
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