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Abstract—Race walking is a track and field discipline in which
athletes should maintain a state where at least one foot remains
in contact with the ground and always keep the supporting leg
straight, making its judging criteria stricter than other sports.
The judgment is currently performed visually by referees, which
requires specialized expertise and often remains difficult for
race walking beginners and race walkers who cannot access
instructors. In addition, since the population of race walking
athletes is relatively small, the number of qualified instructors
is limited. Existing studies propose an automated system for
detecting foul actions in race walking. For example, pressure
sensors are embedded in insoles to detect the time period when
both feet leave the ground. However, the reliability of the pressure
data deteriorates with the increase in the number of repeated use
because the sensors cannot withstand prolonged operation. In
addition, Al-based video analysis for pose estimation is proposed
to classify the type of foul actions. However, the target area of the
method is limited to the camera’s field of view and cannot cover
the entire field. To address these limitations, this study proposes
an automated system for detecting fouls in race walking. In the
proposed system, small non-intrusive sensors are attached to the
athlete, and the sensor data is analyzed to determine whether
the athlete’s form satisfies race walking rules. Focusing on the
temporal characteristics of the sensor data, the proposed system
adopts a Transformer-based model to detect fouls. Furthermore,
the system automatically generates training data for the model
by linking sensor measurements with accurate posture estimation
through Al-based image analysis in limited locations.

Index Terms—Race walking, machine learning, Transformer,
pose estimation

I. INTRODUCTION

In recent years, numerous studies are conducted in various
sports to analyze data obtained from various sensors and
cameras for refereeing and judging [1]. For example, in short-
distance running, starting blocks equipped with a sensing
system are used to confirm the correctness of the starting
conditions. This system measures the pressure applied by
athletes to the footplate and calculates the reaction time,
which is the time it takes for athletes to respond to the start
signal based on pressure changes. In this way, the system can
accurately determine the timing of the start and reliably detect
false starts [2]. However, in track and field, “race walking”
is the only sport event where form is judged exclusively
by referees through visual observation. The World Athletics

Hideaki Miyaji
Ritsumeikan University
College of Information
Science and Engineering

Osaka, Japan

429

Hiroshi Yamamoto
Ritsumeikan University
College of Information
Science and Engineering

Osaka, Japan

competition rules state that “all the Judges shall act in an
individual capacity and their judgments shall be based on
observations made by the human eye” [3]. Recently, the
organization is advancing the research of sensing technology
embedded in insoles to assist with judgment of foul actions
in race walking, but the system is under development [4]. For
athletes unfamiliar with the competition or for beginners, it is
often difficult to judge whether their actions follow the race
walking rules.

In the existing studies, various systems are researched and
developed to detect fouls by athletes of race walking. Jose P.
et al. propose a system that uses pressure sensors to detect the
condition where both feet are simultaneously off the ground
during race walking [5]. However, the repeated use of the
sensors causes the deterioration of the reliability of the sensor
data, making them unsuitable for long-term observation. As
a non-contact foul detection method, Suzuki et al. propose
an Al-based video analysis using a smartphone [6]. However,
this method cannot detect foul actions outside the field of view
of the camera, limiting the observation range and making it
impossible to cover the entire field.

Therefore, in this study, we propose a system that detects
foul actions in race walking based on data collected from
sensors attached to athletes in a non-intrusive manner. Specif-
ically, the system focuses on the time-series characteristics of
sensors and analyzes the sensor data from accelerometer and
gyroscope using a Transformer-based machine learning model
to detect a typical foul action, loss of contact, which both
feet are simultaneously off the ground. In addition, in order to
enable the automated construction of training data for machine
learning, the system is equipped with depth cameras installed
in limited locations on the field. From the captured depth
images, the system extracts the joint coordinates of athletes
to accurately estimate the occurrence of the foul action. The
estimation results are used as reliable ground-truth labels. By
linking these labels with sensor data, the system automatically
generates training dataset that enables the construction of a
robust model. To evaluate the effectiveness of the system, we
conduct a proof-of-concept experiment using actual data of
race walking athletes.
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II. RELATED RESEARCH AND OVERVIEW OF THIS SYSTEM

A. Research on sensor-based detection of fouls in race walk-
ing

In the existing study by Jose P. et al., a system is proposed
that uses pressure sensors to detect the timing when both
feet are simultaneously off the ground during race walking
[5]. To measure the pressure applied to the soles of the feet,
piezoresistive sensors are installed at multiple points on the
soles of the shoes. The timing when the pressure (voltage) of
all sensors falls below a predetermined threshold is detected
as the occurrence of the foul actions, loss of contact. In this
system, the pressure sensors produce unreliable data after
a certain number of trials, because the sensors can only
withstand a limited number of uses.

B. Research on non-wearable approaches to foul detection in
race walking

Suzuki et al. propose a method for detecting fouls by
analyzing videos recorded by smartphones [6]. By analyz-
ing the videos by utilizing the machine learning model, the
positions of joints of the athletes are estimated. And then,
the feature values for detecting fouls are calculated from the
estimated coordinates of each joint. By receiving the calculated
feature vector as an input, the model outputs whether the foul
is occurring or not. However, this proposed system has the
problem that it cannot detect fouls if the athletes are not within
the field of view of the camera.

C. Objective of our study

Existing research has limitations such as the insufficient
durability of the sensors and the limitation of observation
ranges. Therefore, in this study, we propose a new sensing
system that detects loss of contact by analyzing the sensor
data from sensor nodes that are attached to the athletes so that
their movements are not interfered with.

Specifically, the proposed system analyzes the time-series
characteristics of accelerometer and gyroscope data using a
Transformer-based machine learning model to detect the foul
actions. In addition, to enable the automated construction of
the machine learning model, the system utilizes depth cameras
installed in limited locations on the field. From the captured
depth images, the system extracts joint coordinates of athletes
and accurately detects fouls based on the relative positions of
both ankles. The detection results based on the depth camera
are used as reliable ground-truth labels. By linking these
labels with the sensor data, the system automatically generates
training data, thereby enabling the automated construction of
a robust model capable of detecting foul actions across the
entire competition field.

III. PROPOSED FOUL DETECTION SYSTEM

A. Overview of the proposed system

Figure 1 shows an overview of the proposed system. As
shown in this figure, the proposed system consists of athlete
sensor node, form observation node, and an analysis server.
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Fig. 1: Overview of proposed system.

The athlete sensor node consists of acceleration sensor and
gyroscope sensor worn by the athlete, and a smartphone that
transmits the data collected from the sensor to the analysis
server. The form observation node consists of a stereo camera
that captures depth images of the athletes and a computer that
analyzes the images for identifying the athletes’ precise form.

The smartphone that is a main component of the athlete
sensor node collects sensor data from the microcontroller
accommodating the sensors using BLE communication and
sends that data to the analysis server. The stereo cameras that
make up the form observation node capture the athletes’ form
and analyze it on the computer connected to the cameras. The
computer recognizes the joint coordinates by analyzing the
video received from the stereo camera. The analysis server
constructs a machine learning model for foul detection by
analyzing sensor data received from athlete sensor nodes
and the joint coordinate data received from computers, then
combining the sensor data with labels indicating the presence
or absence of fouls.

B. Hardware configuration of athlete sensor node

The athlete sensor node is worn by athletes. The sensor node
consists of a microcontroller board (Feather nRF52840 Sense)
which includes various sensors and a communication function
by BLE, a lithium-ion battery that powers the microcontroller
board, and a smartphone (Redmi Note 10 Pro). To ensure
stable communication with the microcontroller board, the
smartphone is placed in a waist pouch worn by the athlete.
The microcontroller board is placed in an A9-sized zippered
plastic bag and is fastened to the shoes with vinyl ties. Figure
2 shows the sensor node worn by the athlete.

C. Hardware configuration of form observation node

The form observation node consists of a stereo camera (ZED
2i) that captures the form of athletes and a notebook PC that
performs the joint estimation by analyzing the video captured
by the stereo camera. The PC uses the Body Tracking model
of the ZED SDK provided by the company that develops the
stereo camera to obtain joint coordinate data and sends them
to the analysis server via HTTP communication. Based on
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Fig. 2: Installation of athlete sensor node.

the time-series of the joint coordinate data, the PC judges
whether the foul is occurring or not by analyzing the positional
relationship of the joint coordinates of the ankle.

D. Configuration of analysis server

As the analysis server, a standard PC server is utilized. The
analysis server analyzes the data transmitted from the athlete
sensor node and the form observation node to construct a
machine learning model that estimates the correctness of the
athletes’ form. The constructed model detects foul occurrences
and notifies the results. To achieve these functions, Python,
scikit-learn, and Tensorflow are installed.

IV. DATA ANALYSIS FOR FOUL DETECTION

A. Sensor data collection flow

The athlete sensor node obtains 3-axis acceleration (m/s?)
and angular velocity (dps (degree per second)) every 20 ms
from an acceleration/gyroscope sensor worn by the athlete.
The structure of the measured sensor data is shown in Tab. I.
In the data structure, the device ID is used to distinguish which
foot the sensor is attached to (0: right, 1: left), and the data type
ID indicates the type of data being transmitted (acceleration:
0, gyroscope: 65). The smartphone receives the data from the
microcontroller through BLE communication and converts that
into a JSON-formatted string including a timestamp. And then,
the data is sent to the server via HTTP communication. The
data structure for the HTTP communication is shown in Tab.
IL.
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TABLE I: Data structure for BLE communication.

Meaning of data | Data size (bytes) | Example

Device ID to distinguish between 2 0
left and right sensors

Data type ID representing the type 2 0

of data

x-axis sensor data (m/s? / dps) 4 9.142523
y-axis sensor data (m/s2 / dps) 4 2.880120
z-axis sensor data (m/s2 / dps) 4 5.710553

TABLE II: Data structure for HTTP communication.

[ Data name | Example | Meaning of data |
timestamp 1740802617536 | Time when data is received (ms)
devicelD 0 Device ID to distinguish between

left and right sensors
dataType 0 Data type ID representing the type
of data
x-data 9.921674 x-axis sensor data (m/ 2/ dps)
y-data 2.5314255 y-axis sensor data (m/s? / dps)
z-data 5.4414875 z-axis sensor data (m/s2 / dps)

B. Sensor data analysis for foul detection

The proposed system attempts to detect fouls, loss of
contact, in race walking by analyzing time-series data collected
from accelerometer and gyroscope sensors attached to the feet.
Since walking is essentially a periodic and continuous motion,
the temporal characteristics of the sensor data are crucial. The
accelerometer data captures the periodic fluctuations corre-
sponding to gait cycles, while the angular velocity data reflects
phase changes arising from the rotational movements of the
trunk and limbs. By analyzing these continuous variations,
early signs of foul actions can be extracted.

To judge the foul actions by analyzing these time-series
characteristics effectively, the proposed system adopts a
Transformer-based architecture. The Transformer is partic-
ularly suitable because of its ability to handle sequential
data without relying on strict recurrence, and its attention
mechanism enables the model to selectively focus on the most
relevant parts of the sequence [7] [8] [9] [10] [11]. This is
advantageous for walking analysis, where important parts for
the foul detection do not always appear in fixed positions
within the data sequence.
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Fig. 3: Overview of machine learning model.



Input : fixed-length sensor data

Input vector dimension - 6

Modelsize : 64
Feed-forward network
Intermediate layer size : 128

Output
Proper race walking form : 0
Loss of contact form : 1

Fig. 4: Machine learning model architecture: Transformer
model.

The input to the Transformer model consists of multi-
dimensional vectors combining accelerometer and angular
velocity features. Specifically, the input vector dimension is
six, representing the three-axis accelerometer and three-axis
angular velocity data. The Transformer encoder includes one
layer, with a model size of 64 and a feed-forward network
intermediate layer size of 128. The output layer produces a
binary classification label: O for “proper race walking form”
and 1 for “loss of contact form.” Figures 3 and 4 show an
overview of the machine learning model.

C. Analysis of depth data for deriving correct ground-truth
labels

In race walking, the athlete should walk in such a way that
both feet do not leave the ground at the same time. Therefore,
the angle of the straight line connecting both ankles is smaller
compared to normal walking or running movements. Figures
5, 6 and 7 shows the example of the joint coordinates for each
type of movement. From the two examples in Fig. 5, it can be
seen that the angle of the line differs depending on the type of
movement. Figures 6 and 7 show that the amplitude of the line
connecting the right and left ankle joints is large during a loss
of contact foul. Accordingly, by using the estimation results
of joint coordinates, the inclination of the line connecting the
right and left ankle joints is employed as a feature to accurately
determine the type of movement.

The analysis server first records the joint coordinate data
received from the form observation node into a CSV file. Next,
it analyzes each 10 seconds of the time-series data of the angle
and counts the number of data points that the angle value falls
between -30 degrees and +30 degrees. If the number of data
points is 25% or more of the time-series data, the system sets
0 to a label as “proper race walking form for the time-series
data.” If the number of data points is less than 25%, the system
assigns the data with a label of 1 as “loss of contact form.”

The data structure for the HTTP communication from the
form observation node is shown in Tab. III. The analysis server

(a) Normal Walking

(b) Race Walking

Fig. 5: Examples of angle of the line connecting both ankles.
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first receives joint coordinate data and sensor data, classifies
them by left, right foot and data type, and saves them in
CSV files. These data are then synchronized and integrated
based on timestamps, ensuring that sensor data is correctly
aligned with joint coordinates. After the integration, the most
recent predefined number of synchronized data are grouped as
one input data for the machine learning model. By assigning
the labels described in Section IV-C to this data, training
data is automatically generated. A machine learning model
is constructed based on the training data.
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Fig. 7: Time-dependent changes in inclination during loss of
contact motion.
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TABLE III: List of data and formats sent from stereo camera.

[ Data name | Example | Meaning of data
id 0 ID for distinguishing individuals
timestamp 1754099456464 Time when data was received (ms)
joint LEFT_ANKLE Joint name
dataType 0 Data type ID representing the type
of data
X 4.200777053833008 x-coordinate data
y 0.3334699869155884 | y-coordinate data
z 4.863706588745117 z-coordinate data

V. PERFORMANCE EVALUATION OF PROPOSED
SYSTEM

A. Experimental Setup

In this study, we conduct experiments to evaluate the effec-
tiveness of the proposed foul detection system. The evaluation
consists of two parts: (1) a comparison of classification ac-
curacy between manual and automated labeling methods, and
(2) a comparison of classification accuracy between the pro-
posed Transformer-based model and an LSTM-based model
under different input sequence lengths. In this evaluation, the
following performance metrics are utilized:

TP+TN

Accuracy:TP—kTN—&—FP—FFN (1)
. TP
Precision = TPIFP 2)
TP
Recall = m (3)

In these equations, TP, TN, FP and FN indicate True Positive,
True Negative, False Positive and False Negative, respectively.

For data acquisition, a stereo camera mounted on a tripod
and a notebook PC are placed together on a movable cart.
The cart is moved parallel to the subject to record synchro-
nized video and sensor data. Each recorded video includes a
timestamp, and corresponding sensor data are stored in CSV
files. The video and sensor data are synchronized based on the
timestamps.

For manual labeling, correct labels are assigned through
human visual inspection of each frame. For automated label-
ing, correct labels are assigned using the method described in
Section IV-C. A total of 15 sequences of race-walking data and
10 sequences of normal-walking data are used for evaluation.

Four university students (two male and two female) partici-
pate in the normal-walking and loss-of-contact trials along a 10
meters indoor corridor. Additionally, three athletes belonging
to a university track and field club specializing in race walking
participated in the race-walking trials along a 10 meters
outdoor course. Each subject performs five trials per motion
type while wearing athlete sensor nodes.

B. Evaluation of Labeling Accuracy

To clarify the influence of the labeling method on classifica-
tion performance, we compared the classification accuracy ob-
tained using manually labeled data with that obtained using au-
tomatically labeled data. The results, shown in Fig. 8, indicate
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Fig. 8: Accuracy rate of motion estimation.
TABLE IV: Details of training/testing datasets.
[ | Model T | Model 2 | Model 3 |
Length of time-series data (ms) 125 250 500
Training data 5400 2700 1360
Test data 4050 2020 1020

that manual labeling achieved 100% accuracy for both correct
race-walking and loss-of-contact detection, whereas automated
labeling achieved 83%. Although automated labeling achieves
slightly lower accuracy compared to manual labeling, the
automated labeling achieves high accuracy, demonstrating that
the proposed method can effectively generate ground-truth
labels without human visual inspection.

C. Evaluation of Model Performance

Next, we evaluate the detection performance of the proposed
Transformer-based model by comparing it with an LSTM
model, whose architecture is shown in Fig. 9. Both models are
trained under multiple sequence-length conditions to examine
the effect of input time-series length on detection performance.
The number of samples and model configurations are summa-
rized in Tab. IV. As performance metrics, recall, precision,
and processing time are utilized.

As shown in Figs. 10 and 11, the increase in the length of
the input time-series data improves foul detection accuracy,
but also increases processing time. These results clarify that
the proposed method is effective for detecting loss-of-contact
violations. Moreover, the analysis reveals a trade-off between
detection accuracy and computational efficiency, suggesting
that the sequence length should be chosen appropriately de-
pending on the application requirements.

D. Evaluation of Processing Efficiency

Figure 12 shows the relationship between processing time
and input sequence length. The results indicate that longer
input data require greater processing time for inference. Con-
sidering both detection accuracy and computational cost, using
250 ms of time-series data as input provides an appropriate
balance between accuracy and real-time performance. Overall,
these findings demonstrate that the proposed foul detection
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Input : fixed-length sensor data

Input vector dimension - 6

Number of units in LSTM layer : 64

Output
Proper race walking form : 0
Loss of contact form : 1

Fig. 9: Machine learning model architecture: LSTM model.

125ms 250ms

Length of time-series data

500ms

--Transformer —-LSTM

Fig. 10: Precision for classification of foul estimation.

system can achieve high accuracy while maintaining near real-
time operation.

VI. CONCLUSION

In this study, we proposed a sensing system equipped
with a machine learning model that detects fouls involving
loss of contact in race walking based on observation results
from small sensor nodes worn by athletes. In addition, the
proposed system has been designed to automatically generate
training data for constructing the machine learning model
by automatically determining the correct labels for the sen-
sor data. Through the proof-of-concept experiments, it was
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Fig. 11: Recall for classification of foul estimation.
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confirmed that the proposed system can accurately estimate
the occurrence of the loss-of-contact fouls. Future challenges
include exploring methods to detect the “bent knee” violation
in race walking. Additionally, we aim to design a system
that simultaneously analyzes the form of multiple athletes and
detects foul actions.
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