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Abstract—Recently, various intrusion detection systems (IDSs)
have been proposed to address the security vulnerabilities of
the controller area network (CAN), which is widely used in
modern in-vehicle networks. However, existing IDSs determine
only whether an attack occurs at the input sequence level.
Consequently, these models cannot identify which frames within
a sequence correspond to the attack. To solve this problem, we
propose the Frame-eXplainable IDS (FX-IDS). The proposed FX-
IDS was designed by integrating a convolutional neural network
(CNN)-based architecture with integrated gradients (IG), an
explainable AI (XAI) technique. It computes the contribution
of each CAN frame within the input sequence and precisely
identifies the frames in which attacks occur by summing the
contributions at the frame level. Experimental results show that
FX-IDS achieved an average accuracy of 99.96%, a precision
of 99.97%, and a recall of 99.92% in sequence-level detection.
It also achieved 98.48% accuracy in identifying the locations of
attack frames within input sequences. In addition, XAI-based
visualization demonstrated that the decision rationale of the
model can be intuitively interpreted, thereby validating both the
reliability and explainability of the in-vehicle IDS.

Index Terms—In-vehicle security, CAN, intrusion detection
system, explainable AI.

I. INTRODUCTION

With the rise of vehicle-to-everything (V2X) technologies,
such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I), vehicles have become connected systems that continu-
ously exchange data with their environment [1]. Moreover, the
increasing incorporation of functionalities such as autonomous
driving, advanced driver-assistance systems (ADAS), and in-
fotainment has led to a growing number of electronic control
units (ECUs) responsible for managing these systems. For
the efficient communication among these ECUs, the controller
area network (CAN) protocol, is widely used. However, since
the CAN protocol lacks built-in security mechanisms, it is vul-
nerable to external attacks. For example, an attacker can access
the CAN bus physically through the on-board diagnostics port
(OBD-II) , or remotely via various wireless interfaces such as
Wi-Fi, cellular networks, and bluetooth to carry out attacks
[2]. This can lead to malfunctions in safety-critical functions
such as braking and engine control.

Vehicle security is of utmost importance, as it goes beyond
mere information leakage and is directly related to human
safety [3]. Consequently, researchers have explored diverse

countermeasures to mitigate CAN security vulnerabilities; in
particular, numerous machine learning–based intrusion detec-
tion systems (IDSs) have been proposed [4]–[6]. For example,
Song et al. proposed a deep convolutional neural network
(DCNN) IDS [7]. The DCNN performed attack detection
using 29 consecutive CAN frames. Similarly, Desta et al.
proposed the Rec-CNN model, which uses recurrent plots of
128 CAN frames as input with a size of 128×128 [8]. Seo et
al. proposed a generative adversarial network (GAN)–based
IDS (GIDS) trained with unsupervised learning, which uses
64 consecutive CAN frames encoded as one-hot vectors as
the model input [9]. Hoang et al. proposed a convolutional
adversarial autoencoder (CAAE)–based IDS that employs the
adversarial autoencoder (AAE), a technique that regularizes a
vanilla autoencoder through adversarial training [10].

The aforementioned models classify an input sequence as
an attack if it contains at least one attack frame. Consequently,
when an attack is detected, they cannot identify which frames
within the sequence are malicious. This results in an inefficient
response, as normal frames within the same sequence are also
flagged as attacks. In short, sequence-level decision models
inflate frame-level false positives. In addition, since existing
models cannot explain the basis for judgment, it is difficult
to secure reliability in the actual vehicle security operation.
To address these limitations, we propose a frame eXplainable
IDS (FX-IDS) that integrates explainable AI (XAI) techniques
into the proposed IDS model. The proposed FX-IDS applies
integrated gradients (IG), an XAI method, to quantitatively
compute the contribution of each CAN frame. This enables
identification of attack frames within sequences and visualiza-
tion of the contribution of each frame.

The major contributions of our study are as follows:
• To the best of our knowledge, this is the first work that

applies XAI to pinpoint the specific frame that is an attack
within the input sequence of in-vehicle network data.

• The proposed FX-IDS was evaluated on four attack
scenarios DoS, Fuzzy, Gear spoofing, and RPM spoofing
using an open dataset. Experimental results demonstrate
that the model achieved detection performance within
input sequences, with an average detection accuracy of
99.96%, a precision of 99.97%, and a recall of 99.92%.

• Additionally, the proposed model provides a visual inter-
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Fig. 1. Structure of a standard CAN.

pretation of its decision basis through XAI-based contri-
bution analysis. In particular, it enhances the reliability
and explainability of frame-level attack detection.

The remainder of this paper is organized as follows. Section
II provides the background for this study. Section III provides
a detailed explanation of the data preprocessing method and
the proposed FX-IDS model. In Section IV, we describe the
experimental setup and results, followed by a discussion.
Finally, Section V concludes this paper.

II. BACKGROUND

A. Controller Area Network (CAN)

CAN is a serial communication protocol developed by
Bosch for seamless data transmission and reception among
ECUs within a vehicle [11]. This protocol is used for en-
gine control, airbag systems, and vehicle diagnostics. Fig. 1
illustrates the standard CAN frame. CAN adopts a multi-
master architecture, in which all nodes can act as masters
and initiate message transmission whenever necessary. This
can lead to collisions when multiple CAN nodes attempt
to transmit simultaneously. To prevent this, CAN resolves
bus access using an arbitration mechanism that prioritizes
messages based on their identifiers. For example, messages
with lower identifier values have higher priorities and gain
transmission rights over those with higher identifiers.

The data field contains the actual information that the trans-
mitting node intends to deliver to other nodes, and its length
varies from 0 to 64 bits depending on the data length code
(DLC). It includes data necessary for vehicle operation, such
as device control commands and sensor measurements. Finally,
the cyclic redundancy check (CRC) field is appended for
transmission error detection. The receiving node recalculates
the CRC of the frame using the same rule and checks whether
it matches the CRC transmitted by the sender.

B. Integrated Gradients (IG)

Gradient-based XAI estimates the contribution of each input
to the model output using gradient information. There are
two fundamental axioms that underlie the attribution methods
of gradient-based XAI. First, sensitivity states that if the
output changes relative to a baseline, the gradient value of the
corresponding input feature should not be zero. In other words,
any input feature that the model actually responds to must be
reflected as a non-zero contribution. Second, implementation
invariance is the principle that if two networks produce the
same output for the same input, the attributions for each input
feature should be identical, regardless of differences in their
internal structures. If either of the two axioms is not satisfied,
the attribution may become sensitive to features that are not

Fig. 2. Data preprocessing.

important to the model output. As a result, the reliability and
consistency of XAI are diminished. Representative gradient-
based XAI methods include IG, DeepLIFT, and Layer-wise
Relevance Propagation (LRP).

Among these, IG is an XAI method that mathematically
quantifies how much each input feature of a deep learning
model contributes to its prediction results, while satisfying
the sensitivity and implementation invariance axioms [12]. IG
calculates the cumulative contribution of each input feature to
the model output f(x) by integrating the gradients along the
path from the baseline x′ to the actual input x. It is defined
as follows:

IGi(x) = (xi − x′
i)×

∫ 1

α=0

∂f(x′ + α(x− x′))

∂xi
dα (1)

where xi denotes the input feature of the i-th dimension,
and ∂f

∂xi
denotes the gradient of f(x) with respect to the

i-th dimension, indicating how sensitively the model output
changes with respect to the input. That is, the influence of each
feature is calculated by accumulating the changes in the output
as the input gradually transitions from the baseline to the
actual input. The integral of IG can be efficiently approximated
through summation.

IGi(x) ≈ (xi − x′
i)×

1

m

m∑
k=1

∂f
(
x′ + k

m (x− x′)
)

∂xi
(2)

where m denotes the number of Riemann partition steps used
to approximate the integral, which is typically set between 20
and 300. The Riemann approximation divides the path from
the baseline to the input into m intervals and averages the
gradients at each interval, allowing efficient implementation
in most deep learning frameworks.

III. THE PROPOSED FRAME EXPLAINABLE IDS

A. Data Preprocessing

The proposed FX-IDS uses the ID and data fields of CAN
frames as input features. Accordingly, an ID of 11 bits and a
data field of 64 bits are combined to represent a single frame
as a 75-bit vector. Each frame is converted into a 3×25 format.
The first row is assigned an ID of 11 bits and data of 14 bits,
while the second and third rows are each assigned 25 bits
of data to form the entire frame including the ID and data
fields. Subsequently, seven consecutive frames are combined
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Fig. 3. Architecture of the proposed FX-IDS.

Fig. 4. Frame-level detection process of the FX-IDS.

to generate a final two-dimensional input sequence with a size
of 21×25. This preprocessing procedure is illustrated in Fig. 2.
All bits are arranged in an MSB-first order, and zero-padding
is applied when the data field is less than 64 bits. Finally, an
input sequence is labeled as an attack if it contains one or
more attack frames.

B. Model Architecture

The proposed FX-IDS constructs the input sequence in a
two-dimensional representation in order to distinguish clearly
between normal and attack frames. Accordingly, as shown in
Fig. 3, the proposed model employs a single convolutional
layer to learn spatial correlations across frames, followed by
two dense layers and a final output layer. The convolutional
layer uses 32 kernels of size 2×2 to learn local spatial patterns
among adjacent bits. The stride is set to 1 and the padding
to 0 to minimize information loss, and the ReLU activation
function is applied after the convolution operation to introduce
nonlinearity. In addition, a 2×2 average pooling operation is
used to reduce the size of the feature map by half and to
average the values of adjacent regions. This allows the model
to more stably reflect the differences in patterns between
frames within the input sequence. The output, comprising 32
channels with a 10×12 spatial size, is subsequently flattened
into a one-dimensional vector and fed into the dense layer.
The dense layers and the final output layer are configured
sequentially with 256, 128, and 1 nodes, respectively. Each
layer calculates its output by applying weights and biases to
the input values, followed by an activation function. The ReLU
activation function is applied to each intermediate layer, while
the sigmoid function is used in the final layer to output a value
between 0 and 1. The output is classified as an attack if it is
greater than or equal to 0.5, and as normal if it is less than

TABLE I
OVERVIEW OF CAR HACKING DATASET

Attack type Normal messages Injected messages

DoS Attack 3,078,250 587,521
Fuzzy Attack 3,347,013 491,847
Gear Spoofing Attack 3,845,890 597,252
RPM Spoofing Attack 3,966,805 654,897

0.5. This output corresponds to sequence-level detection; if
a sequence is classified as an attack, all frames within that
sequence are regarded as attack frames.

C. Frame-level Detection Process

Existing sequence-level detection IDS models cannot per-
form frame-level detection. However, the proposed FX-IDS
can determine, for each frame within sequences, whether it
is normal or an attack. It does so by performing IG-based
contribution calculations on sequences classified as attacks.
The proposed model applies (2) to sequences classified as
attacks, and then calculates bit-wise contributions of the input
sequence for frame-level detection. At this point, baseline x′

is all set to 0. This is to clearly measure the effect of the
distribution change of 1 on the model output in the attack
frame, since the input is in a binary form consisting of 0 and
1.

The calculated bit-wise contributions are summed for each
frame, considering that frame-level analysis is more intuitive
than interpretation at a single-bit level. Through this process,
the contributions are converted into frame-level contributions
as follows.

Cj =
525∑
i=1

IGi(x), j = 1, 2, . . . , 7 (3)

where Cj represents the total contribution of the j-th frame.
If the contribution Cj of the frame is greater than or equal to
0, the frame is determined as an attack frame. Conversely, if
Cj is less than 0, it is determined as a normal frame.

IV. EXPERIMENTS AND RESULTS

A. Experimental Settings

The proposed FX-IDS is trained and evaluated under the
following experimental environment.

• OS: Windows 11
• CPU: Intel(R) Core(TM) i7-12700K @ 3.60GHz
• GPU: NVIDIA GeForce RTX 3050
• RAM: 32.0GB
• Framework: PyTorch 2.4.1

In addition, the hyperparameters were carefully tuned to ensure
that the FX-IDS model achieved optimal performance during
the experiments. The batch size was set to 64, and training
was conducted for a total of 10 epochs. The Adam optimizer
was used with a learning rate of 0.001. For the IG-based
contribution calculation, the Captum library was applied, and
the number of Riemann partition steps, m, was set to 50.
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TABLE II
SEQUENCE-LEVEL DETECTION PERFORMANCE OF THE FX-IDS

Accuracy Precision Recall F1 Score

DoS 99.93% 99.98% 99.78% 99.88%

Fuzzy 99.95% 99.94% 99.89% 99.91%

Gear 99.98% 99.96% 100% 99.98%

RPM 99.99% 99.99% 100% 99.99%

B. Dataset

In this study, we used the Car-hacking dataset provided by
the hacking and countermeasure research lab (HCRL) [13].
The dataset was constructed by injecting attack messages into
a real vehicle via the OBD-II port, and it comprises denial-
of-service (DoS) attacks, fuzzy attacks, engine RPM spoofing
attacks, and gear spoofing attacks. Table I shows the number
of normal and injected attack frames for each attack type. A
DoS attack exploits the arbitration mechanism of the CAN
bus by continuously injecting high-priority messages, thereby
occupying the bus and blocking the transmission of normal
messages. A fuzzy attack injects random messages to cause
ECU malfunctions, while a spoofing attack injects specific
messages (e.g., engine RPM or gear) to manipulate the vehicle
state.

C. Evaluation Metrics

In this study, since the dataset was imbalanced between nor-
mal and attack data, the model classification performance was
evaluated using accuracy, precision, recall, and F1-score. In
addition, the same metrics were applied to evaluate the frame-
level classification performance, analyzing how accurately and
consistently the model identifies attack frames within an input
sequence. The calculation formulas for each evaluation metric
are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1-score = 2× Precision×Recall

Precision+Recall
(7)

where true positive (TP) denotes the case in which the model
correctly predicts actual attack data as an attack, and true
negative (TN) corresponds to the case in which actual normal
data are correctly predicted as normal. In contrast, false
positive (FP) refers to the case in which actual normal data
are incorrectly predicted as an attack, and false negative (FN)
indicates the case in which actual attack data are incorrectly
predicted as normal.

TABLE III
COMPARISON OF EXISITING IDS MODELS

Models Detection Units Precision Recall F1-Score

DCNN [6] 29 CAN frames 99.98% 99.84% 99.91%

Rec-CNN [7] 128 CAN frames 100% 99.91% 99.96%

CanNet [14] 16 CAN frames 99.91% 99.72% 99.69%

GIDS [8] 64 CAN frames 97.63% 99.44% 98.53%

FX-IDS (Ours) 7 CAN frames ✓ 99.97% 99.92% 99.94%
✓ Each CAN frame can be identified as attack or normal.

TABLE IV
FRAME-LEVEL AVERAGE DETECTION ACCURACY ACROSS ALL ATTACK

TYPES

Accuracy Precision Recall F1 Score

Average 98.48% 99.79% 96.52% 98.02%

D. Experimental Results

Table II shows the sequence-level detection performance
of the proposed FX-IDS for each attack type. The proposed
IDS achieved an average accuracy of 99.96% across all attack
types, demonstrating outstanding detection performance. Fur-
thermore, we compared the proposed model with existing IDS
models as shown in Table III. Although the proposed model
has the smallest sequence size, it achieved performance that
was comparable to or better than other models. However, a
fair comparison remains challenging because sequence lengths
differ across models. To address this, a normalized frame-
level evaluation is required, but existing models lack an
architecture to distinguish individual frames within a sequence.
For example, although Rec-CNN achieved the highest F1-
score, it uses the largest sequence size of 128 frames as input.
If any one of the 128 frames is malicious, the remaining 127
are likewise classified as attacks, which can induce significant
operational errors. In contrast, the proposed FX-IDS is able to
accurately identify attack frames within sequences by using
XAI.

Table IV presents the frame-level detection performance
of the proposed FX-IDS. The frame-level evaluation assesses
whether the proposed model can accurately identify actual at-
tack frames within sequences that are classified as attacks. This
is conducted through IG-based contribution analysis. Based
on the number of frames in each sequence, the contribution
value Cj of each frame was calculated to determine the counts
of TP, TN, FP, and FN. The experimental results confirmed
that the proposed model can effectively distinguish between
normal and attack frames within sequences. The performance
is slightly lower than that of sequence-level detection. How-
ever, it is evaluated as an excellent result, considering that the
proposed approach performs detection at a fine-grained level
by independently determining each frame within sequences.
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Fig. 5. Bit-wise contribution visualization.

Fig. 6. Frame-level contribution visualization of a normal sequence.

Fig. 7. Frame-level contribution visualization of a attack sequence.

E. XAI Visualization

As shown in Fig. 5, we visualized the bit-wise contribution
of each sequence to explain the basis on which the proposed
FX-IDS determines normal and attack sequences. Each bit
has a contribution value, where red indicates a positive con-
tribution and blue indicates a negative contribution. These
represent the factors that contribute to the decision of the
model toward an attack and normal classification, respectively.
Areas where the color is deep indicate that the corresponding
bits have a greater contribution to the decision of the model.
In contrast, areas with pale or almost no color correspond to
neutral features that have little to no influence on the prediction
of the model. In the case of normal sequences, negative
contributions (blue) are predominantly distributed across most
bits, whereas in attack sequences, positive contributions (red)

are concentrated in specific frame regions.
Fig. 6 and Fig. 7 show the results of the proposed FX-

IDS visualizing frame-level contributions by summing the bit-
wise contributions. These visualizations correspond to deter-
mining normal and attack sequences, respectively. In Fig. 6,
negative contributions appear across all frames, indicating
that the model consistently recognizes each frame as normal.
In contrast, Fig. 7 shows prominent positive contributions
in specific frames within the attack sequence. This suggests
that these frames significantly influence the decision of the
model to classify the input sequence as an attack. In fact, the
sequence in Fig. 7 is composed of attack frames at the 1st, 2nd,
and 7th positions, which coincide with the regions showing
positive contributions. Therefore, the use of XAI enables a
clear explanation of the rationale behind the model decision.
This confirms that the proposed model can precisely identify
attacks at the frame level within input sequences.

F. Discussion and Limitation

In this study, we proposed FX-IDS, which integrates XAI
techniques to overcome the limitations of exising sequence-
level detection-based IDS models. The FX-IDS model demon-
strated excellent detection performance and was able to accu-
rately identify the positions of attack frames. Furthermore, it
not only provided detection results but also clearly explained
the reasoning behind the model predictions through visualized
representations. However, the proposed FX-IDS has several
limitations. First, the IG-based contribution calculation re-
quires high computational cost and memory resources. This
makes it suitable for offline analysis environments but difficult
to apply in real-time in-vehicle systems. Accordingly, future
research should focus on improving the model structure by
applying lightweight techniques to enable real-time operation.
Second, since FX-IDS is a supervised learning-based model,
it is limited in its ability to detect new types of attacks that
have not been trained. Therefore, it should aim to expand the
model into an unsupervised learning-based framework capable
of detecting previously unknown attacks.

V. CONCLUSION

In this paper, we propose FX-IDS, which enables frame-
level attack detection within input sequences using XAI.
The proposed FX-IDS is structured by combining a single
CNN-based architecture with IG. It is designed to make the
model prediction rationale interpretable at both the sequence
and frame levels. Experimental results show that FX-IDS
achieved excellent performance compared to existing models
in sequence-level detection. It was also able to accurately
distinguish between normal and attack frames in frame-level
detection. This suggests that the proposed approach can con-
tribute to future IDS research by simultaneously enhancing the
accuracy and reliability of CAN-based IDSs. In future work,
we plan to apply lightweight approximation techniques that
can replace IG computation in resource-constrained in-vehicle
environments. Furthermore, we aim to develop an IDS capable
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of detecting unknown attacks by integrating unsupervised
learning with XAI.
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