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Abstract— The rapid expansion of Internet of Things (IoT)
infrastructure has led to an increased surface for cyberattacks,
challenging existing intrusion detection systems (IDS) to remain
effective, interpretable, and efficient. This paper proposes a
novel Lightweight and Explainable Deep Ensemble
Cybersecurity (LEDEC) model designed to address these
challenges. The LEDEC model integrates lightweight temporal
convolutional networks (L-TCN), Fox optimizer-based feature
selection (FO-FS), and SHAP-based explainability to ensure
high performance with minimal computational cost. Unlike
existing systems, our model is benchmarked for cross-dataset
generalization on Edge-IloT and BoT-IoT datasets. The
evaluation includes classification performance, model
interpretability, latency, and energy efficiency. The proposed
method achieves 97.6% accuracy with significant reductions in
model complexity and computational time, making it suitable
for real-time deployment in resource-constrained IoT
environments. Furthermore, SHAP-based feature impact
analysis empowers human operators to understand and trust
system decisions, enhancing cybersecurity response.
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The proliferation of IoT devices in smart environments has
led to new challenges in ensuring cybersecurity. These devices
often operate under resource constraints and are exposed to a
wide range of attacks such as DDoS, data poisoning, and
unauthorized access [7][5], Fig. 1. Existing deep learning-
based intrusion detection systems (IDS) offer high accuracy
but lack scalability, interpretability, and real-time
applicability in embedded environments [6][2].
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Fig. 1 Key cybersecurity challenges in IoT environments addressed by the
proposed LEDEC model
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To address these gaps, we propose a LEDEC model that
balances predictive performance with computational
efficiency and transparency. The proposed Lightweight and
Explainable Deep Ensemble Classifier (LEDEC) combines
multiple shallow neural networks with a feature selection
mechanism to reduce model complexity while maintaining
high detection accuracy. Additionally, LEDEC incorporates
SHAP-based interpretability [3] to provide transparent
insights into decision-making, enhancing trust in real-world
deployments.

We validate LEDEC on two prominent [oT datasets,
demonstrating superior performance in terms of accuracy, F1-
score, and inference speed compared to state-of-the-art IDS
models [4][1]. Experiments were run on Jetson Nano using
Edge-IloT (train) and BoT-IoT (test). Evaluation includes
accuracy, Fl-score, AUC, latency, and SHAP consistency.

The main contributions of this work are: (1) We introduce
anovel ensemble-based architecture optimized for lightweight
deployment in IoT environments, (2) We integrate
explainability through SHAP values to interpret feature
importance and model decisions, (3) We conduct extensive
evaluations on benchmark datasets, showing that LEDEC
outperforms existing methods in both efficiency and
robustness.

The rest of the paper is organized as follows: Section II
reviews related work; Section III details the proposed
methodology; Section IV discusses the experimental setup
and results; Section V provides interpretability analysis; and
Section VI concludes the paper with future directions.

II. RELATED WORK

Previous research has explored various feature selection
and deep learning approaches for IDS in IoT. The use of
swarm intelligence algorithms like Genetic Algorithm and
Honey Badger Optimization have shown improvements in
feature selection. Similarly, DL methods like LSTM and
CNNs offer robust classification but are not optimized for
lightweight deployment. Moreover, little emphasis has been
placed on interpretability, a critical requirement for real-world
cybersecurity systems. These models are typically
computationally intensive and operate as black boxes, limiting
their deployment on resource-constrained IoT devices and
undermining transparency.
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[8] proposed an LSTM-based framework for intrusion
detection in SDN-based IoT networks, achieving high
accuracy but with significant computational overhead. [2]
used Random Forest and k-NN on the BoT-IoT dataset to
deliver rapid predictions, though with limited robustness to
sophisticated attack vectors. [4] developed a deep autoencoder
for smart home intrusion detection; while effective, its lack of
interpretability hindered practical adoption. Similarly, [1]
introduced a hybrid IDS combining statistical features with
DL classifiers, reducing training complexity but relying
heavily on manual feature engineering. More recently, [17]
introduced a Transformer-CNN hybrid to capture temporal
and spatial features from network traffic, but their method’s
high resource demand makes it impractical for edge
deployment. [10] attempted to bridge the interpretability gap
using LIME and SHAP, but evaluated their models only on
limited-scale datasets. [14] adopted a Bi-LSTM with attention
mechanism for IloT traffic analysis, enhancing temporal
modeling but increasing inference latency. [12] developed a
lightweight IDS based on Extreme Learning Machines
(ELM), which offered fast training but suffered from class
imbalance sensitivity. [11] coupled GWO with ensemble
models to improve detection accuracy, though their method
lacked explainable outputs. [13] introduced a knowledge
distillation approach to compress complex DL models into
deployable ones, but did not explore transparency or real-time
constraints. Of particular relevance is the work by [9] titled
"An Adaptive Framework for Intrusion Detection in IoT
Security Using MAML (Model-Agnostic Meta-Learning)."
Their framework leverages few-shot meta-learning to rapidly
adapt to novel attack types with minimal labeled data,
enhancing detection in dynamic IoT environments. While
their method demonstrates strong generalization and
adaptability, it involves significant meta-training overhead
and lacks emphasis on interpretability or lightweight
inference, both of which are essential for deployment in real-
time, resource-constrained [oT systems. Previous research has
explored the integration of evolutionary algorithms with
machine learning to improve the adaptability and accuracy of
intrusion detection systems. For instance, [16] proposed a
hybrid evolutionary-machine learning model that leverages
Genetic Algorithms and ensemble classifiers for advanced
threat identification. Their system demonstrated improved
detection across various attack categories and dynamic
network conditions. Inspired by the effectiveness of such
hybrid approaches, our work utilizes the Fox Optimizer, an
evolutionary strategy, for feature selection. However, in
contrast to heavier hybrid models, LEDEC focuses on
lightweight deployment with interpretability through SHAP,
ensuring feasibility on constrained IoT devices.

In summary, while these studies have significantly
advanced IoT intrusion detection, most approaches still
prioritize either accuracy, adaptability, or interpretability but
rarely all three. Our proposed LEDEC model addresses this
gap by unifying efficiency, explainability, and high detection
performance through an ensemble of shallow neural networks
combined with automated feature selection and SHAP-based
interpretability. This makes LEDEC particularly suitable for
real-world, constrained, and dynamic IoT security scenarios.
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[II. METHODOLOGY

This section presents the components of the LEDEC
model, including dataset processing, feature selection,
classification architecture, explainability approach, and the
ensemble structure designed to maximize generalizability.

Recent work by [15] emphasizes the increasing relevance
of Explainable AI (XAI) in IoT environments, highlighting
how transparency in machine learning decision-making can
significantly enhance security and trust in automated systems.
Motivated by these findings, our methodology incorporates
SHAP (SHapley Additive exPlanations) to provide fine-
grained insights into the behavior of the LEDEC model. By
leveraging SHAP at the output stage of each L-TCN model,
we ensure that the system not only detects cyberattacks with
high accuracy but also delivers interpretable explanations for
its predictions. This aligns with XAloT principles, making
LEDEC more suitable for real-world deployment in critical
IoT infrastructures where accountability is essential.

The LEDEC framework is structured to address the
primary challenges in IoT cyberattack detection: high model
complexity, poor interpretability, and limited deployment
capacity on edge devices. The design integrates four main
components: (1) feature pre-processing, (2) optimization-
based feature selection, (3) lightweight TCN classification,
and (4) SHAP-based interpretability.

We use the Edge-IloT and BoT-loT datasets for
benchmarking. Preprocessing steps include normalization and
SMOTE for balancing. Features were normalized using min-
max scaling as in (1):

v x mln(J.c) o
max(x) — min(x)

First, raw data is normalized using min-max scaling to
prepare consistent inputs across sensors. This ensures uniform
feature ranges, preventing bias from dominant features during
model training [19]. Then, a Fox Optimizer is used for feature
selection, guided by a dual-objective fitness function that
simultaneously maximizes classification accuracy and
minimizes the number of features. This step significantly
reduces data dimensionality while retaining classification
power, which is critical for deploying models on limited
hardware [16].

The core classifier is a lightweight TCN architecture,
optimized with causal and dilated convolutions to preserve
temporal sequence information while reducing model size and
inference latency. TCN was selected over traditional LSTM
and GRU models for its superior parallelization and stable
training behavior on longer sequences [18] [20]. Finally,
SHAP values are integrated post-prediction to explain each
classification result in terms of the most influential input
features. This step adds transparency to the model's decision-
making, allowing cybersecurity analysts to verify or override
model outcomes based on domain expertise [3] [21]. As
shown in LEDEC algorithm, Fig. 2, the LEDEC model
integrates feature selection, ensemble training, and
explanation generation.



Algorithm 1 Lightweight [ntrusion Detection using LEDEC
Input: Dataset I, Feature Set F, Parameters a,
Output: Predicted Label j, Explanation Vector ¢
1: procedure LEDEC(D, F. ., 6)

F' FOTS(F e, 8)
Split D into training and testing sets: Dypgin, Dyost
Train L-TCN models {fi, f5, f3} 00 Dyrqs using subsets of F/
for each z € Dy do

i+ mode( ) ), ()

¢ ¢ SHAP(f,, ) USHAP(f,, z) USHAP(f3, z)

Qutput 7,0
9. end for
10: end procedure

2% > Select optimal features via Fox Optimizer

> Majority voting ensemble

3
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6
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Fig. 2 LEDEC Algorithm

Together, these components make LEDEC an effective,
efficient, and interpretable framework for secure IoT
deployments. Its ensemble learning setup further stabilizes
results by training multiple TCNs on different subsets and
using majority voting for final prediction.

A. Dataset Description

We utilize two comprehensive and widely used
benchmark datasets to evaluate the proposed model: Edge-
IIoT and BoT-IoT. The Edge-IloT dataset includes 12 diverse
attack classes such as Denial-of-Service (DoS), Man-in-the-
Middle (MitM), ransomware, backdoor access, and
reconnaissance attacks, providing a fine-grained multi-class
classification challenge in edge computing contexts [24]. The
BoT-IoT dataset, on the other hand, features a broad set of
attack categories including DDoS, DoS, data theft,
information gathering, and botnet infiltration, each with
multiple sub-variants, representing realistic IoT attack
scenarios in smart environments [25]. To improve the
generalization capability and stability of the model across
these imbalanced and noisy datasets, we applied Synthetic
Minority Over-sampling Technique (SMOTE) to address
class imbalance by generating synthetic samples of minority
classes, especially critical for rare but high-impact attacks
[22]. In addition, outlier filtering using z-score-based
detection was employed to remove anomalous data points that
could skew model learning, ensuring cleaner and more
representative feature distributions [23].

These preprocessing steps, Fig. 3, contribute significantly
to enhancing the robustness and fairness of LEDEC’s
performance across varying attack patterns and data
heterogeneity.
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B. Feature Selection using Fox Optimizer (FO-FS)

The Fox Optimizer algorithm simulates the adaptive
hunting behavior of red foxes. In this context, feature selection
aims to identify an optimal subset of features S S F from the
full feature set F,minimizing the number of features while
maximizing classification performance, Fig. 4.
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Fox Optimizer mimics fox hunting behavior. We define a
fitness function J(S) used to evaluate each candidate feature
subset is (2):

|S|
](5)=0('ACC(5)—B'W (2)

Where Acc(S) is the accuracy using feature subset S, |S]|
is the number of selected features, |F| is the total number of
features and @, B € [0,1] are weight parameters that balance

accuracy and feature reduction. This balances detection
performance and dimensionality reduction.

C. Lightweight TCN Classifier (L-TCN)

Temporal Convolutional Networks (3) use causal and
dilated convolutions to process time-series data. The output y,
at time t is computed as:

k-1

Ve = Z Wi Xt—d.i

i=0

3)

Where: W, are convolution weights, X, is the input
sequence, d is the dilation factor, k is the kernel size. The L-
TCN model, Fig. 5, includes residual connections to improve
gradient flow (4):

h®O = J(W(l) * h-1 4 b(l)) 4+ p0-D )

Where: * denotes convolution, ¢ is the activation
function, W® and b® are layer weights and biases. Formula
(3) typically represents a residual block in neural networks
with an activation function o, weights W®, bias b®, and
input from the previous layer A1,

D. Explainability via SHAP

To explain model predictions at a granular level, SHAP
(SHapley Additive exPlanations) is used. It assigns a
contribution value to each feature, showing its impact on the
model's output for a given prediction. Specifically, SHAP
values ¢; represent how much a feature i contributes,
positively or negatively, to the final decision. SHAP values
are calculated using the Shapley value formulation from
cooperative game theory. Mathematically, SHAP values are
defined as in (5):

SIt(NT=1S] -1
= ISILANT = 18]

IN|!
SCEN\{i}

Where: § is any subset of features not containing feature 7,
f(S) is the model’s output when only using the feature subset
S, N is the complete set of features. SHAP values ¢; quantify
the contribution of each feature i to the prediction. This
interpretability method improves transparency in automated
decision-making, allowing analysts to better understand
which features influence each classification outcome. As a
result, SHAP strengthens trust in Al-based cybersecurity
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systems and informed threat

management.

supports  responsive,

E. Ensemble Strategy and Proposed Contribution

An ensemble of three L-TCN classifiers is used. The final
prediction is determined by majority voting. This ensemble
approach enhances generalization and reduces variance. This
methodology directly addresses the limitations of previous
IDS models by offering a scalable, accurate, and transparent
solution tailored for next-generation smart environments.
SHAP values assess feature impact as (6):

SN[ =S| = D)t
d’i:Z[ll(ll ISI - 1)

IN|!

They explain each prediction by computing marginal
contributions of features. We propose an ensemble learning
framework that combines three lightweight TCN models,
denoted as f1, f2, 3, each trained on different feature subsets
to improve robustness and reduce overfitting. (7) shows the
final prediction y that is determined using majority voting
among the outputs of these models:

fEU{H -F] (6

¥ = mode(f; (x), f(x), f3(x)) @)

This ensemble strategy ensures prediction stability and
improved generalization, especially in varying data
conditions, Fig. 6. The key innovations of our approach
include: Integrating feature selection (FO-FS), efficient deep
learning (L-TCN), and interpretability (via SHAP) into a
cohesive architecture. Ensuring real-time feasibility by
optimizing model size and inference latency for edge device
compatibility. Demonstrating strong generalization by
validating the model across both Edge-IIoT and BoT-IoT
datasets. Enabling actionable explanations for security
professionals, allowing faster, evidence-based threat response.

IV. EXPERIMENTAL SETUP

Models were trained on Edge-IloT and tested on BoT-IoT
to assess cross-dataset generalization. Evaluation metrics
include Accuracy, F1-Score, ROC-AUC, Model Size (MB),
Inference Latency (ms), and SHAP explanation consistency.
This simulates a real-world scenario where the model
encounters previously different attack types.

A. Environment Configuration and Dataset Overview

To simulate edge device deployment, all experiments were
deployed and executed on an NVIDIA Jetson Nano
development board, equipped with:

CPU (Quad-core ARM Cortex-A57 @ 1.43 GHz)
GPU (128-core Maxwell NVIDIA GPU)

RAM (4GB LPDDR4)

Ubuntu 18.04 with JetPack SDK as Operating System
with Frameworks of Python 3.8, TensorFlow 2.10,
Scikit-learn, SHAP.

This environment was chosen to simulate resource-
constrained edge devices, which are commonly deployed in
real-world IoT scenarios. The lightweight nature of LEDEC
ensures that it can function efficiently on such limited
hardware. Both datasets underwent preprocessing, including
outlier filtering and SMOTE-based balancing to mitigate
class imbalance and noise, see Table 1.
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TABLE L DATASET OVERVIEW

Dataset | Samples | Features Attack Usage
Classes
Edge- | ~630,000 86 12 + benign Training &
1IoT Validation
BoT- ~3.6 42 Multiple + Testing
IoT million benign

B. Evaluation Strategy and Metrics

To evaluate the generalization capability of the LEDEC
model, training was conducted on the Edge-IloT dataset,
while testing was performed on the BoT-IoT dataset. The
ensemble setup involved training three independent
lightweight temporal convolutional network (L-TCN)
classifiers, each using distinct feature subsets selected through
the Fox Optimizer-based feature selection (FO-FS) method.
Their predictions were aggregated via majority voting, as
defined in (7).

Post-inference, SHAP (SHapley Additive Explanations)
was employed to provide interpretable insights into feature
contributions  behind each prediction. Performance
assessment included standard classification metrics—
Accuracy, Precision, Recall, and F1-Score—as summarized in
Table II.

TABLEII. EVALUATION METRICS
Metric Purpose
Accuracy Measures overall classification correctness

Precision, Recall, F1-
Score
ROC-AUC

Evaluate performance on imbalanced multi-
class problems

Indicates model discriminative power across
thresholds

Represents memory footprint, crucial for
edge devices

Average time to process one input sample
Reflects the clarity of model predictions for

Model Size (MB)

Inference Latency (ms)
Explainability Score

(SHAP) security analysts
Additionally, ROC-AUC was wused to quantify
discriminative power across thresholds. To evaluate

deployment feasibility on edge devices, model size (in
megabytes) and inference latency (in milliseconds) were
measured. Finally, SHAP scores were analyzed to validate
model transparency and feature-level interpretability.

V. RESULTS AND DISCUSSION

The LEDEC model was designed not only to achieve high
detection performance but also to be viable for real-time [oT
applications where computational resources are limited.
Therefore, evaluation prioritized not just classification
accuracy, but also inference latency, model size, and
interpretability—key factors for deployment in edge
environments. Emphasis was placed on maintaining high
attack detection fidelity across data distributions. Key
performance highlights include:

Accuracy: 97.6% on Edge-11oT and 94.3% on BoT-
IoT, demonstrating strong generalization
Latency: Achieved sub-50ms inference
ensuring real-time responsiveness

Model Size: Lightweight at just 3.2MB, ideal for
memory-constrained IoT devices

Explainability: SHAP analysis revealed 5 dominant
features responsible for over 80% of prediction
influence

time,




From our observation, these results affirm that LEDEC
outperforms baseline CNN, RNN, and even standard TCN
architectures in both efficiency and reliability. The use of the
Fox Optimizer allowed for a sharp reduction in feature
dimensionality selecting only 24 out of 63 input features while
preserving classification integrity. Furthermore, SHAP
explanations added a transparent decision layer, equipping
security teams with actionable insights and model
accountability.

A. Performance Validation

To validate the performance of the LEDEC model, we
present a comprehensive evaluation using multiple metrics
across both the Edge-IIoT and BoT-IoT datasets. Table III
presents the key performance metrics. To better visualize the
performance, Fig. 7 shows a comparison of the key metrics.

TABLE IIL. LEDEC PERFORMANCE ON EDGE-IIOT AND BOT-IOT
DATASETS.
Metric Edge-IloT BoT-IoT
Accuracy (%) 97.6 94.3
Precision (%) 96.8 93.1
Recall (%) 97.2 92.5
F1-Score (%) 97.0 92.8
Inference Time (ms) 473 49.1
Model Size (MB) 32 3.2
Features Selected 24/63 24/63

Fig. 8a presents the Receiver Operating Characteristic
(ROC) curves for both benchmark datasets used in evaluating
the LEDEC model: Edge-IloT and BoT-IoT. ROC curves
show the ROC curve plots the True Positive Rate (TPR)
against the False Positive Rate (FPR) across various threshold
settings. It provides insight into the trade-off between
sensitivity (recall) and specificity (1 - FPR) of the classifier.
Thus, the key observations are:

e The AUC (Area Under the Curve) values for both datasets
exceed 0.97, indicating excellent discriminative
capability, where Edge-IloT: AUC =~ 0.98 and BoT-
IoT: AUC = 0.97.

o The curves are steep and hug the top-left corner of the plot,
which signifies a high true positive rate with minimal
false positives. Even with reduced model complexity
(using lightweight TCNs), LEDEC maintains state-of-
the-art detection power on both datasets.

eThe Area Under the Curve (AUC) is a threshold-
independent metric that reflects a model’s overall
ability to distinguish between attack and benign
classes. An AUC greater than 0.97 indicates that the
LEDEC model maintains exceptionally high reliability
in detecting threats, regardless of the decision threshold
applied.

This level of performance is especially valuable in real-
world IoT deployments, where operating conditions and data
distributions vary widely. A consistently high AUC confirms
that LEDEC can maintain accurate, stable detection across
diverse scenarios—critical for real-time IoT cybersecurity,
where both detection accuracy and low false-alarm rates are
essential.
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Fig. 8 ROC curves of the LEDEC model (a) and ROC curves of a baseline
model for comparison (b)

In contrast, Fig. 8b highlights the limitations of traditional
or poorly tuned models when applied to heterogeneous IoT
traffic. The Edge-IIoT AUC =0.78 and BoT-IoT AUC =0.67
curves trend toward the diagonal and even dip downward,
particularly for BoT-IoT, indicating weak class separation and
poor generalization. Such performance reflects overfitting,
inadequate feature selection, or lack of ensemble learning,
leading the classifier to behave nearly like a random guesser
on data. These findings underscore the need for
optimized, explainable ensemble approaches such as LEDEC.

Fig. 9a and Fig. 9b present the Precision—Recall (PR)
curves of LEDEC for IoT intrusion detection.
Fig. 9a compares overall detection performance on Edge-1IoT
and BoT-IoT datasets; the smooth curves indicate that LEDEC
sustains high precision across rising recall levels, with Edge-
IIoT consistently outperforming BoT-IoT, demonstrating
strong generalization across data distributions. Fig. 9b
highlights class-specific PR curves for DoS, DDoS, Spoofing,
MITM, and Data Exfiltration under typical class-imbalance
conditions. Steep, stable curves for DoS/DDoS reveal reliable
detection of high-volume attacks, while Spoofing and MITM
show gentler slopes, reflecting the difficulty of identifying
subtle threats. Still, all AUC-PR scores exceed 0.85,
indicating high classification fidelity across classes. These
results confirm LEDEC’s robust and interpretable multiclass
performance and highlight the advantage of PR-curve analysis
over ROC in cybersecurity contexts where precision and recall
are equally critical for real-time decision-making.
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Fig. 9 LEDEC Precision-Recall curves: overall (a) and class-wise (b).




Fig. 10 presents the confusion matrix for the LEDEC
model, highlighting its classification performance across 12
distinct cyberattack classes within the Edge-IIoT dataset. Each
cell in the matrix corresponds to the number of instances
where samples from an actual class were predicted as a
particular class, offering a clear view of prediction accuracy.
The matrix exhibits strong diagonal dominance, indicating
that most predictions align correctly with the actual classes,
thus confirming high true positive rates.

Tre Class

Fig. 10 Confusion Matrix (Edge-IIoT) - True positive rates across all 12
classes highlight effective multiclass classification.

All 12 attack types are clearly represented, demonstrating
LEDEC'’s strength in complex multiclass intrusion detection.
The confusion matrix shows minimal misclassifications with
sparse off-diagonal entries, highlighting the model’s ability to
discriminate between similar threats. This capability is crucial
for edge-based IoT deployments, where both computational
efficiency and classification fidelity are essential. Notably,
LEDEC can differentiate specific threats—such as DoS,
MITM, and Spoofing—rather than issuing generic anomaly
alerts, enabling faster, better-informed responses by analysts.
These findings confirm LEDEC’s accuracy, transparency, and
practical reliability as an automated intrusion-detection
solution for real-world, resource-constrained IoT
environments. Conclusion

This work presented LEDEC, a lightweight and
explainable deep ensemble classifier for IoT intrusion
detection that jointly tackles three critical challenges: high
detection accuracy, edge-level efficiency, and model
transparency. By integrating Fox Optimizer-based feature
selection, a lightweight TCN backbone, and SHAP-driven
interpretability, LEDEC achieved state-of-the-art accuracy,
low latency, compact model size, and transparent decision
support across the Edge-IloT and BoT-lIoT benchmarks,
demonstrating its suitability for real-time, resource
constrained deployments. Future directions include real-
device validation, adversarially robust training, and online
learning with attention mechanisms to further improve
adaptability, resilience, and trustworthiness in evolving IoT
ecosystems.
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