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Abstract—Abstract—With the rapid development of network 

technology, people increasingly rely on WebRTC applications, 
resulting in exponential growth in network bandwidth. In modern 
operating systems, the design of the network stack prioritizes 
generality over efficiency in order to accommodate a wide range 
of hardwares. As a result, the existing architecture has gradually 
become a performance bottleneck. Therefore, this paper proposes 
a WebRTC protocol stack that integrates Linux XDP technology 
and improves existing WebRTC libraries, thereby offloading the 
processing of WebRTC packets from the conventional network 
stack to XDP programs and WebRTC libraries. Experimental 
results demonstrate that, compared to the existing architecture, 
the proposed approach improves packet processing efficiency by 
approximately 19.6 

Index Terms—WebRTC, network stack, XDP, Linux 
 

 
I. INTRODUCTION 

 
In the post-pandemic era, remote education and telecommut- 

ing have become part of daily life, boosting the use of instant 
messaging and remote desktop applications. Most rely on We- 
bRTC (Web Real-Time Communication) to transmit audio and 
video. Since WebRTC integrates multiple existing technologies 
and protocols, its growing traffic has made efficient resource 
allocation increasingly important. 

Today’s hosts mainly depend on the OS network stack, 
which prioritizes generality over efficiency and thus becomes 
a performance bottleneck. Solutions such as DPDK and XDP 
offload packet processing from the stack to reduce latency, but 
they are mostly used in servers or IoT, with little focus on real- 
time communication. High-end hardware is also impractical 
for ordinary users, creating a need for a “just right” solution 
that balances efficiency and cost. 

This paper proposes a WebRTC protocol stack that bypasses 
the Linux network stack. By integrating XDP programs into 
the kernel and enhancing two open-source WebRTC transport 
libraries—Libdatachannel and Libjuice—packet processing is 
shifted to XDP and the libraries, benefiting all applications 
built on this architecture. The approach improves efficiency en- 
tirely through software, without requiring hardware upgrades. 
By determining which tasks should run in XDP and which in 
user space, the system achieves about a 19.6% gain in packet 
processing efficiency, offering a practical solution for legacy 
devices. 

 

 
 

Fig. 1. The three XDP modes 
 
 

II. BACKGROUND 

A. eXpress Data Path 

XDP is a high-speed packet processing mechanism built on 
eBPF (extended Berkeley Packet Filter). eBPF allows small 
code snippets to be dynamically inserted into the Linux kernel, 
providing easier development and higher security than kernel 
modules. 

Figure 1 (right) shows how the Linux OS processes packets. 
Depending on NIC support, XDP has three modes: Hardware, 
Native, and Generic. 

As shown on the left side of Figure 1, Hardware XDP runs 
before packets enter the kernel space [9]. Because programs 
execute directly on the NIC, it offers the highest efficiency. 
However, only certain smart NICs support it, and both eBPF 
maps and helper functions are limited, restricting development 
[10]. 

Native XDP is triggered when packets enter the RX queue, 
and its operation depends on whether the net-work card driver 
provides support. At present, most high-speed network cards 
(10 Gbps and above) sup-ported in the Linux operating system 
include such functionality. 

Generic XDP runs after packets leave the driver and before 
entering the network stack. It is the least efficient but requires 
no hardware support, making it the most flexible and cost- 
effective option. 

Different XDP types fit different scenarios. Since most 
consumer devices lack high-end NICs, this paper uses Generic 
XDP. XDP programs can drop packets, pass them to the stack, 
or redirect them to user space. For redirection, packets go 
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through an AF XDP socket (XSK), bypassing the stack. If 
the program does not modify the packet, user space receives 
a pointer to the Layer 2 header. 

B. WebRTC 
WebRTC is an open-source real-time communication tech- 

nology based on a peer-to-peer (P2P) architecture. Most appli- 
cations run as web apps and only require mainstream browsers. 
Instead, some WebRTC applications are still implemented as 
as native apps, where developers can use existing libraries or 
write their own code to interact with the OS. In order to enable 
WebRTC applications to receive packets from Generic XDP, 
this paper adopts such an architecture. 

WebRTC libraries are mainly divided into three compo- 
nents: the voice engine, the video engine, and the transport 
module. This paper focuses on the transport component. 

C. Libdatachannel 
Libdatachannel is an open-source WebRTC transport li- 

brary implemented in C++, designed to facilitate WebRTC 
connection-related procedures. The PeerConnection class de- 
fines numerous methods, and each time a PeerConnection in- 
stance is created, it is equivalent to initializing a corresponding 
WebRTC agent. 

D. Libjuice 
Libjuice is a submodule of Libdatachannel that handles ICE 

connection procedures. Because it relies on socket APIs and 
system calls, it is implemented in C for direct interaction with 
the Linux kernel. 

Whenever a WebRTC agent enters the connection phase 
in preparation for ICE connectivity, it must first initialize a 
corresponding ICE agent. The Libjuice library accomplishes 
this initialization by creating an instance of the juice agent 
structure. Once initialization is complete, the Libdatachannel 
library immediately requests candidates from it. The ICE agent 
first obtains the IP address of the network host and then creates 
a UDP socket to acquire a port number assigned by the Linux 
kernel. Together, the IP address and port constitute a host 
candidate. 

III. SYSTEM IMPLEMENTATION 
A. System Architecture 

In Figure 2, the yellow and green arrows show the receiving 
and transmitting paths of WebRTC packets. On the receiving 
path, packets are processed by Generic XDP; on the trans- 
mitting path, outgoing data is handled by the usual network 
stack. The blue blocks (WebRTC libraries and Generic XDP) 
mark the main areas of implementation and improvement in 
this paper. 

B. Packet Receiving Path 
1) Packet Interception: Figure 3 (right) shows the existing 

WebRTC packet workflow: the NIC driver and network stack 
process Layer 2–4 headers and deliver the sender’s IP, port, 
and Layer 4 data to Libjuice via the socket API. In contrast, 

 

 
 

Fig. 2. System Architecture 
 

 
Fig. 3. WebRTC Packet Receiving Path with Generic XDP 

 
 

with the proposed XDP program and eBPF hook attached to 
the NIC, all incoming Ethernet frames are intercepted and 
processed directly by XDP (Figure 3, left). 

XDP does not directly access Ethernet frame contents; it 
obtains packet information via the xdp md structure. The data 
and data end pointers mark the frame’s start and end. Using 
pointer arithmetic, an XDP program can parse headers and 
decide whether to redirect the frame to Libjuice. If redirection 
is chosen, the Libjuice library receives the starting address of 
the Ethernet frame (of type void *). 

If the XDP program intercepts all Ethernet frames, how 
can other user space applications that rely on the existing 
architecture (i.e., the network stack) receive data? 

2) Packet Classification: The XDP program implemented 
in this paper classifies all intercepted Ethernet frames into two 
catego-ries: those redirected to the Libjuice library and those 
passed back to the network stack. 

To reduce processing time, the XDP program uses a two- 
stage classification: (1) check if the packet is UDP; if not, 
return it to the network stack; (2) if UDP, verify the destination 
port against Libjuice’s port—redirect if it matches, otherwise 
return it to the stack. 

At this point, a critical question arises: how does the 
XDP program determine the port currently being used by the 
Libjuice library? 

When the XDP program implemented in this paper is 
loaded into the Linux kernel, two eBPF maps are created 
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Fig. 4. Pointer Operations in the XDP Program 
 
 

simultaneously: 
• xsk map: This map uses the RX queue index as the 

key and the corresponding XSK file descriptor as the 
value. Since a single NIC may have multiple RX queues, 
this design allows the XDP program to redirect Ethernet 
frames from different RX queues to their respective 
XSKs. In this paper, however, all RX queues of the NIC 
are mapped to the same XSK, which corresponds to the 
single XSK used in the Libjuice library. 

• wss map: This map uses the port number as the key and 
the corresponding recv rb ad-dress as the value (with 
recv rb explained in Section 3.2.4). Each time an ICE 
agent successfully establishes a UDP socket, a record is 
written, and the record is removed before the UDP socket 
is closed. 

Suppose an ICE agent successfully establishes a UDP socket 
with port 9000. The ICE agent then writes its recv rb address 
into wss map[9000]. From that point on, whenever the XDP 
program implemented in this paper parses the destination port 
field, it uses the value to check whether a corresponding key 
exists in wss map. All UDP packets with a destination port of 
9000 are redirected to the Libjuice library’s XSK, while the 
remaining packets are passed back to the network stack for 
processing 

In the conn poll mode, the number of entries in wss map 
equals the number of UDP sockets currently used by the 
Libjuice library. Since eBPF maps store data in key-value 
pairs, the lookup time complexity remains O(1) regardless of 
the current connection scale. 

3) Packet Content Simplification: In the implementation of 
XDP, the XSK only receives a pointer and a positive integer, 
corresponding to the starting address and length of the Ethernet 
frame, respectively, as shown in the first packet of Figure 4. 
This means that the Libjuice library must reparse the Layer 2 
to Layer 4 headers on its own in order to obtain the required 
fields and data, which results in a lengthy packet processing 
workflow and unnecessary overhead. To address this, the XDP 
program implemented in this paper modifies the contents and 

the data pointer of Ethernet frames that are scheduled to be 
redirected to the XSK. 

First, the XDP program sequentially parses the Layer 2 to 
Layer 4 headers to compute the starting address of the UDP 
data, and assigns this address to the data pointer, resulting 
in conn registry structure, of which only a single instance 
exists globally, serving as the manager for all ICE agents. This 
instance is dynamically allocated using the malloc() function, 
and its address is assigned to a pointer named registry. Its 
lifetime begins when the first ICE agent is initialized and ends 
when the last ICE agent is released. Each time an ICE agent 
is initialized, its address must be registered in the registry, and 
all ICE agents also store the address of the registry, forming 
a bidirectional association. 

To enable the Libjuice library to receive packets from the 
XDP program via the XSK, this paper defines an xdp info 
structure, of which only a single instance exists globally. It 
is dynamically allocated using the malloc() function when the 
registry is created, and its address is assigned to a pointer 
named juice xdp (one of the member variables of registry). 
Its lifetime begins when the registry is created and ends when 
the registry is released, forming a unidirectional composition 
relationship between the two. When juice xdp is created, its 
initialization procedure is as follows: 

1) Obtain the file descriptor of xsk map: Since Step 5 will 
write data into xsk map, the XDP program implemented 
in this paper must first be loaded into the Linux kernel 
in order to successfully obtain its file descriptor. 

2) Obtain the file descriptor of wss map: As described in 
Section 3.2.2, the contents of wss map must be updated 
whenever a UDP socket is created or closed. 

3) Create UMEM: UMEM is a shared memory region 
allocated in user space, used to temporarily store the 
contents of packets redirected by the XDP program. 

4) Create the XSK: The xsk socket create() function is 
used to create the XSK. Once created, its file descriptor 
is obtained, and its address is assigned to a pointer 
named xsk. 

5) Bind the XSK to all RX queues: As described in Section 
3.2.2, the indices of all RX queues of the NIC and the 
file descriptor of the XSK are written into xsk map. Af- 
ter binding is completed, the XDP program can identify 
the redirection target and write the packet contents into 
the UMEM corresponding to the XSK. 

6) Write all available addresses into the fill ring: The 
fill ring is a Single-Producer-Single-Consumer (SPSC) 
ring buffer located within the UMEM, used to record 
the currently available UMEM addresses for the XDP 
program to write into. Since the UMEM has just been 
initialized and no regions have yet been written by the 
XDP program, all regions are in the available state. 
Therefore, in this step, the fill ring is filled all at once. 

When a WebRTC application establishes two WebRTC 
connections, the architecture shown in Figure 5 is formed. The 
Libdatachannel library creates two PeerConnection instances 
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Fig. 5. Architecture with Two WebRTC Connections 
 

 
Fig. 6. Packet Transmission Path and the Read/Write Process of the Fill Ring 

 
 

(i.e., WebRTC agents), each of which owns a juice agent 
instance (i.e., ICE agent). Since the Libjuice library adopts 
the conn poll mode, each ICE agent has its own UDP socket, 
which is managed by a conn impl structure. 

The green solid arrows in Figure 6 represent the packet 
transmission path. This paper retains the existing architecture, 
where packets are transmitted through their respective UDP 
sockets. However, in the case of packet reception, all packets 
are first received collectively by the juice xdp implemented in 
this paper and are then further distributed to the corresponding 
ICE agents. 

Whenever there is an available address in the UMEM, 
juice xdp writes the address into the fill ring (yellow dashed 
arrow (1) in Figure 6). Before the XDP program can write 
packet contents into the UMEM, it must first read an available 
address from the fill ring (yellow dashed arrow (2) in Figure 6). 
If the fill ring is empty, it indicates that no region is currently 
available for writing. Therefore, the producer and consumer of 
the fill ring are juice xdp and the XDP program, respectively. 
After the XDP program reads an available address from the 
fill ring, it writes the packet contents to that address (yellow 
solid arrow (1) in Figure 7). Once the write is completed, the 
XDP program writes the ad-dress into the RX ring belonging 
to juice xdp (yellow dashed arrow (2) in Figure 7). The RX 
ring is also an SPSC ring buffer, monitored by a polling thread 
to check for new contents. When the polling thread detects 
readable data in the RX ring, it calls the relevant functions 
of juice xdp to perform packet reception and subsequent 
distribution. Therefore, the producer and consumer of the RX 
ring are the XDP program and juice xdp, respectively. 

On the other hand, to receive packets distributed by 

Fig. 7. Process of juice xdp Obtaining Packet Contents from the RX Ring 

 

 
Fig. 8. Process of juice xdp Distributing Packets to ICE Agents 

 

 
juice xdp, this paper defines an SPSC ring buffer named 
recv rb for each ICE agent (PC1 and PC2 in Figure 8), 
replacing the original design in which UDP data was received 
directly through the UDP socket. However, when multiple ICE 
agents exist simultaneously, how does juice xdp determine to 
which recv rb the received packet should be distributed? 

When juice xdp obtains an address from the RX ring, the 
packet at that address has the format shown in the third packet 
of Figure 4. In the wss metadata block, there is a field named 
xdp agent rb ptr, which stores the address of the correspond- 
ing recv rb. Through this field, juice xdp can determine, via 
pointer operations, to which ICE agent’s recv rb the packet 
should be distributed. 

In the original Libjuice library, conn impl returns the sender 
information (of type addr record structure) and the UDP data 
(of type char *) to the ICE agent. To preserve the original 
architecture, juice xdp fills part of the wss metadata fields into 
addr record, and sets the data pointer to the starting address 
of the UDP data before returning it (by writing into recv rb). 
The original design, in which the polling thread monitored 
the UDP socket, is no longer used; instead, it now monitors 
the RX ring and each recv rb, for a total of (number of ICE 
agents + 1) targets. Therefore, it can be concluded that the 
producer of each rec rb is juice xdp, while the consumer is 
the corresponding ICE agent. 

As for why the addr record is not inserted in front of the 
UDP data during the XDP program stage, but instead the 
wss metadata is inserted, there are two main considerations: 
First, the headroom area at the beginning of the packet 
is limited, and inserting the addr record would cause the 
XDP program to fail the verification of the eBPF Verifier. 
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Fig. 9. Process of juice xdp Recycling UMEM Addresses 

 
 

Second, most fields in the addr record are unused, and directly 
inserting it would result in significant space waste. 

After the upper-layer application finishes processing the 
UDP data, conn impl notifies juice xdp that the address has 
been used (yellow dashed arrow (1) in Figure 9). Next, 
juice xdp performs a recycling operation on the address, 
marking it as available again (yellow dashed arrow (2) in 
Figure 9), and then writes the address back into the fill ring to 
provide the XDP program with space for writing new packet 
contents (yellow dashed arrow (3) in Figure 9). At this point, 
the process returns to the initial state shown in Figure 6. 

It is worth noting that in Figures 6 to 9, the solid ar-rows 
represent the access of packet data, while the dashed arrows 
represent the access of memory ad-dresses. To minimize the 
overhead of data copying, most of the processes rely on pointer 
operations to improve packet processing efficiency. 

To maintain a modular and low-coupling design, most of the 
XSK-related implementations are concentrated in the two files 
xsk.c and xsk.h. Only a small number of existing files (such as 
conn.h, which declares conn registry) require modifications, 
and these are conditionally compiled using the CMake flag 
USE XDP to minimize the impact on the original logic of the 
Libjuice library. 

C. XDP Program Implementation 
The XDP program mainly relies on pointer operations to 

parse packet contents. However, due to the strict verification 
mechanism of the eBPF Verifier, every pointer operation must 
guarantee that it will not cause illegal memory access. For 
example, before accessing the IPv4 header, it is necessary to 
check whether the data pointer plus the IPv4 header length 
is less than the data end pointer. Only if this condition is 
satisfied can the XDP program legally access that memory 
region; otherwise, the eBPF Verifier will reject the loading of 
the XDP program. 

The packet in Figure 10 has the same format as the third 
packet in Figure 4, which is prepared for redirection to the 
Libjuice library. In the wss metadata block, the types used are 
not the common C language types such as short, int, or long, 
but rather the fixed-width integer types defined by the Linux 
kernel. The reason is that the actual size of traditional types 
may vary across different architectures. For example, the long 
type occupies 8 bytes in a 64-bit environment but only 4 bytes 

 
Fig. 10. Figure 10. Member Variables of wss metadata and addr record 

 
 

in a 32-bit environment. To ensure that each variable maintains 
consistent size and alignment across different architectures, 
Linux kernel-level code commonly uses fixed-width types. 

When the XDP program determines that an Ether-net frame 
should be redirected to the Libjuice library, it writes the 
queried recv rb address into the xdp agent rb ptr field of 
wss metadata, to be used later by juice xdp for distribution. 
To avoid errors in recording the recv rb address caused 
by differences in memory address formats and sizes across 
architectures, the Libjuice library must first cast the address 
to the uintptr t type before writing it into wss map, ensuring 
that the original address can be correctly represented. It is 
then cast to the  u64 type to match the type definition of the 
xdp agent rb ptr field. 

As for the remaining fields in wss metadata, they must 
be obtained by parsing the headers of the Ethernet frame. 
The fields enclosed by the blue brackets in Figure 10 are all 
intended to provide the necessary information for the Libjuice 
library to construct the addr record. Among them, the sender’s 
IP address is represented as a union structure, which contains 
fields for both IPv4 and IPv6 protocols to ensure correct 
recording. 

If the Layer 3 protocol of the Ethernet frame is IPv4, 
the XDP program must first parse the header length field to 
calculate the correct header length, and then perform pointer 
operations based on this length. If the result is less than 20 
bytes or greater than 60 bytes, it is considered invalid and the 
packet is immediately dropped. If the protocol is IPv6, since 
its header length is fixed at 40 bytes, the issue of variable 
length does not need to be considered. 

D. The New Protocal Stack 
The WebRTC protocol stack proposed in this paper aims to 

offload the processing of UDP packets from the network stack 
to the XDP program and the Libjuice library. The details are 
shown in Table 1. 

Since the main traffic of WebRTC applications consists 
of multimedia messages, they can generally tolerate the loss 
of individual packets or short-term interruptions in audio 
and video without significantly affecting the user experience. 
Therefore, in pursuit of overall efficiency, this protocol stack 
ignores the UDP checksum and length verification to minimize 
packet processing time as much as possible. 
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TABLE I 
PACKET PROCESSING TASKS OF THE PROPOSED PROTOCOL STACK AND 

THEIR OFFLOAD TARGETS 
 

Protocol Task Offload Target 
 

IPv4 
Check header length XDP program 
Check total length – 

IPv4 checksum XDP program 
Deliver to corresponding agent Libjuice library 

 
IPv6 

Check header length XDP program 
Check total length – 

UDP checksum – 
Deliver to corresponding agent Libjuice library 

 
 
 
 

IV. EXPERIMENTAL RESULTS 

In this section, a WebRTC screen-sharing application is 
implemented. By measuring packet processing time, the per- 
formance differences between the architecture proposed in this 
paper and the existing architecture (using the Linux network 
stack) are compared. 

The application consists of a sender and a receiver, where 
the sender transmits its screen display, and the receiver is 
responsible for receiving and rendering the display. Since this 
paper does not involve the architecture of packet transmission, 
the sender is implemented as a web application consisting 
only of an HTML file with embedded JavaScript, hosted on 
localhost:8000 and executed using the Firefox browser. The 
system resources required for screen transmission are allocated 
by the browser, and even under different hardware config- 
urations, the allocated network bandwidth and performance 
are generally consistent, having no direct correlation with the 
hardware specifications. 

The receiver is implemented as a native application written 
in C++, using the GStreamer library as the voice engine and 
video engine. As described in Section III.B.4, the architec- 
ture proposed in this paper introduces a CMake flag named 
USE XDP, which allows switching between Libdatachannel 
and Libjuice libraries during the build stage: if US XDP is set 
to 1, the proposed protocol stack is used to process packets; if 
USE XDP is set to 0, the Linux network stack continues to be 
used for packet processing. This design not only simplifies the 
testing process but also ensures that, with identical upper-layer 
code, a fair comparison of packet processing time between the 
two methods can be achieved. 

 
TABLE II 

THE EXPERIMENTAL RESULTS. 
 

 Experimental Group Control Group 
Maximum 54,053 ns 73,709 ns 
Q3 (P75) 30,045 ns 39,715 ns 

Median (P50) 18,325 ns 23,029 ns 
Q1 (P25) 13,293 ns 15,590 ns 
Minimum 4,068 ns 2,424 ns 

 

 

This experiment executed the application three times, 
recording the timestamps of the first 500 packets in each run. 
Table 2 presents the results after removing outliers, with 1,378 

 

 
 

Fig. 11. Histogram of Packet Processing Time Distribution for the Experi- 
mental and Control Groups 

 
 

valid data points retained for the experimental group and 1,308 
for the control group (out of the original 1,500) 

Figure 11 shows the results of grouping the data into 
intervals of 5,000 ns. Each interval in the figure represents 
the proportion of packets whose processing time falls within a 
specific range. For example, the interval of 15,000 ns indicates 
packets with processing times between 15,001 and 20,000 ns, 
where our XDP-based network stack and the original Linux 
network stack account for 30.91% and 23.47% of the total 
packets, respectively. To determine the proportion of packets 
with processing times below 20,000 ns, the intervals to the left 
of the dashed line are summed, yielding 65.67% for our XDP- 
based solution and 50.16% for the Linux network stack. This 
reflects that the packet processing times of our XDP-based 
solution are more concentrated in the low-latency range. In 
terms of tail latency, nearly 2% of the packets in the Linux 
network stack are distributed above 55,000 ns. 

V. CONCLUSION 
This paper proposed a WebRTC protocol stack combined 

with Linux XDP technology, enabling WebRTC packets to 
bypass the Linux network stack, be initially parsed directly 
by the XDP program, and then distributed by the Libjuice 
library in user space. This method improves packet processing 
efficiency by 19.6%. 
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