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Abstract—Distributed co-simulation is widely used to study
5G/6G systems by coupling cellular network simulators with
traffic and mobility application models using the IEEE 1516
High-Level Architecture (HLA). When one federate (e.g. a net-
work simulator) generates thousands of fine-grained events per
second with zero lookahead, and another (e.g. a traffic simulator)
advances in coarse, fixed time steps, the resulting asymmetry
incurs severe HLA time-management overhead. In particular
when simulating cellular networks, every millisecond a new
frame triggers a Next-Event-Request (NER) and Time-Advance-
Grant (TAG) exchange with the Runtime Infrastructure (RTI),
dramatically slowing overall progress. We propose a conservative,
preemptive execution scheme. This simple modification preserves
sequential time management, avoids optimistic rollback, and —
depending on the network load — reduces wall-clock runtime by
25 — 50 %. The method directly benefits network simulation and
modeling, as well as large-scale studies of 5G/6G systems where
heterogeneous time scales are unavoidable.

Index Terms—Parallel Discrete-Event Simulation, High-Level
Architecture, Federated Simulation, Asymmetric Simulation, Pre-
emptive Time Management, Conservative Synchronization, Time
Creep

I. INTRODUCTION

Network simulation is essential for designing and operating
modern digital systems. Simulation lets us explore designs
quickly and safely without building costly testbeds or disrupt-
ing live systems. It scales to large scenarios, is repeatable,
and supports controlled what-if experiments, including rare or
risky conditions, that are hard or impossible to test in the real
world. These strengths matter especially for networks, where
tiny timing differences and complex interactions are difficult
to observe in field trials. Often, the investigated application
performance depends on what happens to packets, frames,
and control signals at very small time scales. In connected
mobility scenarios, for example, dense cell handovers, radio
scheduling, and HARQ behavior directly affect end-to-end
delay and reliability for V2X safety messages and cooperative
perception. During large events or emergencies, bursts of
signaling, paging, and admission control decide who gets
service and when, which impacts traffic-management systems
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and public-safety apps. Multi-access edge computing choices
(what to place where, and how to route) depend on radio
conditions and backhaul congestion that change quickly over
time. Similar cross-layer effects appear in industrial IoT when
bursty telemetry competes with control loops that are sensitive
to jitter. With accurate modeling of the full network stack, co-
simulations deliver realistic QoS estimates, reveal bottlenecks,
and support better design decisions, complementing accurate
traffic and application models.

The study of complex, interconnected systems — such as
urban traffic networks coupled with cellular communication
infrastructures — often requires federating multiple domain-
specific simulators into a single distributed experiment. The
IEEE 1516 High-Level Architecture (HLA) has emerged as
the de facto standard for this purpose, providing a Runtime
Infrastructure (RTI) that ensures consistent time management
and data exchange among participating federates [1]. From
the network perspective, a key practical challenge is the
extreme event rate and fine granularity of cellular stacks: per-
frame scheduling (= 1ms), HARQ, RLC/MAC timers, link
adaptation, and control-plane keep-alives produce thousands
of short-lived, causally linked events even when user-plane
traffic is light. When such an event-heavy network simulator
is coupled with traffic or application simulators that advance
in coarse time steps (e.g., 100ms — 1s), the heterogeneity
in time scales and lookahead creates a synchronization choke
point. When simulators exhibit highly asymmetric temporal
behaviors HLA’s conservative synchronization can become a
serious performance bottleneck. Wall-clock time is then dom-
inated not by modeling computations but by cross-simulator
synchronization handshakes.

Consider a typical scenario: A microscopic traffic simulator
advances in constant one-second time steps, thus enjoying a
lookahead of one second, whereas a cellular network simulator
inherently offers zero lookahead. In the network domain, link
topologies and user-equipment (UE) attachments can change
arbitrarily at any moment, precluding any guaranteed mini-
mum message delay. When these two simulators are joined un-
der HLA, every event in the network simulator triggers a Next-
Event-Request (NER) from the federate and a corresponding
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Time-Advance-Grant (TAG) from the RTI. Even during idle
periods, when no user-plane data is transmitted, the network
simulator schedules events for connectivity monitoring, and
for every frame at 1 ms intervals. The result is a relentless
stream of NER/TAG exchanges that dominate CPU usage, a
phenomenon that is experienced as “time creep”.

We introduce a conservative preemptive execution scheme:
upon receiving a TAG for logical time 7', the event-heavy
federate may proceed up to T" without further RTI interaction,
given the circumstances that no new external (cross-federate)
events do arise before 7T'. Should an external event occur at
time at 77 < T, the federate immediately preempts execu-
tion, and signals the new event to the RTI. This mechanism
preserves HLA’s causality and sequential guarantees while
avoiding the complexity of optimistic rollbacks [2], [3]. The
experimental results show 25-50 % reduction in wall-clock
runtime across a range of network loads. Thus, by allowing
one event-heavy federate to execute preemptively within the
conservative synchronization, our approach significantly alle-
viates time-management overheads in asymmetric distributed
simulations.

In this introduction, we outline the performance challenge
and present a concise overview of our proposed solution.
Section II describes the used software architecture. Section III
gives an overview of related work and possible solutions to
the performance problem. Section IV provides the required
theoretical background, and subsequently in section V the
new method of preemptive execution is discussed in detail,
highlighting both its benefits and limitations. Section VI
presents experimental results, and in Section VII we conclude
the paper together with a discussion of potential extensions.

II. MOSAIC ARCHITECTURE

The open-source co-simulation framework Eclipse MO-
SAIC allows to couple multiple domain-specific simulators
[4]. All simulators are coupled through an HLA-inspired
interface, so the simulators communicate with each other
through a set of predefined so-called interactions. At the
core of MOSAIC is the Run-Time Infrastructure (RTI) that
ensures the distribution of the interactions to the simulators
and also handles the time management of the simulators. The
coupling of MOSAIC to the networking simulators (ns-3 and
OmNET++) is implemented through a custom socket-based
protocol.

In this work, we couple Eclipse SUMO, ns-3, and the
MOSAIC Application simulator (see Figure 1). While the
vehicle movements are modeled in SUMO, the MOSAIC
Application simulator is used to create the network traffic load.
By using MOSAIC applications, we can leverage previous
work and use already existing applications to build up a
realistic load, as well as the ability to map applications to
vehicles.

In the current setup of the ns-3 federate, we utilized the
ns-3 LENA model to integrate an LTE module for each mobile
node [5]. Here we created one Evolved Packet Core (EPC),
comming with Packet-Gateway (PGW), the Service-Gateway
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Fig. 1. Coupling of SUMO and ns-3 using the MOSAIC framework.

(SGW), and the Mobile Management Entity (MME). For
each configured base station, a corresponding eNB is created
along with an X2-Interface, such that eNBs can directly
communicate with each other. The utilized ns-3 LENA model
mirrors the real network as precise as possible: UEs and
eNBs implement PDCP, RLC, MAC, and PHY; an EPC with
MME/SGW/PGW provides GTP-U tunneling and connects
to ns-3’s IP/application stacks. LTE’s 1ms TTIs trigger fre-
quent scheduling, resource allocation, link adaptation, and
HARQ. Each transport block yields error checks, ACK/NACK,
and possible retransmissions. RLC timers, segmentation, and
PDCP sequencing/ciphering add per-packet work. The core
encapsulates/decapsulates in GTP-U, routes by TEID, and
handles bearer procedures. All of this translates into a large
number of scheduled events. The asymmetry in number of
events can also be directly measured. In Table I the amount
of events from MOSAIC perspective are shown. Clearly, ns-3
dominates the amounts of events by outrageous dimensions,
which is both faithful to the system’s operation and a primary
driver of computational cost.

TABLE I
NUMBER OF EVENTS TRIGGERED IN MOSAIC’s RTI
Network Load SUMO  Application ns-3
Light (50 pkt/s) 166 7078 381940
Heavy (200 pkt/s) 166 27500 891330
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III. RELATED WORK

The researches of parallel and distributed simulation focus
on how to achieve high-performance simulation while ensuring
all events to be parallelly processed and still maintaining their
causal relationships [6].

Jafer, Liu and Wainer give an extensive overview about syn-
chronization methods [7] but most of the proposed improve-
ments regard the synchronization problem in a decentralized
way, not having the HLA Time Management as central entity.

The Smart Time Management from Huang et al propose
a unified HLA time management service likewise for time-
stepped, event-driven and optimistic simulators [6]. Sadly,
how they point out, this has the direct disadvantage of a
performance decrease.

Crues and Dexter discuss HLA Time Management as the
challenge to combine several federates with different execution
rates [8]. Though, their goal is to have a solid real-time
simulation, and they do not even pursue the goal to run the
simulation as-fast-as-possible.

Jun Lee at al propose optimizations for a central time man-
agement inspired by Lingua Franca [9]. They take advantage
of federates that act purely as sensors and thereby only have an
outgoing information flow, and secondly that the result of such
sensors is only sparsely required. Think of an alarm sensor
where an “all good” message does not require any action at
the other federates.

Jefferson and Barnes [10] mention preemptive event han-
dlers but only in the context of optimistic synchronization.
Here the execution can be preempted in case that a straggler
message (“message in the past”) arrives in the meantime.
Whereas in our case we use preemption to stop execution early
enough, so that no straggler message ever occurs.

Optimistic synchronization [2] is ill-suited to the HLA
federation setup considered here. Firstly, an optimistic syn-
chronization interface might not be available, and writing the
required framework from scratch is a cumbersome and tidious
work. Secondly, the typical amount of cross-federate events
in our scenario produce a high straggler rate, forcing frequent
rollbacks, anti-messages, and continuous state checkpointing.
Saving and restoring detailed ns-3 protocol stacks at sub-
millisecond granularity is costly in memory, serialization, and
cache pressure; the overhead often exceeds any speculative
gains. Even if optimistic synchronization is available and in
itself beneficial, interoperability with conservative federates is
not always given, as Strassburger points out [11].

In summary, there is very little literature, that explores
variations and improvements on top of HLAs conservative
synchronization, in order to optimize the performance but still
omit the complexity of optimistic synchronization.

IV. HLA TIME MANAGEMENT [1]

In distributed simulation under the High Level Architecture
(HLA), conservative time management is the mechanism by
which the Run-Time Infrastructure (RTI) ensures that all
events are processed in non-decreasing order and that no
federate ever receives an event dated earlier than its own

current logical time. The RTI classifies incoming messages
as either receive-ordered (RO) or time-stamp-ordered (TSO).
RO messages are delivered immediately and in arbitrary order,
whereas TSO messages are buffered until the RTI can compute
a lower bound on the time stamps of all future messages (the
LBTS) and thus guarantee that no smaller-stamped event will
later arrive.

Time-regulating federates drive the Lower Bound on Time
Stamp (LBTS) computation by declaring the smallest times-
tamp they may yet generate, while time-constrained federates
depend on LBTS to know how far they may advance without
risk of receiving past messages. Federates that clear these
two flags bypass timestamp ordering altogether and exchange
only RO messages. In the remainder of this paper, we assume
that we look at time-regulating as well as time-constrained
federates, which are both allowed to issue TSO messages and
are able to process TSO messages.

Federates cannot advance their logical clocks autonomously;
instead, they invoke explicit services and await a callback from
the RTIL. In a Time Advance Request (TAR), a time-stepped
federate requests advancement of its logical time to a specified
value T'. The RTI then delivers all RO messages and every
TSO message with time stamp < 7', and when it can be sure
that no further TSO messages stamped less than or equal to
T will arrive, it issues a Time Advance Grant (TAG) with
parameter 7. The TAG callback informs the federate that its
logical time has been advanced to 7" and that no pending TSO
messages with smaller stamps remain.

An event driven federate will invoke a Next Event Request
(NER) when it has completed all simulation activity at the
current logical time, and is ready to advance to a new time. The
parameter T specified in the NER request indicates the logical
time to which the federate would like to advance, typically, T
is the time stamp of the next event in the federate’s local set
of pending events. If no TSO message with stamp < 7' exists
or will arrive, the RTI issues TAG(T), otherwise it delivers
the smallest-stamp event with time 7" and issues TAG(T")
stamped at that event time.

To accommodate federates requiring zero lookahead HLA
provides variants of TAR and NER called Time Advance
Request Available (TARA) and Next Event Request Available
(NERA). When the RTI issues TAG in response to TARA or
NERA, it no longer guarantees that all simultaneous events
stamped exactly at 7" have been delivered; it only guarantees
that no events with time stamp less than 7" are still outstanding.
Also when receiving a TAG(T") as response to TARA/NERA,
the federate still is allowed to issue messages stamped at time
T. This would not be allowed when receiving a TAG(T) as
response to TAR/NER.

All the afore mentioned mechanisms and services performed
by the RTI constitute the core of HLA time management.
They allow federates with diverse internal time-flow mecha-
nisms (time-stepped, event-driven or real-time) to interoperate
without revealing their local time-management policies, while
preserving causality and repeatability across federation execu-
tions.

447



Federate
Traffic

Federate
Application

Federate
Networking

Msg Tx Msg Rx

Y

I

Fig. 2. Typical sequence of events for a simulation incorporating mobility and communication simulation.

V. OUR APPROACH

In Figure 2 you can see a typical sequence of events
(arrows indicate causality): The traffic federate is time-stepped,
and (in the example of this paper) issues position updates
every ten seconds. The application federate generates the
communication traffic, which is sent to the network federate.
Here the whole network stack is simulated, and a lot of indi-
vidual events are created, often scheduled very spontaneously;
think of a transmission routine which schedules the reception
spontaneously just some microseconds later. Eventually, the
packet reception is signaled from the network federate to
the application federate. Given this scenario, we see, that
the network federate will spend a lot of time synchronizing
with the RTI Time Management: Every event will need to
be requested and granted by the RTI, to guarantee that all
federates run in sync.

All three federates (Traffic / Application / Network) are
waiting to be allowed to proceed. So the RTI usually has three
pending requests. Subsequently we write request 'R’ for any
TAR/NER/TARA/NERA and grant G’ for TAG. The RTI will
then issue a grant for the earliest request (e.g. G7(0)) and wait
for the completion, which is indicated by the request (e.g.
Rr(10)). Also, the advancing of the traffic federate created
an event for the network federate Ry (0). Subsequently, most
of the RTIs communication will have the pattern G  (now) —
Ry (next).

In our novel approach, the network federate, being the
federate with the most of the events by far, will gain a preferred
role in the upcoming algorithm. The networking federate has
to distinguish between internal events and external events.
Internal events are usual events that also happen when the
federate runs on its own. External events are cross-federate
events, where other federates are involved, so when messages
to other federates are sent. Previously the network federate
did request any sort of event, no matter if internal or external.
In our approach the network federate only requests external
events. Pay attention to the fact that the time of the next
external event is usually not known to the network federate.

In this case, instead of requesting the next internal event time,
the network federate will request the next event with empty
time: Gy (now) — Ry ().

Given this change, the RTI has to always grant the same
times to the network federate as to the other federates. For any
Gx(T) grant the RTI will issue a Gy (T) grant just before.

This mechanism of ”permanent upstream execution” guar-
antees that all external events from the network federate that
might not have been announced yet, will be uncovered, before
any other federate proceeds to that time. By this we circumvent
the problem of other federates receiving a straggler message
from the network federate.

Let’s say we have an (unknown) message reception at
time 4, and next event request from the traffic federate for
time 10. Before executing G7(10) the RTI will first issue
a Gy(10) which will generate both the reception R4(4) as
well as the generic request Ry (_). So although we gave the
permission to advance until time 10, the network federate
detected an external event at time 4. The event queue at the
RTT gets updated and the network federate waits to resume
its execution, starting at time 4. Because the network federate
individually decides until which time to simulate we call this
scheme “preemptive execution”.

VI. EVALUATION

In order to evaluate the described changes we use Eclipse
MOSAIC [4]. For the evaluation we use three coupled simu-
lators:

e SUMO (traffic simulator): To generate realistic moving

patterns. Position updates are issued every one second.

« MOSAIC Application (application simulator): To gener-

ate network traffic load.

o ns-3 (network simulator): To simulate the communication

stack in full detail.
The scenario is kept very simple; there is one car with one
application that generates network traffic. The traffic is sent
over the LTE interface to a server in the backbone. The
simulation itself has 40 seconds of simulation time, the traffic
generator is only running from 10s to 40s.
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We varied simulation runs with different network traffic
loads, from 50 packets per second to 250 packets per second.
Each packet has 10kB in size. Each parameter combination
is run five times with different seeds to build an average.
As performance indications we look at the overall wall-
clock runtime which is tracked by MOSAIC. Additionally we
implemented counters in the ns-3 federate, to keep track of
TAG/NER calls.

500

—>— Reference
—»— Optimized

Runtime [s]

100 -

60 80 100 120 140 160 180 200
Traffic [pkt/s]

Fig. 3. Wall clock time decreases significantly when using our approach.

le6 le5
1.0 —® TimeAdvanceGrant Reference 1o
: —— NextEventRequest Reference .
—&— TimeAdvanceGrant Optimized
0.8 { —&— NextEventRequest Optimized Los

e

o
o

r 0.6

Reference

o
IS

r0.4

02 ,,/‘//'—/‘ o2
T

0.0

T T T T T T T T 0.0
60 80 100 120 140 160 180 200
Traffic [pkt/s]

Fig. 4. Count of TAG & NER Events. Note that the number of events in the
optimized approach is one order of magnitude lower.

In Figure 3 we can see the simulation runtime for both
the reference and optimized run. For the scenario with low
network traffic load, the runtime improves from 140s to 74s.
For the high traffic load scenario the runtime improves from
379s to 274s. Thereby the improvement lies between 27 %
and 47 %.

Apart from the average runtime, also minimum and max-
imum runtime are shown in this figure, thereby the red line
seems slightly thicker, whereas minimum and maximum run-
time are not visible for the blue line. Apparently, reducing the
amount of events does reduce the amount of context switches
and thereby the deviation of the runtime further decreases.

Figure 4 shows the event counters for both TAG and NER
events, counted by the ns-3 federate. It is important to mention
that the reference and optimized run is drawn on two different
y-axis, which have scales that are different by one order

of magnitude. We see that with the optimized protocol, the
simulation can be executed using (much) less than factor 10
TAG and NER events.

Also it is interesting to highlight one detail: In the reference
version there are more NERs than TAGs, but in the optimized
version this flips and there are more TAGs issued, than
NERs. To fully understand this, it is important to know some
implementation details, because from the pure theory you
would assume that the counters for TAG and NER events
should be always equal: Firstly, in our implementation a NER
is not a direct result of a TAG, ns-3 does issue a NER(T)
for any newly scheduled event, telling the RTI that it has
to be granted to proceed to T at a later point in time. If a
later event is scheduled at the same time T, again a NER(T)
will be issued, but only one TAG grant will be necessary to
proceed. Secondly, the empty NER(_) calls in our setup are
not explicitly signaled but rather implicitly assumed.

In Table II the improvement for both runtime as well as
TAG and NER counters are displayed in percentage.

TABLE II
IMPROVEMENT FROM REFERENCE TO OPTIMIZED
Traffic (pkt/s) | Runtime (%) | TAG (%) | NER (%)
50 47.42 96.64 99.78
100 37.45 95.30 99.65
150 33.01 94.55 99.57
200 27.68 93.86 99.54

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the challenge of HLA
time-management overhead, where zero-lookahead, event-
heavy federates introduce unnecessary synchronization to the
conservative synchronization scheme, given the asymmetric
distribution of events. By introducing a preemptive execution
scheme, we enable the event-heavy federate to proceed spec-
ulatively up to its granted timestamp without repeated RTI
interactions, only preempting execution when a genuine cross-
federate event emerges. This easy-to-implement design prin-
ciple preserves HLA’s causality guarantees while dramatically
reducing the number of Next-Event-Request/Time-Advance-
Grant exchanges, and avoiding the complexity of rollbacks in
optimistic synchronization.

Our prototype implementation within MOSAIC, coupling
SUMO and ns-3, demonstrates a 25-50 % reduction in wall-
clock runtime, caused by an order-of-magnitude decrease in
synchronization messages, confirming the efficacy of preemp-
tive execution in realistic cellular-traffic co-simulations. De-
spite these gains, our implemented solution currently remains
for a single event-heavy federate, indicating the need for a
more generic framework where any federate can request the
privilege of preemptive execution. Looking ahead, we plan to
extend our evaluation to large-scale scenarios, and verify under
which circumstances more than one federate can make use of
the advantage that comes with preemptive execution.

As we build up on open-source projects, we contribute our
code for further investigations [12] [13].
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