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Abstract— We propose Incremental VistaDream, a single-view  
scene reconstruction method that represents a 3D scene as a set of 
Gaussian distributions. Starting from a 60° field-of-view (FoV) 
image, we progressively expand the horizontal FoV to 120° by 
applying four 30% expansions on each side (eight steps in total). 
After each step, the expanded image is converted into 3D Gaussian 
distributions via monocular depth estimation, and the resulting 3D 
scenes composed of these Gaussian distributions are then 
sequentially registered and merged. For evaluation, we compare 
only the newly synthesized regions against ground-truth 
panoramas, focusing on semantic consistency. Across 11 scenes, 
Incremental VistaDream improves SSIM by 31% and reduces 
LPIPS by 18% over VistaDream. 
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I. INTRODUCTION 
Recent progress in single-view scene reconstruction and 

novel view synthesis (NVS) [1] aims to generate high-fidelity 
3D scenes from sparse observations or even a single image. 
Traditionally, scenes were modeled as textured geometry, 
whereas advances in NVS reconstruct the light field from multi-
view images to synthesize novel viewpoints without manual 
modeling. These developments enable high-quality image 
generation and broaden downstream applications. 

In particular, Neural Radiance Fields (NeRF) [2] estimate 
radiance and density along rays from a large number of input 
images, achieving high-quality free-viewpoint rendering. 
Nevertheless, NeRF requires long training times for complete 
3D scenes and assumes multi-view images, which limits its 
applicability. In contrast, 3D Gaussian Splatting (3DGS) [3] 
represents a scene as a set of anisotropic 3D Gaussians 
parameterized by position, scale, and color, and directly splats 
these 3D Gaussian distributions onto the image plane. This 
enables much faster rendering compared to NeRF and yields 
high-quality results with shorter training. However, 3DGS still 
depends on multi-view input and is not applicable when only a 
single image is available. 

To address this limitation, VistaDream [4] was proposed as 
a method for generating a 3D Gaussian Field (3D GF) from a 
single image. A 3D GF denotes a scene modeled as a set of 
anisotropic 3D Gaussians that can be directly rendered by 
splatting. VistaDream combines diffusion-based outpainting 
and depth estimation to complete the outer regions of the input 
image and first builds a 3D Global Scaffold (Scaffold), where a 
Scaffold represents a 3D scene as a set of 3D Gaussian 

distributions. Specifically, the method expands 45% of the 
surrounding area of the input image in one step (outpainting) [5], 
and then constructs a coarse Scaffold from RGB-D images 
containing both color and depth. To ensure geometric 
consistency, Multiview Consistency Sampling (MCS) [4] is 
applied across images rendered from different viewpoints. 
Finally, the results are refined and integrated into a coherent 3D 
GF. However, this one-shot expansion is limited to a 90° field 
of view (FoV), which is insufficient to cover the approximately 
120° horizontal FoV of VR head-mounted displays (HMDs). 
Furthermore, large one-shot expansions are prone to semantic 
drift, a phenomenon in generative models where scene 
semantics deviate from the intended structure (e.g., buildings 
turning into trees). 

In this work, we propose Incremental VistaDream, a method 
designed to achieve a 120° FoV while mitigating semantic drift 
from a single image. Our approach progressively expands the 
input image by 30% in both directions, guided by user-defined 
textual prompts that constrain the semantics of the generated 
regions. The resulting expanded images are converted into 
Scaffolds, which are subsequently aligned and merged using 
GaussReg [7]. GaussReg is a registration technique for aligning 
multiple Scaffolds, suppressing geometric misalignment and 
enabling continuous scene representations. In summary, 
Incremental VistaDream introduces (i) progressive outpainting 
for 120° FoV expansion and (ii) integration of multiple 
Scaffolds via GaussReg. We evaluate Incremental VistaDream 
against the one-shot expansion baseline. 

The remainder of this paper is organized as follows: Section 
Ⅱ reviews related work, Section Ⅲ presents our approach, 
Section Ⅳ reports experimental evaluations, and Section Ⅴ 
concludes the paper. 

II. RELATED WORK 
In this section, we review existing studies on diffusion 

models, large-scale Vision-Language Models (VLMs), and 
Scaffold integration techniques, in order to clarify the 
positioning of our approach. 

A. Vision-Language Models (VLMs) 
Vision-Language Models (VLMs) integrate visual and 

natural language processing, enabling tasks such as captioning, 
reasoning, and guided generation. They can generate detailed 
textual descriptions conditioned on input images, and such 
descriptions can assist the generative process, improving the 
quality of RGB-D inpainting and image expansion. In our 
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approach, VLM-guided textual prompts are used to stabilize 
semantic consistency during progressive outpainting; in the 
experiments, we instantiate the VLM with LLaVA [6]. 

B. Diffusion Models 
Diffusion models are generative approaches that learn to add 

and remove noise in a progressive manner, enabling high-quality 
image generation and inpainting. Recent work has combined 
text-conditioned generation and depth estimation, extending 
their applicability to NVS from a single image. While most 
existing studies emphasize consistency between input and 
generated images, they often fail to maintain cross-view 
coherence, leading to artifacts such as structural inconsistency 
or semantic drift across viewpoints. VistaDream addresses this 
issue by incorporating Multiview Consistency Sampling (MCS), 
which enforces cross-view consistency during the reverse 
diffusion process and stabilizes multi-angle generation. 

C. Integration Methods and the Role of GaussReg 
When integrating multiple Scaffolds, it is essential to align 

their positions and shapes, making registration techniques a 
critical component. A classical approach is Iterative Closest 
Point (ICP), which iteratively extracts correspondences and 
estimates rigid transformations through rotation and translation. 
However, ICP suffers from sensitivity to initialization and 
susceptibility to local minima. In contrast, GaussReg introduces 
a probabilistic formulation by treating Scaffolds as distributions 
and directly aligning them in distribution space. This 
distribution-level registration avoids explicit point 
correspondences, providing robustness against initialization 
issues inherent in ICP and enabling stable integration of 
successively generated Scaffolds. Consequently, GaussReg is 
considered effective for suppressing semantic drift and 
achieving coherent wide-FoV reconstruction. 

III. PROPOSED METHOD 
In this section, we describe our approach for expanding a 

single input image to a 120° FoV and generating a high-fidelity 
3D GF. In Section Ⅲ-A, we explain the progressive outpainting 
strategy that expands the input image while maintaining 
semantic consistency. Section Ⅲ-B then describes how the 
resulting Scaffolds are sequentially aligned and integrated. 
Finally, Section Ⅲ-C presents our integration strategy with 
GaussReg, which suppresses redundancy and ensures coherent 
wide-FoV reconstruction. 

A. Outpainting 
Fig. 1 shows the overview of Incremental VistaDream. 

Given an input image, we first employ LLaVA to generate 
textual descriptions. The descriptions are reused as prompts for 
progressive outpainting, preserving scene semantics and 
reducing artifacts. To preserve the semantic context of the input, 
each expansion step is limited to 30%. 

Let the FoV of the input image be denoted as 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 , and the 
target FoV as 𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 . The input image is represented as 𝐼𝐼0, with 
height 𝐻𝐻  and width 𝑊𝑊 . We define the outpainting operation 
with a 30% extension as 𝑂𝑂𝑂𝑂0.3(∘) , and cropping operators that 

preserve the width 𝑊𝑊 while extracting an 𝐻𝐻 × 𝑊𝑊 region from 
the left or right of the expanded image as 𝐶𝐶𝐿𝐿 and 𝐶𝐶𝑅𝑅, respectively. 

Let 𝐼𝐼2𝑘𝑘−1 and 𝐼𝐼2𝑘𝑘  denote the k-th left and right expansions, 
respectively (𝑘𝑘 = 1, 2, 3, … , 𝑁𝑁).  

 

Initialization:  𝐽𝐽0 ← 𝑂𝑂𝑂𝑂0.3(𝐼𝐼0) 
      𝐼𝐼1 ← 𝐶𝐶𝐿𝐿(𝐽𝐽0) 
      𝐼𝐼2 ← 𝐶𝐶𝑅𝑅(𝐽𝐽0) 
𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘: 1~𝑁𝑁:      
  𝐽𝐽2𝑘𝑘−1 ← 𝑂𝑂𝑂𝑂0.3(𝐼𝐼2𝑘𝑘−1)  
  𝐽𝐽2𝑘𝑘 ← 𝑂𝑂𝑂𝑂0.3(𝐼𝐼2𝑘𝑘)  
  𝐼𝐼2𝑘𝑘+1 ← 𝐶𝐶𝐿𝐿(𝐽𝐽2𝑘𝑘−1)  
  𝐼𝐼2𝑘𝑘+2 ← 𝐶𝐶𝑅𝑅(𝐽𝐽2𝑘𝑘)  

 

To achieve 𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜  = 120°, we set 𝑁𝑁 = 4, yielding 
𝐼𝐼𝑘𝑘 (𝑘𝑘 = 0, … , 8). Each image 𝐼𝐼𝑘𝑘 is processed by 3DGS, 
producing a coarse Scaffold denoted as 𝑆𝑆𝑘𝑘 = 𝐺𝐺𝐺𝐺 (𝐼𝐼𝑘𝑘). Since 
each 𝑆𝑆𝑘𝑘 contains positional errors arising from monocular 
depth estimation, we sequentially align them using GaussReg 
for registration (see Section Ⅱ-C); ICP is used only as a 
baseline for comparison. 

A higher expansion ratio may cause semantic 
inconsistencies such as distorted object shapes or discontinuities 
at region boundaries, as well as geometric inconsistencies such 
as deformation of straight structures. Conversely, setting the 
ratio too small would require a large number of expansion steps 
to reach the target FoV, resulting in increased computation time 
and resource consumption due to repeated novel view prediction 
and image generation. Therefore, a 30% expansion was selected 
as a balance, ensuring semantic consistency while maintaining 
computational efficiency. Furthermore, in our design, four 
progressive expansions are applied in each horizontal direction, 
resulting in a total of eight steps that achieve an FoV of 
approximately 120°. This design balances semantic stability and 
computational cost; a full ablation of expansion ratios is left as 
future work. In Fig. 1, the progressive outpainting is explicitly 
indicated as multiple iterations (×4 per side), yielding a total of 
9 expanded images and thus 9 Scaffolds before registration. 

To ensure fairness, we adopt VistaDream’s Multiview 
Consistency Sampling (MCS) as-is and apply identical settings 
to both methods based on the public implementation. 

B. Sequential Integration of Scaffolds 
The sequence of 9 Scaffolds 𝑆𝑆𝑘𝑘 (𝑘𝑘 = 0, … , 8) obtained from 

the expanded images is integrated in the order of generation. 
Since each Scaffold is produced independently from monocular 
depth estimation, small errors in position or shape are 
unavoidable. If these errors are not corrected, they accumulate 
and lead to noticeable distortions in the final wide-FoV 
reconstruction. For this reason, careful step-by-step registration 
and merging are required.  

First, we estimate a coarse registration using 
GeoTransformer [8]. This method is chosen because it can 
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capture both the overall structure of the scene and the local 
details of the Gaussian distributions. By considering information 
from a wide area at once, GeoTransformer provides a more 
reliable initial guess of the relative pose between Scaffolds. 
Without this step, the following refinements would be more 
likely to fail or converge to incorrect registrations. 

Next, the registration is refined with GaussReg [7], which 
directly matches Gaussian distributions. Point-to-plane ICP [9] 
is included only as an ablation baseline; it is not part of our main 
pipeline. Instead of only matching points directly, in point-to-
plane ICP, each point is adjusted to lie close to the counterpart 
surface of the other Scaffold. This is especially effective in 
scenes with many flat or structured areas, such as roads, walls, 
or building facades. Using point-to-plane ICP reduces 
registration errors more efficiently and achieves higher accuracy. 
We iterate the registration until convergence, defined as 
translation < 1 mm and rotation < 0.05°. 

After the registration step, the overlapping parts of the 
Scaffolds are merged. We merge overlaps via weighted 
averaging and radius-based fusion. Weighted averaging means 
that Gaussians with more reliable depth or appearance are given 
stronger influence in the merged result. This reduces the effect 
of uncertain or noisy components. Radius-based fusion removes 
redundant components by combining those that are very close to 
each other. This not only reduces memory but also avoids 
excessively dense clusters of points in overlapping regions, 
resulting in a smoother and cleaner Scaffold. 

After these steps, we perform pose-graph optimization [10] 
to minimize accumulated drift. Pose-graph optimization is a 
global refinement method that adjusts all camera poses jointly 
based on pairwise registration constraints. In this approach, each 

viewpoint is represented as a node, and each estimated 
transformation is represented as a connection between nodes. By 
adjusting all nodes together, small errors from individual steps 
are spread out and corrected globally. As a result, the final 
integrated 3D GF is more consistent and stable. 

Through these stages—initial registration with 
GeoTransformer, local refinement with point-to-plane ICP, 
careful merging of overlapping components, and global 
adjustment with pose-graph optimization—we obtain an 
integrated 3D GF that maintains both semantic and geometric 
consistency. This sequential integration is essential for 
expanding from a single narrow-FoV image to a coherent wide-
FoV 3D reconstruction. 

C. Integration Strategy with GaussReg 
In this study, we employed GaussReg [7] to integrate the 

sequentially generated Scaffolds. The use of GaussReg is 
important because each Scaffold produced from the progressive 
expansion contains slight positional shifts and inconsistencies. 
If these are not corrected, the final integrated scene would suffer 
from visible misalignments or unnatural overlaps. GaussReg 
treats each Scaffold as a distribution and performs registration 
only through rotation and translation. This approach avoids the 
need for establishing explicit point-to-point correspondences, 
which can be unreliable when the views differ greatly, and thus 
simplifies the integration process. By aligning distributions 
directly, GaussReg achieves stable global registration of 
successive Scaffolds. 

However, since GaussReg only considers global rotation and 
translation, it cannot correct local deformations within the 
Scaffolds. As a result, small distortions may remain after 
integration. To reduce this problem, we introduce an additional 

 
Fig. 1. System overview of Incremental VistaDream. The pipeline progressively expands a single image to a 120° FoV via 
VLM-guided outpainting with textual prompts, generates a 3D GF from each expansion, and aligns them with GaussReg to 
obtain a registered wide-FoV 3D GF. For consistency selection, we apply Multiview Consistency Sampling (MCS) with the 

same settings as VistaDream, updating the 3D GF only with renderings that satisfy cross-view consistency. 
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strategy that detects overlapping regions between successive 
Scaffolds and removes redundant elements. The detection is 
based on positional closeness and appearance similarity. 
Specifically, when the centers of two Gaussian components are 
closer than a predefined distance and their appearance, such as 
mean color, is sufficiently similar, they are considered 
duplicates. These duplicates are removed from the later-
generated Scaffold during the integration process. 

This policy is necessary because successive expansions 
inevitably generate overlapping areas, and if such redundancies 
are not removed, the overlaps can cause visual inconsistencies 
at the boundaries, such as double edges or unnatural density. By 
eliminating duplicates, the integrated 3D GF becomes cleaner, 
with fewer redundant elements, and the transition between 
regions becomes smoother. In this way, GaussReg provides the 
global registration, while the overlap-removal strategy ensures 
local consistency. Together, they enable rigid registration and 
produce a more coherent and visually plausible integrated 3D 
GF. 

IV. EXPERIMENTS 
In this section, we present the evaluation methodology and 

results. All experiments were conducted on a workstation 
equipped with an NVIDIA RTX 6000 Ada Generation GPU (49 
GB memory), 128 GB RAM, and Ubuntu 22.04 with CUDA 
12.4. Processing one scene required 15–20 min. Fig. 2 compares 
ground-truth panoramas, VistaDream, and Incremental 
VistaDream across 11 scenes (a–k). We conducted qualitative 
and quantitative evaluations: the former examines visual 
consistency, and the latter compares Incremental VistaDream 
with VistaDream in the image space using SSIM [11] and LPIPS 
[12] on the expanded regions only. 

A. Qualitative Evaluation 
We qualitatively compare panoramic images including the 

expanded regions. Fig. 2 shows the comparison among ground 
truth (GT) images, the baseline (VistaDream), and our method 
(Incremental VistaDream). Scenes (a–h) are outdoor panoramas, 
while (i)–(k) are indoor environments. The following issues 
were observed with VistaDream: In images (b), (f), (g), (i), and 
(j), semantic drift was observed, where additional spaces or non-
existent objects (blue boxes) were generated. The expanded 
regions (red boxes) appeared darker than the central regions, 
causing illumination discontinuities. Significant geometric 
inconsistencies were also observed; for example, in Scene (e), 
the straight structure of the road (red boxes) was distorted. In 
Scene (h), VistaDream not only caused unnatural darkening at 
the image boundaries but also generated structures resembling 
parts of the input image in a manner inconsistent with the 
background. In contrast, Incremental VistaDream successfully 
avoided such semantic drift and preserved both illumination 
consistency and semantic plausibility across the expanded 
regions. These results reveal that semantic drift and illumination 
inconsistencies occur simultaneously. In contrast, Incremental 
VistaDream exhibited the following properties: No new rooms 
or spurious structures were generated after expansion, and the 
integrity of the original scene was preserved. Brightness and 
color tones remained highly consistent with the central view, 

with almost no darkening or unnatural tonal variations. 
Geometric continuity, such as the straightness of roads and 
buildings and the arrangement of furniture, was maintained. 
These results demonstrate that progressive outpainting with 
sequential registration suppresses semantic drift and maintains 
illumination and geometric consistency. 

B. Quantitative Evaluation 
For quantitative evaluation, we focus exclusively on the 

expanded regions and employ SSIM and LPIPS. SSIM assesses 
structural similarity between a prediction and a ground truth 
photograph, thus being sensitive to blur, contrast, and local 
rendering fidelity. However, SSIM alone is not sufficient to 
judge semantic drift. We therefore add LPIPS, which measures 
perceptual/semantic similarity using deep features and is known 
to correlate with human judgments. In this study, we emphasize 
relative improvements under identical conditions rather than 
absolute scores. Table Ⅰ reports per-scene SSIM and LPIPS. On 
average across 11 scenes, VistaDream achieved SSIM = 0.318 
and LPIPS = 0.612, whereas Incremental VistaDream achieved 
SSIM = 0.416 and LPIPS = 0.502. This corresponds to a +0.098 
(+31%) improvement in SSIM and a −0.110 (-18%) reduction 
in LPIPS. To verify statistical significance, we conducted a one-
sided paired t-test across 11 scene pairs. The improvement in 
SSIM yielded t(10) = 6.37 , p = 4.1 × 10−5 , and the 
reduction in LPIPS yielded t(10)  =  −5.81, p = 8.5 × 10−5. 
Both results are highly significant ( p < 0.001). Notably, Scene 
(j) achieved the highest SSIM value of 0.5837, while the same 
scene also achieved the lowest LPIPS value of 0.4160. Because 
the ground truth is a real photograph while the expansion is an 
imaginative completion, absolute pixel scores tend to be low 
across all methods. Nevertheless, consistent with the qualitative 
results (Fig. 2), Incremental VistaDream significantly reduces 
semantic drift near FoV boundaries. 

C. Failure Cases and Limitations 
Most failures arise during the progressive expansion 

(outpainting and monocular-depth-based 3D GF construction), 
especially in regions with a lack of structural visual features (e.g., 
uniform walls, sky, plain floors) and weak texture cues. In such 
low-evidence areas, semantic completion tends to overreach, 
yielding object duplication, shape distortion, and boundary 
discontinuities. Consistency selection (MCS) suppresses cross-
view inconsistencies by filtering rendered views, but it does not 
guarantee semantic correctness; thus, hallucinations introduced 
during the expansion may persist. These failures stem not from 
the expansion strategy itself, but from the behavior of the 
generative model when visual information is limited or 
imbalanced. These failure cases suggest that insufficient  

constraints during the outpainting stage are the primary cause. 
In our pipeline, a text prompt is generated from the input image 
using a Vision-Language Model (VLM), and a text-conditioned 
diffusion model performs progressive outpainting. However, 
this setup can cause the generation to be overly influenced by 
dominant visual elements in the input, sometimes resulting in 
repeated strong colors or hallucinated structures when visual 
cues are limited, as shown in Fig. 3. 
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To address this issue, we consider it important to extract 

visual features from the input image and use them to constrain 
the generation during outpainting. Such feature-based control 
has the potential to suppress these failures and produce more 
stable expansions, even in regions with few visual cues. 

First, when a scene contains areas with very strong colors, 
both methods tended to repeat and exaggerate those colors, 
sometimes forming unnatural duplicated patterns (Fig. 3(a)). As 
a result, neither the baseline nor Incremental VistaDream 
produced convincing outputs, and no clear advantage was 
observed. 

Second, in scenes with few visual cues, such as wide water 
surfaces or snowy fields, both methods occasionally created 
objects that were not present in the real scene, resulting in 
unrealistic structures that blocked the intended FoV (Fig. 3(b)). 
These errors are likely caused by the model attempting to “fill in 
the blanks” by guessing the missing content, rather than 
grounding the generation in reliable evidence.  

In future work, we will quantify uncertainty in low-cue regions 
and constrain generation with feature-level priors to 
systematically reduce these failures. 

 
Fig. 2. Comparison across 11 scenes (Left: ground truth (GT), Center: VistaDream, Right: Incremental VistaDream). Red boxes 

indicate boundary artifacts, and blue boxes indicate semantic drift. VistaDream shows boundary artifacts (red) and semantic 
drift (blue), while Incremental VistaDream achieves a 120° FoV with minimal artifacts. 
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TABLE I.  PER-SCENE METRICS ON EXPANDED REGIONS  
(HIGHER IS BETTER / LOWER IS BETTER) 

 
SSIM↑ LPIPS↓ 

VistaDream Incremental 
VistaDream VistaDream Incremental 

VistaDream 

(a) 0.2045 0.2289 0.6728 0.6335 

(b) 0.1482 0.2756 0.6597 0.5175 

(c) 0.2389 0.2744 0.5658 0.5213 

(d) 0.4536 0.5806 0.6047 0.5232 

(e) 0.3788 0.4985 0.5370 0.4265 

(f) 0.1871 0.2599 0.7584 0.5526 

(g) 0.2176 0.4285 0.6553 0.4239 

(h) 0.4619 0.5569 0.5645 0.4633 

(i) 0.2502 0.3474 0.5743 0.5301 

(j) 0.5174 0.5837 0.5192 0.4160 

(k) 0.4428 0.5416 0.6185 0.5104 

 

V. CONCLUSION 
This work demonstrates that the proposed combination of 

progressive outpainting and sequential registration of Scaffolds 
enables the generation of panoramic images with a 120° FoV 
while effectively suppressing semantic drift. By gradually 
expanding the input image and then carefully integrating the 
resulting 3D representations, the method maintains both 
semantic consistency and geometric continuity, which are 
essential for high-quality 3D scene reconstruction. Compared to 
VistaDream, Incremental VistaDream achieved statistically 
significant improvements of +31% in SSIM and -18% in LPIPS, 
demonstrating clear advantages in both structural preservation 
and perceptual quality. These improvements confirm that 
stepwise expansion and robust integration directly contribute to 
more stable reconstructions, providing practical benefits for 
wide-FoV panoramic content suitable for high-quality 3D scene 
reconstruction. 

As a future direction, we plan to incorporate feature-based 
constraints into the outpainting stage to further suppress failure 
cases and improve robustness in visually ambiguous regions. 
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Fig. 3. Representative failure cases in wide-FoV expansion: 
(a) Strong-color repetition: visually salient regions (e.g., bright red structures) are repeatedly synthesized, producing duplicated or 
exaggerated textures. 
(b) Hallucination in low-cue regions: when structural visual features are lacking (e.g., snow or water surfaces), the model guesses 
missing content and generates non-existent structures. 
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