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Abstract—Abstract—With the rapid development of network
technology, people increasingly rely on WebRTC applications,
resulting in exponential growth in network bandwidth. In modern
operating systems, the design of the network stack prioritizes
generality over efficiency in order to accommodate a wide range
of hardwares. As a result, the existing architecture has gradually
become a performance bottleneck. Therefore, this paper proposes
a WebRTC protocol stack that integrates Linux XDP technology
and improves existing WebRTC libraries, thereby offloading the
processing of WebRTC packets from the conventional network
stack to XDP programs and WebRTC libraries. Experimental
results demonstrate that, compared to the existing architecture,
the proposed approach improves packet processing efficiency by
approximately 19.6

Index Terms—WebRTC, network stack, XDP, Linux

I. INTRODUCTION

In the post-pandemic era, remote education and telecommut-
ing have become part of daily life, boosting the use of instant
messaging and remote desktop applications. Most rely on We-
bRTC (Web Real-Time Communication) to transmit audio and
video. Since WebRTC integrates multiple existing technologies
and protocols, its growing traffic has made efficient resource
allocation increasingly important.

Today’s hosts mainly depend on the OS network stack,
which prioritizes generality over efficiency and thus becomes
a performance bottleneck. Solutions such as DPDK and XDP
offload packet processing from the stack to reduce latency, but
they are mostly used in servers or loT, with little focus on real-
time communication. High-end hardware is also impractical
for ordinary users, creating a need for a “just right” solution
that balances efficiency and cost.

This paper proposes a WebRTC protocol stack that bypasses
the Linux network stack. By integrating XDP programs into
the kernel and enhancing two open-source WebRTC transport
libraries—Libdatachannel and Libjuice—packet processing is
shifted to XDP and the libraries, benefiting all applications
built on this architecture. The approach improves efficiency en-
tirely through software, without requiring hardware upgrades.
By determining which tasks should run in XDP and which in
user space, the system achieves about a 19.6% gain in packet
processing efficiency, offering a practical solution for legacy
devices.
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II. BACKGROUND

A. eXpress Data Path

XDP is a high-speed packet processing mechanism built on
eBPF (extended Berkeley Packet Filter). eBPF allows small
code snippets to be dynamically inserted into the Linux kernel,
providing easier development and higher security than kernel
modules.

Figure 1 (right) shows how the Linux OS processes packets.
Depending on NIC support, XDP has three modes: Hardware,
Native, and Generic.

As shown on the left side of Figure 1, Hardware XDP runs
before packets enter the kernel space [9]. Because programs
execute directly on the NIC, it offers the highest efficiency.
However, only certain smart NICs support it, and both eBPF
maps and helper functions are limited, restricting development
[10].

Native XDP is triggered when packets enter the RX queue,
and its operation depends on whether the net-work card driver
provides support. At present, most high-speed network cards
(10 Gbps and above) sup-ported in the Linux operating system
include such functionality.

Generic XDP runs after packets leave the driver and before
entering the network stack. It is the least efficient but requires
no hardware support, making it the most flexible and cost-
effective option.

Different XDP types fit different scenarios. Since most
consumer devices lack high-end NICs, this paper uses Generic
XDP. XDP programs can drop packets, pass them to the stack,
or redirect them to user space. For redirection, packets go
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through an AF_XDP socket (XSK), bypassing the stack. If
the program does not modify the packet, user space receives
a pointer to the Layer 2 header.

B. WebRTC

WebRTC is an open-source real-time communication tech-
nology based on a peer-to-peer (P2P) architecture. Most appli-
cations run as web apps and only require mainstream browsers.
Instead, some WebRTC applications are still implemented as
as native apps, where developers can use existing libraries or
write their own code to interact with the OS. In order to enable
WebRTC applications to receive packets from Generic XDP,
this paper adopts such an architecture.

WebRTC libraries are mainly divided into three compo-
nents: the voice engine, the video engine, and the transport
module. This paper focuses on the transport component.

C. Libdatachannel

Libdatachannel is an open-source WebRTC transport li-
brary implemented in C++, designed to facilitate WebRTC
connection-related procedures. The PeerConnection class de-
fines numerous methods, and each time a PeerConnection in-
stance is created, it is equivalent to initializing a corresponding
WebRTC agent.

D. Libjuice

Libjuice is a submodule of Libdatachannel that handles ICE
connection procedures. Because it relies on socket APIs and
system calls, it is implemented in C for direct interaction with
the Linux kernel.

Whenever a WebRTC agent enters the connection phase
in preparation for ICE connectivity, it must first initialize a
corresponding ICE agent. The Libjuice library accomplishes
this initialization by creating an instance of the juice_agent
structure. Once initialization is complete, the Libdatachannel
library immediately requests candidates from it. The ICE agent
first obtains the IP address of the network host and then creates
a UDP socket to acquire a port number assigned by the Linux
kernel. Together, the IP address and port constitute a host
candidate.

III. SYSTEM IMPLEMENTATION
A. System Architecture

In Figure 2, the yellow and green arrows show the receiving
and transmitting paths of WebRTC packets. On the receiving
path, packets are processed by Generic XDP; on the trans-
mitting path, outgoing data is handled by the usual network
stack. The blue blocks (WebRTC libraries and Generic XDP)
mark the main areas of implementation and improvement in
this paper.

B. Packet Receiving Path

1) Packet Interception: Figure 3 (right) shows the existing
WebRTC packet workflow: the NIC driver and network stack
process Layer 2—4 headers and deliver the sender’s IP, port,
and Layer 4 data to Libjuice via the socket API. In contrast,
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Fig. 3. WebRTC Packet Receiving Path with Generic XDP

with the proposed XDP program and eBPF hook attached to
the NIC, all incoming Ethernet frames are intercepted and
processed directly by XDP (Figure 3, left).

XDP does not directly access Ethernet frame contents; it
obtains packet information via the xdp_md structure. The data
and data_end pointers mark the frame’s start and end. Using
pointer arithmetic, an XDP program can parse headers and
decide whether to redirect the frame to Libjuice. If redirection
is chosen, the Libjuice library receives the starting address of
the Ethernet frame (of type void *).

If the XDP program intercepts all Ethernet frames, how
can other user space applications that rely on the existing
architecture (i.e., the network stack) receive data?

2) Packet Classification: The XDP program implemented
in this paper classifies all intercepted Ethernet frames into two
catego-ries: those redirected to the Libjuice library and those
passed back to the network stack.

To reduce processing time, the XDP program uses a two-
stage classification: (1) check if the packet is UDP; if not,
return it to the network stack; (2) if UDP, verify the destination
port against Libjuice’s port—redirect if it matches, otherwise
return it to the stack.

At this point, a critical question arises: how does the
XDP program determine the port currently being used by the
Libjuice library?

When the XDP program implemented in this paper is
loaded into the Linux kernel, two ¢BPF maps are created
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simultaneously:

- xsk_map: This map uses the RX queue index as the
key and the corresponding XSK file descriptor as the
value. Since a single NIC may have multiple RX queues,
this design allows the XDP program to redirect Ethernet
frames from different RX queues to their respective
XSKs. In this paper, however, all RX queues of the NIC
are mapped to the same XSK, which corresponds to the
single XSK used in the Libjuice library.

- wss_map: This map uses the port number as the key and
the corresponding recv_rb ad-dress as the value (with
recv_rb explained in Section 3.2.4). Each time an ICE
agent successfully establishes a UDP socket, a record is
written, and the record is removed before the UDP socket
is closed.

Suppose an ICE agent successfully establishes a UDP socket
with port 9000. The ICE agent then writes its recv_rb address
into wss_map[9000]. From that point on, whenever the XDP
program implemented in this paper parses the destination port
field, it uses the value to check whether a corresponding key
exists in wss_map. All UDP packets with a destination port of
9000 are redirected to the Libjuice library’s XSK, while the
remaining packets are passed back to the network stack for
processing

In the conn_poll mode, the number of entries in wss_map
equals the number of UDP sockets currently used by the
Libjuice library. Since eBPF maps store data in key-value
pairs, the lookup time complexity remains O(1) regardless of
the current connection scale.

3) Packet Content Simplification: In the implementation of
XDP, the XSK only receives a pointer and a positive integer,
corresponding to the starting address and length of the Ethernet
frame, respectively, as shown in the first packet of Figure 4.
This means that the Libjuice library must reparse the Layer 2
to Layer 4 headers on its own in order to obtain the required
fields and data, which results in a lengthy packet processing
workflow and unnecessary overhead. To address this, the XDP
program implemented in this paper modifies the contents and

441

the data pointer of Ethernet frames that are scheduled to be
redirected to the XSK.

First, the XDP program sequentially parses the Layer 2 to
Layer 4 headers to compute the starting address of the UDP
data, and assigns this address to the data pointer, resulting
in conn registry structure, of which only a single instance
exists globally, serving as the manager for all ICE agents. This
instance is dynamically allocated using the malloc() function,
and its address is assigned to a pointer named registry. Its
lifetime begins when the first ICE agent is initialized and ends
when the last ICE agent is released. Each time an ICE agent
is initialized, its address must be registered in the registry, and
all ICE agents also store the address of the registry, forming
a bidirectional association.

To enable the Libjuice library to receive packets from the
XDP program via the XSK, this paper defines an xdp_info
structure, of which only a single instance exists globally. It
is dynamically allocated using the malloc() function when the
registry is created, and its address is assigned to a pointer
named juice_xdp (one of the member variables of registry).
Its lifetime begins when the registry is created and ends when
the registry is released, forming a unidirectional composition
relationship between the two. When juice_xdp is created, its
initialization procedure is as follows:

1) Obtain the file descriptor of xsk_map: Since Step 5 will
write data into xsk_map, the XDP program implemented
in this paper must first be loaded into the Linux kernel
in order to successfully obtain its file descriptor.

2) Obtain the file descriptor of wss_map: As described in
Section 3.2.2, the contents of wss_map must be updated
whenever a UDP socket is created or closed.

3) Create UMEM: UMEM is a shared memory region
allocated in user space, used to temporarily store the
contents of packets redirected by the XDP program.

4) Create the XSK: The xsk_socket_create() function is
used to create the XSK. Once created, its file descriptor
is obtained, and its address is assigned to a pointer
named xsk.

5) Bind the XSK to all RX queues: As described in Section
3.2.2, the indices of all RX queues of the NIC and the
file descriptor of the XSK are written into xsk_map. Af-
ter binding is completed, the XDP program can identify
the redirection target and write the packet contents into
the UMEM corresponding to the XSK.

6) Write all available addresses into the fill ring: The
fill ring is a Single-Producer-Single-Consumer (SPSC)
ring buffer located within the UMEM, used to record
the currently available UMEM addresses for the XDP
program to write into. Since the UMEM has just been
initialized and no regions have yet been written by the
XDP program, all regions are in the available state.
Therefore, in this step, the fill ring is filled all at once.

When a WebRTC application establishes two WebRTC
connections, the architecture shown in Figure 5 is formed. The
Libdatachannel library creates two PeerConnection instances
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(i.e., WebRTC agents), each of which owns a juice_agent
instance (i.e., ICE agent). Since the Libjuice library adopts
the conn_poll mode, each ICE agent has its own UDP socket,
which is managed by a conn_impl structure.

The green solid arrows in Figure 6 represent the packet
transmission path. This paper retains the existing architecture,
where packets are transmitted through their respective UDP
sockets. However, in the case of packet reception, all packets
are first received collectively by the juice_xdp implemented in
this paper and are then further distributed to the corresponding
ICE agents.

Whenever there is an available address in the UMEM,
juice_xdp writes the address into the fill ring (yellow dashed
arrow (1) in Figure 6). Before the XDP program can write
packet contents into the UMEM, it must first read an available
address from the fill ring (yellow dashed arrow (2) in Figure 6).
If the fill ring is empty, it indicates that no region is currently
available for writing. Therefore, the producer and consumer of
the fill ring are juice_xdp and the XDP program, respectively.
After the XDP program reads an available address from the
fill ring, it writes the packet contents to that address (yellow
solid arrow (1) in Figure 7). Once the write is completed, the
XDP program writes the ad-dress into the RX ring belonging
to juice_xdp (yellow dashed arrow (2) in Figure 7). The RX
ring is also an SPSC ring buffer, monitored by a polling thread
to check for new contents. When the polling thread detects
readable data in the RX ring, it calls the relevant functions
of juice_xdp to perform packet reception and subsequent
distribution. Therefore, the producer and consumer of the RX
ring are the XDP program and juice xdp, respectively.

On the other hand, to receive packets distributed by
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juice_xdp, this paper defines an SPSC ring buffer named
recv_rb for each ICE agent (PCl and PC2 in Figure 8),
replacing the original design in which UDP data was received
directly through the UDP socket. However, when multiple ICE
agents exist simultaneously, how does juice_xdp determine to
which recv_rb the received packet should be distributed?

When juice_xdp obtains an address from the RX ring, the
packet at that address has the format shown in the third packet
of Figure 4. In the wss_metadata block, there is a field named
xdp_agent_rb_ptr, which stores the address of the correspond-
ing recv_rb. Through this field, juice_xdp can determine, via
pointer operations, to which ICE agent’s recv_rb the packet
should be distributed.

In the original Libjuice library, conn_impl returns the sender
information (of type addr_record structure) and the UDP data
(of type char *) to the ICE agent. To preserve the original
architecture, juice_xdp fills part of the wss_metadata fields into
addr_record, and sets the data pointer to the starting address
of the UDP data before returning it (by writing into recv_rb).
The original design, in which the polling thread monitored
the UDP socket, is no longer used; instead, it now monitors
the RX ring and each recv_rb, for a total of (number of ICE
agents + 1) targets. Therefore, it can be concluded that the
producer of each rec_rb is juice_xdp, while the consumer is
the corresponding ICE agent.

As for why the addr record is not inserted in front of the
UDP data during the XDP program stage, but instead the
wss_metadata is inserted, there are two main considerations:
First, the headroom area at the beginning of the packet
is limited, and inserting the addr_record would cause the
XDP program to fail the verification of the eBPF Verifier.
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Second, most fields in the addr_record are unused, and directly
inserting it would result in significant space waste.

After the upper-layer application finishes processing the
UDP data, conn_impl notifies juice_xdp that the address has
been used (yellow dashed arrow (1) in Figure 9). Next,
juice _xdp performs a recycling operation on the address,
marking it as available again (yellow dashed arrow (2) in
Figure 9), and then writes the address back into the fill ring to
provide the XDP program with space for writing new packet
contents (yellow dashed arrow (3) in Figure 9). At this point,
the process returns to the initial state shown in Figure 6.

It is worth noting that in Figures 6 to 9, the solid ar-rows
represent the access of packet data, while the dashed arrows
represent the access of memory ad-dresses. To minimize the
overhead of data copying, most of the processes rely on pointer
operations to improve packet processing efficiency.

To maintain a modular and low-coupling design, most of the
XSK-related implementations are concentrated in the two files
xsk.c and xsk.h. Only a small number of existing files (such as
conn.h, which declares conn_registry) require modifications,
and these are conditionally compiled using the CMake flag
USE_XDP to minimize the impact on the original logic of the
Libjuice library.

C. XDP Program Implementation

The XDP program mainly relies on pointer operations to
parse packet contents. However, due to the strict verification
mechanism of the eBPF Verifier, every pointer operation must
guarantee that it will not cause illegal memory access. For
example, before accessing the IPv4 header, it is necessary to
check whether the data pointer plus the IPv4 header length
is less than the data_end pointer. Only if this condition is
satisfied can the XDP program legally access that memory
region; otherwise, the eBPF Verifier will reject the loading of
the XDP program.

The packet in Figure 10 has the same format as the third
packet in Figure 4, which is prepared for redirection to the
Libjuice library. In the wss_metadata block, the types used are
not the common C language types such as short, int, or long,
but rather the fixed-width integer types defined by the Linux
kernel. The reason is that the actual size of traditional types
may vary across different architectures. For example, the long
type occupies 8 bytes in a 64-bit environment but only 4 bytes

<<struct>>
wss_metadata

__u8 src_ip_version
union {

_ u32 src_ipv4a

__u8 src_ipve[16]
}
__ulée src_port

__u64 xdp_agent_rb_ptr

i

| wss_metadata I

<<struct>>
addr_record

struct sockaddr_storage
socklen_t len

UDP data

Fig. 10. Figure 10. Member Variables of wss_metadata and addr_record

in a 32-bit environment. To ensure that each variable maintains
consistent size and alignment across different architectures,
Linux kernel-level code commonly uses fixed-width types.

When the XDP program determines that an Ether-net frame
should be redirected to the Libjuice library, it writes the
queried recv_rb address into the xdp_agent_rb_ptr field of
wss_metadata, to be used later by juice_xdp for distribution.
To avoid errors in recording the recv_rb address caused
by differences in memory address formats and sizes across
architectures, the Libjuice library must first cast the address
to the uintptr_t type before writing it into wss_map, ensuring
that the original address can be correctly represented. It is
then cast to the _u64 type to match the type definition of the
xdp_agent_rb_ptr field.

As for the remaining fields in wss_metadata, they must
be obtained by parsing the headers of the Ethernet frame.
The fields enclosed by the blue brackets in Figure 10 are all
intended to provide the necessary information for the Libjuice
library to construct the addr_record. Among them, the sender’s
IP address is represented as a union structure, which contains
fields for both IPv4 and IPv6 protocols to ensure correct
recording.

If the Layer 3 protocol of the Ethernet frame is IPv4,
the XDP program must first parse the header length field to
calculate the correct header length, and then perform pointer
operations based on this length. If the result is less than 20
bytes or greater than 60 bytes, it is considered invalid and the
packet is immediately dropped. If the protocol is IPv6, since
its header length is fixed at 40 bytes, the issue of variable
length does not need to be considered.

D. The New Protocal Stack

The WebRTC protocol stack proposed in this paper aims to
offload the processing of UDP packets from the network stack
to the XDP program and the Libjuice library. The details are
shown in Table 1.

Since the main traffic of WebRTC applications consists
of multimedia messages, they can generally tolerate the loss
of individual packets or short-term interruptions in audio
and video without significantly affecting the user experience.
Therefore, in pursuit of overall efficiency, this protocol stack
ignores the UDP checksum and length verification to minimize
packet processing time as much as possible.
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TABLE 1
PACKET PROCESSING TASKS OF THE PROPOSED PROTOCOL STACK AND

THEIR OFFLOAD TARGETS
Protocol Task Offload Target
Check header length XDP program
IPv4 Check total length —
IPv4 checksum XDP program
Deliver to corresponding agent | Libjuice library
Check header length XDP program
Check total length -
IPv6 UDP checksum —
Deliver to corresponding agent | Libjuice library

IV. EXPERIMENTAL RESULTS

In this section, a WebRTC screen-sharing application is
implemented. By measuring packet processing time, the per-
formance differences between the architecture proposed in this
paper and the existing architecture (using the Linux network
stack) are compared.

The application consists of a sender and a receiver, where
the sender transmits its screen display, and the receiver is
responsible for receiving and rendering the display. Since this
paper does not involve the architecture of packet transmission,
the sender is implemented as a web application consisting
only of an HTML file with embedded JavaScript, hosted on
localhost:8000 and executed using the Firefox browser. The
system resources required for screen transmission are allocated
by the browser, and even under different hardware config-
urations, the allocated network bandwidth and performance
are generally consistent, having no direct correlation with the
hardware specifications.

The receiver is implemented as a native application written
in C++, using the GStreamer library as the voice engine and
video engine. As described in Section III.B.4, the architec-
ture proposed in this paper introduces a CMake flag named
USE_XDP, which allows switching between Libdatachannel
and Libjuice libraries during the build stage: if US_XDP is set
to 1, the proposed protocol stack is used to process packets; if
USE_XDP is set to 0, the Linux network stack continues to be
used for packet processing. This design not only simplifies the
testing process but also ensures that, with identical upper-layer
code, a fair comparison of packet processing time between the
two methods can be achieved.

TABLE II
THE EXPERIMENTAL RESULTS.

Experimental Group | Control Group
Maximum 54,053 ns 73,709 ns
Q3 (P75) 30,045 ns 39,715 ns
Median (P50) 18,325 ns 23,029 ns
Q1 (P25) 13,293 ns 15,590 ns
Minimum 4,068 ns 2,424 ns

This experiment executed the application three times,
recording the timestamps of the first 500 packets in each run.
Table 2 presents the results after removing outliers, with 1,378
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Fig. 11. Histogram of Packet Processing Time Distribution for the Experi-
mental and Control Groups

valid data points retained for the experimental group and 1,308
for the control group (out of the original 1,500)

Figure 11 shows the results of grouping the data into
intervals of 5,000 ns. Each interval in the figure represents
the proportion of packets whose processing time falls within a
specific range. For example, the interval of 15,000 ns indicates
packets with processing times between 15,001 and 20,000 ns,
where our XDP-based network stack and the original Linux
network stack account for 30.91% and 23.47% of the total
packets, respectively. To determine the proportion of packets
with processing times below 20,000 ns, the intervals to the left
of the dashed line are summed, yielding 65.67% for our XDP-
based solution and 50.16% for the Linux network stack. This
reflects that the packet processing times of our XDP-based
solution are more concentrated in the low-latency range. In
terms of tail latency, nearly 2% of the packets in the Linux
network stack are distributed above 55,000 ns.

V. CONCLUSION

This paper proposed a WebRTC protocol stack combined
with Linux XDP technology, enabling WebRTC packets to
bypass the Linux network stack, be initially parsed directly
by the XDP program, and then distributed by the Libjuice
library in user space. This method improves packet processing
efficiency by 19.6%.
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