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Abstract— The rapid expansion of Internet of Things (IoT) 
infrastructure has led to an increased surface for cyberattacks, 
challenging existing intrusion detection systems (IDS) to remain 
effective, interpretable, and efficient. This paper proposes a 
novel Lightweight and Explainable Deep Ensemble 
Cybersecurity (LEDEC) model designed to address these 
challenges. The LEDEC model integrates lightweight temporal 
convolutional networks (L-TCN), Fox optimizer-based feature 
selection (FO-FS), and SHAP-based explainability to ensure 
high performance with minimal computational cost. Unlike 
existing systems, our model is benchmarked for cross-dataset 
generalization on Edge-IIoT and BoT-IoT datasets. The 
evaluation includes classification performance, model 
interpretability, latency, and energy efficiency. The proposed 
method achieves 97.6% accuracy with significant reductions in 
model complexity and computational time, making it suitable 
for real-time deployment in resource-constrained IoT 
environments. Furthermore, SHAP-based feature impact 
analysis empowers human operators to understand and trust 
system decisions, enhancing cybersecurity response. 

Keywords— IoT Security, Cyberattack Detection, Lightweight 
Deep Learning, Explainable AI, Feature Selection, Fox Optimizer  

I. INTRODUCTION  
The proliferation of IoT devices in smart environments has 

led to new challenges in ensuring cybersecurity. These devices 
often operate under resource constraints and are exposed to a 
wide range of attacks such as DDoS, data poisoning, and 
unauthorized access [7][5], Fig. 1. Existing deep learning-
based intrusion detection systems (IDS) offer high accuracy 
but lack scalability, interpretability, and real-time 
applicability in embedded environments [6][2]. 

 
Fig. 1 Key cybersecurity challenges in IoT environments addressed by the 

proposed LEDEC model 

 

 

 

To address these gaps, we propose a LEDEC model that 
balances predictive performance with computational 
efficiency and transparency. The proposed Lightweight and 
Explainable Deep Ensemble Classifier (LEDEC) combines 
multiple  shallow   neural   networks   with a feature   selection 
mechanism to reduce model complexity while maintaining 
high detection accuracy. Additionally, LEDEC incorporates 
SHAP-based interpretability [3] to provide transparent 
insights into decision-making, enhancing trust in real-world 
deployments. 

We validate LEDEC on two prominent IoT datasets, 
demonstrating superior performance in terms of accuracy, F1-
score, and inference speed compared to state-of-the-art IDS 
models [4][1]. Experiments were run on Jetson Nano using 
Edge-IIoT (train) and BoT-IoT (test). Evaluation includes 
accuracy, F1-score, AUC, latency, and SHAP consistency. 

The main contributions of this work are: (1) We introduce 
a novel ensemble-based architecture optimized for lightweight 
deployment in IoT environments, (2) We integrate 
explainability through SHAP values to interpret feature 
importance and model decisions, (3) We conduct extensive 
evaluations on benchmark datasets, showing that LEDEC 
outperforms existing methods in both efficiency and 
robustness. 

The rest of the paper is organized as follows: Section II 
reviews related work; Section III details the proposed 
methodology; Section IV discusses the experimental setup 
and results; Section V provides interpretability analysis; and 
Section VI concludes the paper with future directions. 

II. RELATED WORK 
Previous research has explored various feature selection 

and deep learning approaches for IDS in IoT. The use of 
swarm intelligence algorithms like Genetic Algorithm and 
Honey Badger Optimization have shown improvements in 
feature selection. Similarly, DL methods like LSTM and 
CNNs offer robust classification but are not optimized for 
lightweight deployment. Moreover, little emphasis has been 
placed on interpretability, a critical requirement for real-world 
cybersecurity systems. These models are typically 
computationally intensive and operate as black boxes, limiting 
their deployment on resource-constrained IoT devices and 
undermining transparency. 
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[8] proposed an LSTM-based framework for intrusion
detection in SDN-based IoT networks, achieving high 
accuracy but with significant computational overhead. [2] 
used Random Forest and k-NN on the BoT-IoT dataset to 
deliver rapid predictions, though with limited robustness to 
sophisticated attack vectors. [4] developed a deep autoencoder 
for smart home intrusion detection; while effective, its lack of 
interpretability hindered practical adoption. Similarly, [1] 
introduced a hybrid IDS combining statistical features with 
DL classifiers, reducing training complexity but relying 
heavily on manual feature engineering. More recently, [17] 
introduced a Transformer-CNN hybrid to capture temporal 
and spatial features from network traffic, but their method’s 
high resource demand makes it impractical for edge 
deployment. [10] attempted to bridge the interpretability gap 
using LIME and SHAP, but evaluated their models only on 
limited-scale datasets. [14] adopted a Bi-LSTM with attention 
mechanism for IIoT traffic analysis, enhancing temporal 
modeling but increasing inference latency. [12] developed a 
lightweight IDS based on Extreme Learning Machines 
(ELM), which offered fast training but suffered from class 
imbalance sensitivity. [11] coupled GWO with ensemble 
models to improve detection accuracy, though their method 
lacked explainable outputs. [13] introduced a knowledge 
distillation approach to compress complex DL models into 
deployable ones, but did not explore transparency or real-time 
constraints. Of particular relevance is the work by [9] titled 
"An Adaptive Framework for Intrusion Detection in IoT 
Security Using MAML (Model-Agnostic Meta-Learning)." 
Their framework leverages few-shot meta-learning to rapidly 
adapt to novel attack types with minimal labeled data, 
enhancing detection in dynamic IoT environments. While 
their method demonstrates strong generalization and 
adaptability, it involves significant meta-training overhead 
and lacks emphasis on interpretability or lightweight 
inference, both of which are essential for deployment in real-
time, resource-constrained IoT systems. Previous research has 
explored the integration of evolutionary algorithms with 
machine learning to improve the adaptability and accuracy of 
intrusion detection systems. For instance, [16] proposed a 
hybrid evolutionary-machine learning model that leverages 
Genetic Algorithms and ensemble classifiers for advanced 
threat identification. Their system demonstrated improved 
detection across various attack categories and dynamic 
network conditions. Inspired by the effectiveness of such 
hybrid approaches, our work utilizes the Fox Optimizer, an 
evolutionary strategy, for feature selection. However, in 
contrast to heavier hybrid models, LEDEC focuses on 
lightweight deployment with interpretability through SHAP, 
ensuring feasibility on constrained IoT devices. 

In summary, while these studies have significantly 
advanced IoT intrusion detection, most approaches still 
prioritize either accuracy, adaptability, or interpretability but 
rarely all three. Our proposed LEDEC model addresses this 
gap by unifying efficiency, explainability, and high detection 
performance through an ensemble of shallow neural networks 
combined with automated feature selection and SHAP-based 
interpretability. This makes LEDEC particularly suitable for 
real-world, constrained, and dynamic IoT security scenarios. 

III. METHODOLOGY 

This section presents the components of the LEDEC 
model, including dataset processing, feature selection, 
classification architecture, explainability approach, and the 
ensemble structure designed to maximize generalizability. 

Recent work by [15] emphasizes the increasing relevance 
of Explainable AI (XAI) in IoT environments, highlighting 
how transparency in machine learning decision-making can 
significantly enhance security and trust in automated systems. 
Motivated by these findings, our methodology incorporates 
SHAP (SHapley Additive exPlanations) to provide fine-
grained insights into the behavior of the LEDEC model. By 
leveraging SHAP at the output stage of each L-TCN model, 
we ensure that the system not only detects cyberattacks with 
high accuracy but also delivers interpretable explanations for 
its predictions. This aligns with XAIoT principles, making 
LEDEC more suitable for real-world deployment in critical 
IoT infrastructures where accountability is essential. 

The LEDEC framework is structured to address the 
primary challenges in IoT cyberattack detection: high model 
complexity, poor interpretability, and limited deployment 
capacity on edge devices. The design integrates four main 
components: (1) feature pre-processing, (2) optimization-
based feature selection, (3) lightweight TCN classification, 
and (4) SHAP-based interpretability.  

We use the Edge-IIoT and BoT-IoT datasets for 
benchmarking. Preprocessing steps include normalization and 
SMOTE for balancing. Features were normalized using min-
max scaling as in (1): 

𝑥𝑥𝑥𝑥′ =
𝑥𝑥𝑥𝑥 𝑥 min(𝑥𝑥𝑥𝑥)

max(𝑥𝑥𝑥𝑥) − min(𝑥𝑥𝑥𝑥)  (1) 

First, raw data is normalized using min-max scaling to 
prepare consistent inputs across sensors. This ensures uniform 
feature ranges, preventing bias from dominant features during 
model training [19]. Then, a Fox Optimizer is used for feature 
selection, guided by a dual-objective fitness function that 
simultaneously maximizes classification accuracy and 
minimizes the number of features. This step significantly 
reduces data dimensionality while retaining classification 
power, which is critical for deploying models on limited 
hardware [16].  

The core classifier is a lightweight TCN architecture, 
optimized with causal and dilated convolutions to preserve 
temporal sequence information while reducing model size and 
inference latency. TCN was selected over traditional LSTM 
and GRU models for its superior parallelization and stable 
training behavior on longer sequences [18] [20]. Finally, 
SHAP values are integrated post-prediction to explain each 
classification result in terms of the most influential input 
features. This step adds transparency to the model's decision-
making, allowing cybersecurity analysts to verify or override 
model outcomes based on domain expertise [3] [21]. As 
shown in LEDEC algorithm, Fig. 2, the LEDEC model 
integrates feature selection, ensemble training, and 
explanation generation. 
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Fig. 2 LEDEC Algorithm 

Together, these components make LEDEC an effective, 
efficient, and interpretable framework for secure IoT 
deployments. Its ensemble learning setup further stabilizes 
results by training multiple TCNs on different subsets and 
using majority voting for final prediction. 

A. Dataset Description
We utilize two comprehensive and widely used

benchmark datasets to evaluate the proposed model: Edge-
IIoT and BoT-IoT. The Edge-IIoT dataset includes 12 diverse 
attack classes such as Denial-of-Service (DoS), Man-in-the-
Middle (MitM), ransomware, backdoor access, and 
reconnaissance attacks, providing a fine-grained multi-class 
classification challenge in edge computing contexts [24]. The 
BoT-IoT dataset, on the other hand, features a broad set of 
attack categories including DDoS, DoS, data theft, 
information gathering, and botnet infiltration, each with 
multiple sub-variants, representing realistic IoT attack 
scenarios in smart environments [25]. To improve the 
generalization capability and stability of the model across 
these imbalanced and noisy datasets, we applied Synthetic 
Minority Over-sampling Technique (SMOTE) to address 
class imbalance by generating synthetic samples of minority 
classes, especially critical for rare but high-impact attacks 
[22]. In addition, outlier filtering using z-score-based 
detection was employed to remove anomalous data points that 
could skew model learning, ensuring cleaner and more 
representative feature distributions [23].  

These preprocessing steps, Fig. 3, contribute significantly 
to enhancing the robustness and fairness of LEDEC’s 
performance across varying attack patterns and data 
heterogeneity. 

Fig. 3 LEDEC Model Architecture and Evaluation Flow 

B. Feature Selection using Fox Optimizer (FO-FS)
The Fox Optimizer algorithm simulates the adaptive

hunting behavior of red foxes. In this context, feature selection 
aims to identify an optimal subset of features 𝑆𝑆𝑆𝑆 ⊆  𝐹𝐹𝐹𝐹 from the 
full feature set 𝐹𝐹𝐹𝐹 ,minimizing the number of features while 
maximizing classification performance, Fig. 4. 

Fig. 4 Feature selection.    Fig. 5 L-TCN.    Fig. 6 LEDEC validation keys. 

Fox Optimizer mimics fox hunting behavior. We define a 
fitness function 𝐽𝐽𝐽𝐽(S) used to evaluate each candidate feature 
subset is (2):  

𝐽𝐽𝐽𝐽(𝑆𝑆𝑆𝑆) = α ⋅ Acc(𝑆𝑆𝑆𝑆) − β ⋅
|𝑆𝑆𝑆𝑆|
|𝐹𝐹𝐹𝐹|  (2) 

Where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑆𝑆𝑆𝑆) is the accuracy using feature subset S, |𝑆𝑆𝑆𝑆| 
is the number of selected features, |𝐹𝐹𝐹𝐹| is the total number of 
features and 𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽 𝛽 [0,1] are weight parameters that balance 
accuracy and feature reduction. This balances detection 
performance and dimensionality reduction. 

C. Lightweight TCN Classifier (L-TCN)
Temporal Convolutional Networks (3) use causal and

dilated convolutions to process time-series data. The output yt 
at time t is computed as: 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = �𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖

𝑘𝑘𝑘𝑘𝑘𝑘

𝑖𝑖𝑖𝑖𝑖𝑖

⋅ 𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   (3) 

Where: 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖  are convolution weights, Xt  is the input 
sequence, 𝑑𝑑𝑑𝑑 is the dilation factor, k is the kernel size. The L-
TCN model, Fig. 5,  includes residual connections to improve 
gradient flow (4):  

ℎ(𝑙𝑙𝑙𝑙) = 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎(𝑙𝑙𝑙𝑙) ∗ ℎ(𝑙𝑙𝑙𝑙𝑙𝑙) + 𝑏𝑏𝑏𝑏(𝑙𝑙𝑙𝑙)� + ℎ(𝑙𝑙𝑙𝑙𝑙𝑙)  (4) 

Where: * denotes convolution, 𝜎𝜎𝜎𝜎  is the activation 
function, 𝑊𝑊𝑊𝑊(𝑙𝑙𝑙𝑙) and  𝑏𝑏𝑏𝑏(𝑙𝑙𝑙𝑙) are layer weights and biases. Formula 
(3) typically represents a residual block in neural networks
with an activation function 𝜎𝜎𝜎𝜎, weights   𝑊𝑊𝑊𝑊(𝑙𝑙𝑙𝑙), bias  𝑏𝑏𝑏𝑏(𝑙𝑙𝑙𝑙), and
input from the previous layer ℎ(𝑙𝑙𝑙𝑙𝑙𝑙).

D. Explainability via SHAP
To explain model predictions at a granular level, SHAP

(SHapley Additive exPlanations) is used. It assigns a 
contribution value to each feature, showing its impact on the 
model's output for a given prediction. Specifically, SHAP 
values 𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖 represent how much a feature i contributes, 
positively or negatively, to the final decision. SHAP values 
are calculated using the Shapley value formulation from 
cooperative game theory. Mathematically, SHAP values are 
defined as in (5): 

𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖 = �
|𝑆𝑆𝑆𝑆|! (|𝑁𝑁𝑁𝑁| − |𝑆𝑆𝑆𝑆| − 1)!

|𝑁𝑁𝑁𝑁|!
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆{𝑖𝑖𝑖𝑖}

[𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆 𝑆 {𝑖𝑖𝑖𝑖}) − 𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆)]   (5) 

Where: S is any subset of features not containing feature i, 
f(S) is the model’s output when only using the feature subset 
S, N is the complete set of features. SHAP values 𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖 quantify 
the contribution of each feature i to the prediction. This 
interpretability method improves transparency in automated 
decision-making, allowing analysts to better understand 
which features influence each classification outcome. As a 
result, SHAP strengthens trust in AI-based cybersecurity 
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systems and supports responsive, informed threat 
management. 

E. Ensemble Strategy and Proposed Contribution
An ensemble of three L-TCN classifiers is used. The final

prediction is determined by majority voting. This ensemble 
approach enhances generalization and reduces variance. This 
methodology directly addresses the limitations of previous 
IDS models by offering a scalable, accurate, and transparent 
solution tailored for next-generation smart environments. 
SHAP values assess feature impact as (6): 

𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖 = ��
|𝑆𝑆𝑆𝑆|! (|𝑁𝑁𝑁𝑁| − |𝑆𝑆𝑆𝑆| − 1)!

|𝑁𝑁𝑁𝑁|!
� ⋅ [𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆 𝑆 {𝑖𝑖𝑖𝑖}) − 𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆)]      (6) 

They explain each prediction by computing marginal 
contributions of features. We propose an ensemble learning 
framework that combines three lightweight TCN models, 
denoted as f1, f2, f3, each trained on different feature subsets 
to improve robustness and reduce overfitting. (7) shows the 
final prediction 𝑦𝑦𝑦𝑦𝑦 that is determined using majority voting 
among the outputs of these models: 

𝑦𝑦𝑦𝑦𝑦 = mode�𝑓𝑓𝑓𝑓1(𝑥𝑥𝑥𝑥), 𝑓𝑓𝑓𝑓2(𝑥𝑥𝑥𝑥), 𝑓𝑓𝑓𝑓3(𝑥𝑥𝑥𝑥)�  (7) 

This ensemble strategy ensures prediction stability and 
improved generalization, especially in varying data 
conditions, Fig. 6. The key innovations of our approach 
include: Integrating feature selection (FO-FS), efficient deep 
learning (L-TCN), and interpretability (via SHAP) into a 
cohesive architecture. Ensuring real-time feasibility by 
optimizing model size and inference latency for edge device 
compatibility. Demonstrating strong generalization by 
validating the model across both Edge-IIoT and BoT-IoT 
datasets. Enabling actionable explanations for security 
professionals, allowing faster, evidence-based threat response. 

IV. EXPERIMENTAL SETUP

Models were trained on Edge-IIoT and tested on BoT-IoT 
to assess cross-dataset generalization. Evaluation metrics 
include Accuracy, F1-Score, ROC-AUC, Model Size (MB), 
Inference Latency (ms), and SHAP explanation consistency. 
This simulates a real-world scenario where the model 
encounters previously different attack types.  

A. Environment Configuration and Dataset Overview
To simulate edge device deployment, all experiments were

deployed and executed on an NVIDIA Jetson Nano 
development board, equipped with:  

• CPU (Quad-core ARM Cortex-A57 @ 1.43 GHz)
• GPU (128-core Maxwell NVIDIA GPU)
• RAM (4GB LPDDR4)
• Ubuntu 18.04 with JetPack SDK as Operating System

with Frameworks of Python 3.8, TensorFlow 2.10,
Scikit-learn, SHAP.

This environment was chosen to simulate resource-
constrained edge devices, which are commonly deployed in 
real-world IoT scenarios. The lightweight nature of LEDEC 
ensures that it can function efficiently on such limited 
hardware. Both datasets underwent preprocessing, including 
outlier filtering and SMOTE-based balancing to mitigate 
class imbalance and noise, see Table I. 

TABLE I. DATASET OVERVIEW 

Dataset Samples Features Attack 
Classes 

Usage 

Edge-
IIoT 

~630,000 86 12 + benign Training & 
Validation 

BoT-
IoT 

~3.6 
million 

42 Multiple + 
benign 

Testing 

B. Evaluation Strategy and Metrics
To evaluate the generalization capability of the LEDEC

model, training was conducted on the Edge-IIoT dataset, 
while testing was performed on the BoT-IoT dataset. The 
ensemble setup involved training three independent 
lightweight temporal convolutional network (L-TCN) 
classifiers, each using distinct feature subsets selected through 
the Fox Optimizer-based feature selection (FO-FS) method. 
Their predictions were aggregated via majority voting, as 
defined in (7).  

Post-inference, SHAP (SHapley Additive Explanations) 
was employed to provide interpretable insights into feature 
contributions behind each prediction. Performance 
assessment included standard classification metrics—
Accuracy, Precision, Recall, and F1-Score—as summarized in 
Table II.  

TABLE II. EVALUATION METRICS  

Metric Purpose 
Accuracy Measures overall classification correctness 

Precision, Recall, F1-
Score 

Evaluate performance on imbalanced multi-
class problems 

ROC-AUC Indicates model discriminative power across 
thresholds 

Model Size (MB) Represents memory footprint, crucial for 
edge devices 

Inference Latency (ms) Average time to process one input sample 
Explainability Score 

(SHAP) 
Reflects the clarity of model predictions for 
security analysts 

Additionally, ROC-AUC was used to quantify 
discriminative power across thresholds. To evaluate 
deployment feasibility on edge devices, model size (in 
megabytes) and inference latency (in milliseconds) were 
measured. Finally, SHAP scores were analyzed to validate 
model transparency and feature-level interpretability. 

V. RESULTS AND DISCUSSION

The LEDEC model was designed not only to achieve high 
detection performance but also to be viable for real-time IoT 
applications where computational resources are limited. 
Therefore, evaluation prioritized not just classification 
accuracy, but also inference latency, model size, and 
interpretability—key factors for deployment in edge 
environments. Emphasis was placed on maintaining high 
attack detection fidelity across data distributions. Key 
performance highlights include: 

• Accuracy: 97.6% on Edge-IIoT and 94.3% on BoT-
IoT, demonstrating strong generalization

• Latency: Achieved sub-50ms inference time,
ensuring real-time responsiveness

• Model Size: Lightweight at just 3.2MB, ideal for
memory-constrained IoT devices

• Explainability: SHAP analysis revealed 5 dominant
features responsible for over 80% of prediction
influence
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From our observation, these results affirm that LEDEC 
outperforms baseline CNN, RNN, and even standard TCN 
architectures in both efficiency and reliability. The use of the 
Fox Optimizer allowed for a sharp reduction in feature 
dimensionality selecting only 24 out of 63 input features while 
preserving classification integrity. Furthermore, SHAP 
explanations added a transparent decision layer, equipping 
security teams with actionable insights and model 
accountability.  

A. Performance Validation
To validate the performance of the LEDEC model, we

present a comprehensive evaluation using multiple metrics 
across both the Edge-IIoT and BoT-IoT datasets. Table III 
presents the key performance metrics. To better visualize the 
performance, Fig. 7 shows a comparison of the key metrics.  

TABLE III. LEDEC PERFORMANCE ON EDGE-IIOT AND BOT-IOT 
DATASETS. 

Metric Edge-IIoT BoT-IoT 
Accuracy (%) 97.6 94.3 
Precision (%) 96.8 93.1 

Recall (%) 97.2 92.5 
F1-Score (%) 97.0 92.8 

Inference Time (ms) 47.3 49.1 
Model Size (MB) 3.2 3.2 
Features Selected 24/63 24/63 

Fig. 8a presents the Receiver Operating Characteristic 
(ROC) curves for both benchmark datasets used in evaluating 
the LEDEC model: Edge-IIoT and BoT-IoT. ROC curves 
show the ROC curve plots the True Positive Rate (TPR) 
against the False Positive Rate (FPR) across various threshold 
settings. It provides insight into the trade-off between 
sensitivity (recall) and specificity (1 - FPR) of the classifier. 
Thus, the key observations are: 

• The AUC (Area Under the Curve) values for both datasets
exceed 0.97, indicating excellent discriminative 
capability, where Edge-IIoT: AUC ≈ 0.98 and BoT-
IoT: AUC ≈ 0.97.  

• The curves are steep and hug the top-left corner of the plot, 
which signifies a high true positive rate with minimal 
false positives. Even with reduced model complexity 
(using lightweight TCNs), LEDEC maintains state-of-
the-art detection power on both datasets.  

• The Area Under the Curve (AUC) is a threshold-
independent metric that reflects a model’s overall 
ability to distinguish between attack and benign 
classes. An AUC greater than 0.97 indicates that the 
LEDEC model maintains exceptionally high reliability 
in detecting threats, regardless of the decision threshold 
applied.  

This level of performance is especially valuable in real-
world IoT deployments, where operating conditions and data 
distributions vary widely. A consistently high AUC confirms 
that LEDEC can maintain accurate, stable detection across 
diverse scenarios—critical for real-time IoT cybersecurity, 
where both detection accuracy and low false-alarm rates are 
essential.  

Fig. 7 LEDEC Model Performance Comparison 

Fig. 8 ROC curves of the LEDEC model (a) and ROC curves of a baseline 
model for comparison (b)  

In contrast, Fig. 8b highlights the limitations of traditional 
or poorly tuned models when applied to heterogeneous IoT 
traffic. The Edge-IIoT AUC = 0.78 and BoT-IoT AUC = 0.67 
curves trend toward the diagonal and even dip downward, 
particularly for BoT-IoT, indicating weak class separation and 
poor generalization. Such performance reflects overfitting, 
inadequate feature selection, or lack of ensemble learning, 
leading the classifier to behave nearly like a random guesser 
on data. These findings underscore the need for 
optimized, explainable ensemble approaches such as LEDEC. 

Fig. 9a and Fig. 9b present the Precision–Recall (PR) 
curves of LEDEC for IoT intrusion detection. 
Fig. 9a compares overall detection performance on Edge-IIoT 
and BoT-IoT datasets; the smooth curves indicate that LEDEC 
sustains high precision across rising recall levels, with Edge-
IIoT consistently outperforming BoT-IoT, demonstrating 
strong generalization across data distributions. Fig. 9b 
highlights class-specific PR curves for DoS, DDoS, Spoofing, 
MITM, and Data Exfiltration under typical class-imbalance 
conditions. Steep, stable curves for DoS/DDoS reveal reliable 
detection of high-volume attacks, while Spoofing and MITM 
show gentler slopes, reflecting the difficulty of identifying 
subtle threats. Still, all AUC-PR scores exceed 0.85, 
indicating high classification fidelity across classes. These 
results confirm LEDEC’s robust and interpretable multiclass 
performance and highlight the advantage of PR-curve analysis 
over ROC in cybersecurity contexts where precision and recall 
are equally critical for real-time decision-making. 

Fig. 9 LEDEC Precision-Recall curves: overall (a) and class-wise (b). 
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Fig. 10 presents the confusion matrix for the LEDEC 
model, highlighting its classification performance across 12 
distinct cyberattack classes within the Edge-IIoT dataset. Each 
cell in the matrix corresponds to the number of instances 
where samples from an actual class were predicted as a 
particular class, offering a clear view of prediction accuracy. 
The matrix exhibits strong diagonal dominance, indicating 
that most predictions align correctly with the actual classes, 
thus confirming high true positive rates.  

 
Fig. 10 Confusion Matrix (Edge-IIoT) - True positive rates across all 12 
classes highlight effective multiclass classification. 

All 12 attack types are clearly represented, demonstrating 
LEDEC’s strength in complex multiclass intrusion detection. 
The confusion matrix shows minimal misclassifications with 
sparse off-diagonal entries, highlighting the model’s ability to 
discriminate between similar threats. This capability is crucial 
for edge-based IoT deployments, where both computational 
efficiency and classification fidelity are essential. Notably, 
LEDEC can differentiate specific threats—such as DoS, 
MITM, and Spoofing—rather than issuing generic anomaly 
alerts, enabling faster, better-informed responses by analysts. 
These findings confirm LEDEC’s accuracy, transparency, and 
practical reliability as an automated intrusion-detection 
solution for real-world, resource-constrained IoT 
environments. Conclusion  

This work presented LEDEC, a lightweight and 
explainable deep ensemble classifier for IoT intrusion 
detection that jointly tackles three critical challenges: high 
detection accuracy, edge-level efficiency, and model 
transparency. By integrating Fox Optimizer-based feature 
selection, a lightweight TCN backbone, and SHAP-driven 
interpretability, LEDEC achieved state-of-the-art accuracy, 
low latency, compact model size, and transparent decision 
support across the Edge-IIoT and BoT-IoT benchmarks, 
demonstrating its suitability for real-time, resource 
constrained deployments. Future directions include real-
device validation, adversarially robust training, and online 
learning with attention mechanisms to further improve 
adaptability, resilience, and trustworthiness in evolving IoT 
ecosystems. 
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