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Abstract—Deep reinforcement learning (DRL) is a promis-
ing technique for solving numerous optimization problems in
wireless networks, owing to its high adaptability to dynamic
and uncertain wireless environments. However, the lack of
interpretability, inherent in the black-box nature of the deep
neural networks (DNNs) within DRL, limits its deployment in
real-world applications. In this paper, we focus on integrating
domain knowledge into DRL to enhance robustness and learning
efficiency. Specifically, we review a teacher-student framework,
where a teacher agent utilizes knowledge from classical model-
based methods to guide a student DRL agent toward improved
decision-making.

Index Terms—Deep reinforcement learning (DRL), knowledge-
driven DRL, Wireless networks

I. INTRODUCTION

Next-generation 6G networks are envisioned to deliver ubig-
uitous three-dimensional coverage through space-air-ground
integration, intelligent-green network operations, and Internet
of Everything (IoE) [1]-[5]. The 6G networks are expected
to support services with significantly more stringent demands
than the previous 5G generation, including higher reliability,
lower latency, higher throughput, and greater energy efficiency.
To meet these demands, it is important to efficiently optimize
multi-dimensional resources, including computing, spectrum,
power, and time. However, the inherent large scale, high
density, and heterogeneity of 6G networks make the efficient
solutions to the optimization problems in 6G systems partic-
ularly challenging [6]-[13].

The problem can be reformulated as a mathematical op-
timization problem and solved by using many optimization
methods. Inherent in 6G networks’ properties, the optimiza-
tion problems can be formulated in the complicated form
of objective and constraint functions, including non-convex
functions due to the diversified QoS requirements, integration
with new 6G functions (e.g., joint sensing, communication,
and computing). In addition, optimization variables are high-
dimensional due to a huge number of devices, large antenna
arrays, and large amount of data. Furthermore, optimization
problems in 6G networks usually involve complex, dynam-
ical network parameters, such as channel state information
and traffic state. Therefore, it is essential to design efficient
and real-time controls, incorporating all the characteristics of
the upcoming 6G networks. In the following, we introduce
common approaches to tackle the optimization problems in
wireless networks.
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A. Classical Optimization Methods

Classical optimization methods are widely used in solving
non-convex optimization problems in wireless networks, such
as semidefinite relaxation, successive convex approximation
[14], [15]. However, these methods face with critical disad-
vantages, as follows. Firstly, the iterative procedure in most
algorithms requires a long time to converge, along with the
high complexity. In addition, whenever the channel condition
changes, the algorithms have to be re-executed entirely, limit-
ing their ability to adapt quickly to rapid channel fluctuations.
These disadvantages limit the applications of the classical
optimization methods in real scenarios, especially in time-
sensitive services in 6G networks.

B. Machine Learning-based Methods

Besides the traditional mathematical optimization meth-
ods, machine learning techniques are promising approaches.
Among them, reinforcement learning techniques are gaining
significant attention in solving sequential decision-making
problems. The problem can be modeled as Markov decision
process (MDP) and solved by reinforcement learning (RL),
where the agent learns how to interact with the unknown
environments to find the optimal policy (i.e., how to take an
action at a state). However, the training process in conventional
RL techniques is often slow, especially with the large-scale
state space. To address these challenges, deep RL (DRL) has
been proposed, where the deep neural networks (DNNs) are
combined with RL to approximate value functions. Leveraging
the potential of the excellent feature-capturing and fast online
inference ability, DRL can successfully improve the learning
performance of the RL algorithms. Additionally, by collecting
historical training data, DRL can keep track of the dynamics
of environments in real time, yielding higher adaptability.
Moreover, DRL is well-suited for long-term optimization by
learning the long-term policy rather than the instantaneous one.

Although DRL models offer greater flexibility and robust-
ness than optimization-based methods under uncertainty and
dynamic environments, their practical implementation remains
challenging because of some reasons. First, DRL faces poor
interpretability due to the black-box nature of the employed
DNNs and slow convergence in online learning. Second,
training a globally optimal policy is difficult because the action
space is usually too large for exhaustive exploration. Moreover,
storing sufficient training experiences is constrained by the
limited memory of local devices. Third, although DRL can
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Fig. 1. Conventional DRL algorithms: (a) DQN and (b) DDPG [16].

be implemented with simple architectures, it involves many
hyperparameters that require costly manual tuning, where
improper settings may significantly degrade performance.

To improve the learning performance of DRL,
communications-specific domain knowledge can be embedded
into the DRL, including theoretical principles/rules and expert
experiences, and insights can be exploited. Accordingly,
knowledge-driven DRL in wireless networks refers to
approaches that explicitly incorporate communication-specific
domain knowledge into DNN models to compensate for
limited training data and to guide the design of both network
architectures and learning algorithms [17].

Motivated by these observations, this paper provides a com-
prehensive survey of recent advances in integrating domain
knowledge with DRL and emphasizes their applications to key
challenges in wireless networks.

II. KNOWLEDGE-DRIVEN DRL ALGORITHM

A. Deep Reinforcement Learning: Preliminaries

A general RL problem is formulated through MDP that
is defined by the tuple (S, A,P,R,v), where S is the
state space, A is the action space, P is the state transition
probability, R is the reward function, and -y is the discount
factor. At each time step ¢, given the current state s; € S,
the agent selects an action a; € A according to a policy =
that maps states to actions. Following this policy, the agent
transitions to the next state s;11 ~ P(s’|ss, a;) and receives a
reward 7, = R(s¢, a;). The objective of the agent is to learn
an optimal policy that maximizes the expected cumulative
discounted reward, which is formulated as

™ = argmax E, {Z ’7th+[€} . (D
k=0

In each decision-making step, the state function is defined as

Va(s) =Ex Z'yerk [st=s7p, (2)
k=0

which quantifies the expected cumulative discounted reward
when starting from a state s € S and following policy =
thereafter. Similarly, the state-action function is defined as

[oe]
Qr(s,0) =Ex Y A*ripn | si=s,ar=ap, (3)
k=0

representing the expected cumulative discounted reward when
starting from state s, taking action a, and subsequently fol-
lowing policy .

In DRL frameworks, DNNs are incorporated into RL to
improve learning efficiency in large-scale wireless networks
characterized by high-dimensional state and action spaces. In
general, DRL algorithms can be divided into two major cat-
egories: value-based and policy-based methods. Particularly,
value-based methods (e.g., Q-learning, DQN) approximate the
state-action value function using DNNs, and the corresponding
policy is determined by selecting the action that yields the
highest value. These methods are particularly suitable for
problems with discrete action spaces. On the other hand, the
policy-based methods learn directly the policy maps states
directly to optimal actions or the probability of each action
through DNNs. These methods are suitable for both discrete
and continuous action spaces. Although DRL demonstrates
superior performance, the black-box nature of DNN models
limits their transparency and interpretability. This leads to
trustworthiness issues, as it is difficult to verify model ro-
bustness in real-world deployment and to diagnose erroneous
decisions. For instance, the authors in [18], [19] discuss the
wrong and risky decisions, where wrong decisions degrade the
average performance of a DRL agent, while risky decisions
can induce high performance variance.

B. Domain Knowledge and Knowledge-driven DRL in Wire-
less Networks

To address aforementioned issues in DRL, domain knowl-
edge can be ultilized to guide the decision-making process
and detect erronous decisions. Generally, domain knowledge
can be categorized into two classes: scientific knowledge and
expert knowledge [17]. In particular, scientific knowledge
includes theoretical transmission rules/laws/principles (e.g.,
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Shannon’s capacity formula), network modelling methodolo-
gies, and theoretical solutions to wireless network optimiza-
tion. Expert knowledge encompasses practical experience and
domain-specific insights that have been accumulated, refined,
and validated by engineers and researchers in the field of
wireless communication networks. Knowledge-driven DRL in
wireless networks refers to approaches that explicitly integrate
domain knowledge into DNNs employed in the DRL frame-
work to compensate for limited training data, poor robustness,
and improve learning efficiency.

In the following, we introduce a general framework that
integrating domain knowledge into DRL [17]. As illustrated
in Fig. 2, a teacher module (knowledge block), implemented
using explainable theoretical algorithms, and a student module
(data-driven block), implemented using dynamic DRL, operate
concurrently to address the target problem. The confidence
check module compares the outcomes from both modules, and
the student network refines its policy by imitating the teacher’s
superior guidance through reward shaping. The final decision
is obtained by combining the outputs of the two modules,
thereby improving the overall reliability and robustness of the
solution.

III. CONCLUSION

In conclusion, this paper has proposed the integration of
domain knowledge into DRL to address the critical inter-
pretability and robustness issues posed by its black-box nature.
Through the teacher-student framework, the DRL student can
be advised by the teacher knowledge. This approach enhances
learning efficiency and decision-making, thereby facilitating
the deployment of more reliable and trustworthy DRL solu-
tions in real-world wireless networks.

ACKNOWLEDGMENT

This work was supported in part by the IITP (Institute
of Information & Communications Technology Planning &
Evaluation) - ITRC (Information Technology Research Center)
(ITTP-2026-RS-2022-00156353, 50%) grant funded by the
Korea government (Ministry of Science and ICT) and in

part by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. RS-2023-
00209125).

REFERENCES

[11 Y. Shi, L. Lian, Y. Shi, Z. Wang, Y. Zhou, L. Fu, L. Bai, J. Zhang, and
W. Zhang, “Machine learning for large-scale optimization in 6g wireless
networks,” IEEE Communications Surveys & Tutorials, vol. 25, no. 4,
pp- 2088-2132, 2023.

[2] J. Oh, D. Lee, D. S. Lakew, and S. Cho, “DACODE: Distributed
adaptive communication framework for energy efficient industrial iot-
based heterogeneous wsn,” ICT Express, vol. 9, no. 6, pp. 1085-1094,
2023.

[3] T. S. Do, T. P. Truong, Q. T. Do, and S. Cho, “TranGDeepSC:
Leveraging ViT knowledge in CNN-based semantic communication
system,” ICT Express, vol. 11, no. 2, pp. 335-340, 2025.

[4] M. C. Ho, A. T. Tran, D. Lee, J. Pack, W. Noh, and S. Cho, “A DDPG-
based energy efficient federated learning algorithm with SWIPT and
MC-NOMA,” ICT Express, vol. 10, no. 3, pp. 600-607, 2024.

[5] D.-T. Hua, Q. T. Do, N.-N. Dao, and S. Cho, “On sum-rate maximization
in downlink UAV-aided RSMA systems,” ICT Express, vol. 10, no. 1,
pp. 15-21, 2024.

[6] C. Song, D. Lee, Y. Lee, W. Noh, and S. Cho, “Deep learning
based energy-efficient transmission control for STAR-RIS aided cell-free
massive MIMO networks,” ICT Express, vol. 11, no. 2, pp. 341-347,
2025.

[7]1 T.T. H. Pham, W. Noh, and S. Cho, “Multi-agent reinforcement learning
based optimal energy sensing threshold control in distributed cognitive
radio networks with directional antenna,” ICT Express, vol. 10, no. 3,
pp. 472478, 2024.

[8] W.J. Yun, S. Park, J. Kim, M. Shin, S. Jung, D. A. Mohaisen, and J.-H.
Kim, “Cooperative multiagent deep reinforcement learning for reliable
surveillance via autonomous multi-UAV control,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 10, pp. 7086-7096, 2022.

[9] D. Kwon and D. K. Kim, “Channel estimation overhead reduction

scheme and its impact in IRS-assisted systems,” ICT Express, vol. 10,

no. 1, pp. 58-64, 2024.

S. H. Gardner, T.-M. Hoang, W. Na, N.-N. Dao, and S. Cho, “Metaverse

meets distributed machine learning: A contemporary review on the

development with privacy-preserving concerns,” ICT Express, 2025.

S. Park, H. Baek, and J. Kim, “The matrix: Quantum Al for interacting

two worlds in prioritized metaverse spaces,” IEEE Communications

Magazine, 2024.

D. Kwon, J. Jeon, S. Park, J. Kim, and S. Cho, “Multiagent ddpg-based

deep learning for smart ocean federated learning IoT networks,” IEEE

Internet of Things Journal, vol. 7, no. 10, pp. 9895-9903, 2020.

S. Park, G. S. Kim, Z. Han, and J. Kim, “Quantum multi-agent

reinforcement learning is all you need: Coordinated global access in

integrated TN/NTN cube-satellite networks,” IEEE Communications

Magazine, vol. 62, no. 10, pp. 86-92, 2024.

T. V. Nguyen, T. P. Truong, T. M. T. Nguyen, W. Noh, and S. Cho,

“Achievable rate analysis of two-hop interference channel with coor-

dinated IRS relay,” IEEE Transactions on Wireless Communications,

vol. 21, no. 9, pp. 7055-7071, 2022.

T. M. T. Nguyen, T. V. Nguyen, W. Noh, and S. Cho, “Statistical delay

guarantee for the URLLC in IRS-assisted NOMA networks with finite

blocklength coding,” IEEE Transactions on Wireless Communications,

2024.

S. Gong, J. Lin, B. Ding, D. Niyato, D. I. Kim, and M. Guizani, “When

optimization meets machine learning: The case of irs-assisted wireless

networks,” IEEE Network, vol. 36, no. 2, pp. 190-198, 2022.

R. Sun, N. Cheng, C. Li, W. Quan, H. Zhou, Y. Wang, W. Zhang,

and X. Shen, “A comprehensive survey of knowledge-driven deep

learning for intelligent wireless network optimization in 6g,” [EEE

Communications Surveys & Tutorials, 2025.

Y. Zheng, L. Lin, T. Zhang, H. Chen, Q. Duan, Y. Xu, and X. Wang,

“Enabling robust drl-driven networking systems via teacher-student

learning,” IEEE Journal on Selected Areas in Communications, vol. 40,

no. 1, pp. 376-392, 2021.

J. Hu, L. Chen, S. Shen, and T. Wang, “Explainable multi-agent deep

reinforcement learning for joint task offloading and resource allocation

in distance and channel-aware noma vehicular edge networks,” IEEE

Internet of Things Journal, 2025.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]

428



