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Abstract— We propose Incremental VistaDream, a single-view
scene reconstruction method that represents a 3D scene as a set of
Gaussian distributions. Starting from a 60° field-of-view (FoV)
image, we progressively expand the horizontal FoV to 120° by
applying four 30% expansions on each side (eight steps in total).
After each step, the expanded image is converted into 3D Gaussian
distributions via monocular depth estimation, and the resulting 3D
scenes composed of these Gaussian distributions are then
sequentially registered and merged. For evaluation, we compare
only the newly synthesized regions against ground-truth
panoramas, focusing on semantic consistency. Across 11 scenes,
Incremental VistaDream improves SSIM by 31% and reduces
LPIPS by 18% over VistaDream.
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L.

Recent progress in single-view scene reconstruction and
novel view synthesis (NVS) [1] aims to generate high-fidelity
3D scenes from sparse observations or even a single image.
Traditionally, scenes were modeled as textured geometry,
whereas advances in NVS reconstruct the light field from multi-
view images to synthesize novel viewpoints without manual
modeling. These developments enable high-quality image
generation and broaden downstream applications.

INTRODUCTION

In particular, Neural Radiance Fields (NeRF) [2] estimate
radiance and density along rays from a large number of input
images, achieving high-quality free-viewpoint rendering.
Nevertheless, NeRF requires long training times for complete
3D scenes and assumes multi-view images, which limits its
applicability. In contrast, 3D Gaussian Splatting (3DGS) [3]
represents a scene as a set of anisotropic 3D Gaussians
parameterized by position, scale, and color, and directly splats
these 3D Gaussian distributions onto the image plane. This
enables much faster rendering compared to NeRF and yields
high-quality results with shorter training. However, 3DGS still
depends on multi-view input and is not applicable when only a
single image is available.

To address this limitation, VistaDream [4] was proposed as
a method for generating a 3D Gaussian Field (3D GF) from a
single image. A 3D GF denotes a scene modeled as a set of
anisotropic 3D Gaussians that can be directly rendered by
splatting. VistaDream combines diffusion-based outpainting
and depth estimation to complete the outer regions of the input
image and first builds a 3D Global Scaffold (Scaffold), where a
Scaffold represents a 3D scene as a set of 3D Gaussian
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distributions. Specifically, the method expands 45% of the
surrounding area of the input image in one step (outpainting) [5],
and then constructs a coarse Scaffold from RGB-D images
containing both color and depth. To ensure geometric
consistency, Multiview Consistency Sampling (MCS) [4] is
applied across images rendered from different viewpoints.
Finally, the results are refined and integrated into a coherent 3D
GF. However, this one-shot expansion is limited to a 90° field
of view (FoV), which is insufficient to cover the approximately
120° horizontal FoV of VR head-mounted displays (HMDs).
Furthermore, large one-shot expansions are prone to semantic
drift, a phenomenon in generative models where scene
semantics deviate from the intended structure (e.g., buildings
turning into trees).

In this work, we propose Incremental VistaDream, a method
designed to achieve a 120° FoV while mitigating semantic drift
from a single image. Our approach progressively expands the
input image by 30% in both directions, guided by user-defined
textual prompts that constrain the semantics of the generated
regions. The resulting expanded images are converted into
Scaffolds, which are subsequently aligned and merged using
GaussReg [7]. GaussReg is a registration technique for aligning
multiple Scaffolds, suppressing geometric misalignment and
enabling continuous scene representations. In summary,
Incremental VistaDream introduces (i) progressive outpainting
for 120° FoV expansion and (ii) integration of multiple
Scaffolds via GaussReg. We evaluate Incremental VistaDream
against the one-shot expansion baseline.

The remainder of this paper is organized as follows: Section
IT reviews related work, Section III presents our approach,
Section IV reports experimental evaluations, and Section V
concludes the paper.

II. RELATED WORK

In this section, we review existing studies on diffusion
models, large-scale Vision-Language Models (VLMs), and
Scaffold integration techniques, in order to clarify the
positioning of our approach.

A. Vision-Language Models (VLMs)

Vision-Language Models (VLMs) integrate visual and
natural language processing, enabling tasks such as captioning,
reasoning, and guided generation. They can generate detailed
textual descriptions conditioned on input images, and such
descriptions can assist the generative process, improving the
quality of RGB-D inpainting and image expansion. In our
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approach, VLM-guided textual prompts are used to stabilize
semantic consistency during progressive outpainting; in the
experiments, we instantiate the VLM with LLaVA [6].

B. Diffusion Models

Diffusion models are generative approaches that learn to add
and remove noise in a progressive manner, enabling high-quality
image generation and inpainting. Recent work has combined
text-conditioned generation and depth estimation, extending
their applicability to NVS from a single image. While most
existing studies emphasize consistency between input and
generated images, they often fail to maintain cross-view
coherence, leading to artifacts such as structural inconsistency
or semantic drift across viewpoints. VistaDream addresses this
issue by incorporating Multiview Consistency Sampling (MCS),
which enforces cross-view consistency during the reverse
diffusion process and stabilizes multi-angle generation.

C. Integration Methods and the Role of GaussReg

When integrating multiple Scaffolds, it is essential to align
their positions and shapes, making registration techniques a
critical component. A classical approach is Iterative Closest
Point (ICP), which iteratively extracts correspondences and
estimates rigid transformations through rotation and translation.
However, ICP suffers from sensitivity to initialization and
susceptibility to local minima. In contrast, GaussReg introduces
a probabilistic formulation by treating Scaffolds as distributions
and directly aligning them in distribution space. This
distribution-level ~ registration  avoids  explicit  point
correspondences, providing robustness against initialization
issues inherent in ICP and enabling stable integration of
successively generated Scaffolds. Consequently, GaussReg is
considered effective for suppressing semantic drift and
achieving coherent wide-FoV reconstruction.

1. PROPOSED METHOD

In this section, we describe our approach for expanding a
single input image to a 120° FoV and generating a high-fidelity
3D GF. In Section III-A, we explain the progressive outpainting
strategy that expands the input image while maintaining
semantic consistency. Section III-B then describes how the
resulting Scaffolds are sequentially aligned and integrated.
Finally, Section III-C presents our integration strategy with
GaussReg, which suppresses redundancy and ensures coherent
wide-FoV reconstruction.

A. Outpainting

Fig. 1 shows the overview of Incremental VistaDream.
Given an input image, we first employ LLaVA to generate
textual descriptions. The descriptions are reused as prompts for
progressive outpainting, preserving scene semantics and
reducing artifacts. To preserve the semantic context of the input,
each expansion step is limited to 30%.

Let the FoV of the input image be denoted as FoV/;,,, and the
target FoV as FoV/,,,;. The input image is represented as I, with
height H and width W. We define the outpainting operation
with a 30% extension as OP, 5(°) , and cropping operators that
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preserve the width W while extracting an H X W region from
the left or right of the expanded image as C, and Cp, respectively.

Let I,;,_, and I, denote the k-th left and right expansions,
respectively (k = 1,2,3,...,N).

Initialization: J, < OPy5(1,)
L < C.(o)

I; < Cr(Uo)
for k:1~N:
J2r-1 < OPy3(I2x-1)
J21 < OPg3(I21)
L1 < CLUzk-1)
Lz < CrUzi)

To achieve FoV/,,; = 120°, we set N = 4, yielding
I, (k =0,...,8). Each image I, is processed by 3DGS,
producing a coarse Scaffold denoted as S, = GS (I;,). Since
each S, contains positional errors arising from monocular
depth estimation, we sequentially align them using GaussReg
for registration (see Section II-C); ICP is used only as a
baseline for comparison.

A higher expansion ratio may cause semantic
inconsistencies such as distorted object shapes or discontinuities
at region boundaries, as well as geometric inconsistencies such
as deformation of straight structures. Conversely, setting the
ratio too small would require a large number of expansion steps
to reach the target FoV, resulting in increased computation time
and resource consumption due to repeated novel view prediction
and image generation. Therefore, a 30% expansion was selected
as a balance, ensuring semantic consistency while maintaining
computational efficiency. Furthermore, in our design, four
progressive expansions are applied in each horizontal direction,
resulting in a total of eight steps that achieve an FoV of
approximately 120°. This design balances semantic stability and
computational cost; a full ablation of expansion ratios is left as
future work. In Fig. 1, the progressive outpainting is explicitly
indicated as multiple iterations (x4 per side), yielding a total of
9 expanded images and thus 9 Scaffolds before registration.

To ensure fairness, we adopt VistaDream’s Multiview
Consistency Sampling (MCS) as-is and apply identical settings
to both methods based on the public implementation.

B. Sequential Integration of Scaffolds

The sequence of 9 Scaffolds S, (k = 0, ..., 8) obtained from
the expanded images is integrated in the order of generation.
Since each Scaffold is produced independently from monocular
depth estimation, small errors in position or shape are
unavoidable. If these errors are not corrected, they accumulate
and lead to noticeable distortions in the final wide-FoV
reconstruction. For this reason, careful step-by-step registration
and merging are required.

First, we estimate a coarse registration using
GeoTransformer [8]. This method is chosen because it can
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Fig. 1. System overview of Incremental VistaDream. The pipeline progressively expands a single image to a 120° FoV via
VLM-guided outpainting with textual prompts, generates a 3D GF from each expansion, and aligns them with GaussReg to
obtain a registered wide-FoV 3D GF. For consistency selection, we apply Multiview Consistency Sampling (MCS) with the

same settings as VistaDream, updating the 3D GF only with renderings that satisfy cross-view consistency.

capture both the overall structure of the scene and the local
details of the Gaussian distributions. By considering information
from a wide area at once, GeoTransformer provides a more
reliable initial guess of the relative pose between Scaffolds.
Without this step, the following refinements would be more
likely to fail or converge to incorrect registrations.

Next, the registration is refined with GaussReg [7], which
directly matches Gaussian distributions. Point-to-plane ICP [9]
is included only as an ablation baseline; it is not part of our main
pipeline. Instead of only matching points directly, in point-to-
plane ICP, each point is adjusted to lie close to the counterpart
surface of the other Scaffold. This is especially effective in
scenes with many flat or structured areas, such as roads, walls,
or building facades. Using point-to-plane ICP reduces

registration errors more efficiently and achieves higher accuracy.

We iterate the registration until convergence, defined as
translation < 1 mm and rotation < 0.05°.

After the registration step, the overlapping parts of the
Scaffolds are merged. We merge overlaps via weighted
averaging and radius-based fusion. Weighted averaging means
that Gaussians with more reliable depth or appearance are given
stronger influence in the merged result. This reduces the effect
of uncertain or noisy components. Radius-based fusion removes
redundant components by combining those that are very close to
each other. This not only reduces memory but also avoids
excessively dense clusters of points in overlapping regions,
resulting in a smoother and cleaner Scaffold.

After these steps, we perform pose-graph optimization [10]
to minimize accumulated drift. Pose-graph optimization is a
global refinement method that adjusts all camera poses jointly
based on pairwise registration constraints. In this approach, each
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viewpoint is represented as a node, and each estimated
transformation is represented as a connection between nodes. By
adjusting all nodes together, small errors from individual steps
are spread out and corrected globally. As a result, the final
integrated 3D GF is more consistent and stable.

Through  these  stages—initial  registration  with
GeoTransformer, local refinement with point-to-plane ICP,
careful merging of overlapping components, and global
adjustment with pose-graph optimization—we obtain an
integrated 3D GF that maintains both semantic and geometric
consistency. This sequential integration is essential for
expanding from a single narrow-FoV image to a coherent wide-
FoV 3D reconstruction.

C. Integration Strategy with GaussReg

In this study, we employed GaussReg [7] to integrate the
sequentially generated Scaffolds. The use of GaussReg is
important because each Scaffold produced from the progressive
expansion contains slight positional shifts and inconsistencies.
If these are not corrected, the final integrated scene would suffer
from visible misalignments or unnatural overlaps. GaussReg
treats each Scaffold as a distribution and performs registration
only through rotation and translation. This approach avoids the
need for establishing explicit point-to-point correspondences,
which can be unreliable when the views differ greatly, and thus
simplifies the integration process. By aligning distributions
directly, GaussReg achieves stable global registration of
successive Scaffolds.

However, since GaussReg only considers global rotation and
translation, it cannot correct local deformations within the
Scaffolds. As a result, small distortions may remain after
integration. To reduce this problem, we introduce an additional



strategy that detects overlapping regions between successive
Scaffolds and removes redundant elements. The detection is
based on positional closeness and appearance similarity.
Specifically, when the centers of two Gaussian components are
closer than a predefined distance and their appearance, such as
mean color, is sufficiently similar, they are considered
duplicates. These duplicates are removed from the later-
generated Scaffold during the integration process.

This policy is necessary because successive expansions
inevitably generate overlapping areas, and if such redundancies
are not removed, the overlaps can cause visual inconsistencies
at the boundaries, such as double edges or unnatural density. By
eliminating duplicates, the integrated 3D GF becomes cleaner,
with fewer redundant elements, and the transition between
regions becomes smoother. In this way, GaussReg provides the
global registration, while the overlap-removal strategy ensures
local consistency. Together, they enable rigid registration and
produce a more coherent and visually plausible integrated 3D
GF.

IV. EXPERIMENTS

In this section, we present the evaluation methodology and
results. All experiments were conducted on a workstation
equipped with an NVIDIA RTX 6000 Ada Generation GPU (49
GB memory), 128 GB RAM, and Ubuntu 22.04 with CUDA
12.4. Processing one scene required 15-20 min. Fig. 2 compares
ground-truth  panoramas, VistaDream, and Incremental
VistaDream across 11 scenes (a—k). We conducted qualitative
and quantitative evaluations: the former examines visual
consistency, and the latter compares Incremental VistaDream
with VistaDream in the image space using SSIM [11] and LPIPS
[12] on the expanded regions only.

A. Qualitative Evaluation

We qualitatively compare panoramic images including the
expanded regions. Fig. 2 shows the comparison among ground
truth (GT) images, the baseline (VistaDream), and our method
(Incremental VistaDream). Scenes (a—h) are outdoor panoramas,
while (i)—(k) are indoor environments. The following issues
were observed with VistaDream: In images (b), (), (g), (i), and
(j), semantic drift was observed, where additional spaces or non-
existent objects (blue boxes) were generated. The expanded
regions (red boxes) appeared darker than the central regions,
causing illumination discontinuities. Significant geometric
inconsistencies were also observed; for example, in Scene (e),
the straight structure of the road (red boxes) was distorted. In
Scene (h), VistaDream not only caused unnatural darkening at
the image boundaries but also generated structures resembling
parts of the input image in a manner inconsistent with the
background. In contrast, Incremental VistaDream successfully
avoided such semantic drift and preserved both illumination
consistency and semantic plausibility across the expanded
regions. These results reveal that semantic drift and illumination
inconsistencies occur simultaneously. In contrast, Incremental
VistaDream exhibited the following properties: No new rooms
or spurious structures were generated after expansion, and the
integrity of the original scene was preserved. Brightness and
color tones remained highly consistent with the central view,
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with almost no darkening or unnatural tonal variations.
Geometric continuity, such as the straightness of roads and
buildings and the arrangement of furniture, was maintained.
These results demonstrate that progressive outpainting with
sequential registration suppresses semantic drift and maintains
illumination and geometric consistency.

B. Quantitative Evaluation

For quantitative evaluation, we focus exclusively on the
expanded regions and employ SSIM and LPIPS. SSIM assesses
structural similarity between a prediction and a ground truth
photograph, thus being sensitive to blur, contrast, and local
rendering fidelity. However, SSIM alone is not sufficient to
judge semantic drift. We therefore add LPIPS, which measures
perceptual/semantic similarity using deep features and is known
to correlate with human judgments. In this study, we emphasize
relative improvements under identical conditions rather than
absolute scores. Table I reports per-scene SSIM and LPIPS. On
average across 11 scenes, VistaDream achieved SSIM = 0.318
and LPIPS = 0.612, whereas Incremental VistaDream achieved
SSIM = 0.416 and LPIPS = 0.502. This corresponds to a +0.098
(+31%) improvement in SSIM and a —0.110 (-18%) reduction
in LPIPS. To verify statistical significance, we conducted a one-
sided paired t-test across 11 scene pairs. The improvement in
SSIM yielded t(10) =6.37 , p =4.1x 1075 , and the
reduction in LPIPS yielded t(10) = —5.81,p = 8.5 %X 1075,
Both results are highly significant (p < 0.001). Notably, Scene
(j) achieved the highest SSIM value of 0.5837, while the same
scene also achieved the lowest LPIPS value of 0.4160. Because
the ground truth is a real photograph while the expansion is an
imaginative completion, absolute pixel scores tend to be low
across all methods. Nevertheless, consistent with the qualitative
results (Fig. 2), Incremental VistaDream significantly reduces
semantic drift near FoV boundaries.

C. Failure Cases and Limitations

Most failures arise during the progressive expansion
(outpainting and monocular-depth-based 3D GF construction),
especially in regions with a lack of structural visual features (e.g.,
uniform walls, sky, plain floors) and weak texture cues. In such
low-evidence areas, semantic completion tends to overreach,
yielding object duplication, shape distortion, and boundary
discontinuities. Consistency selection (MCS) suppresses cross-
view inconsistencies by filtering rendered views, but it does not
guarantee semantic correctness; thus, hallucinations introduced
during the expansion may persist. These failures stem not from
the expansion strategy itself, but from the behavior of the
generative model when visual information is limited or
imbalanced. These failure cases suggest that insufficient

constraints during the outpainting stage are the primary cause.
In our pipeline, a text prompt is generated from the input image
using a Vision-Language Model (VLM), and a text-conditioned
diffusion model performs progressive outpainting. However,
this setup can cause the generation to be overly influenced by
dominant visual elements in the input, sometimes resulting in
repeated strong colors or hallucinated structures when visual
cues are limited, as shown in Fig. 3.
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Fig. 2. Comparison across 11 scenes (Left: ground truth (GT), Center: VistaDream, Right: Incremental VistaDream). Red boxes
indicate boundary artifacts, and blue boxes indicate semantic drift. VistaDream shows boundary artifacts (red) and semantic
drift (blue), while Incremental VistaDream achieves a 120° FoV with minimal artifacts.

To address this issue, we consider it important to extract
visual features from the input image and use them to constrain
the generation during outpainting. Such feature-based control
has the potential to suppress these failures and produce more
stable expansions, even in regions with few visual cues.

First, when a scene contains areas with very strong colors,
both methods tended to repeat and exaggerate those colors,
sometimes forming unnatural duplicated patterns (Fig. 3(a)). As
a result, neither the baseline nor Incremental VistaDream
produced convincing outputs, and no clear advantage was
observed.
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Second, in scenes with few visual cues, such as wide water
surfaces or snowy fields, both methods occasionally created
objects that were not present in the real scene, resulting in
unrealistic structures that blocked the intended FoV (Fig. 3(b)).
These errors are likely caused by the model attempting to “fill in
the blanks” by guessing the missing content, rather than
grounding the generation in reliable evidence.

In future work, we will quantify uncertainty in low-cue regions
and constrain generation with feature-level priors to
systematically reduce these failures.
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Fig. 3. Representative failure cases in wide-FoV expansion:

VistaDream

Incremental VistaDream

(a) Strong-color repetition: visually salient regions (e.g., bright red structures) are repeatedly synthesized, producing duplicated or

exaggerated textures.

(b) Hallucination in low-cue regions: when structural visual features are lacking (e.g., snow or water surfaces), the model guesses

missing content and generates non-existent structures.

TABLE 1. PER-SCENE METRICS ON EXPANDED REGIONS
(HIGHER IS BETTER / LOWER IS BETTER)
SSIM? LPIPS|
VistaDream I;;:sgfen;;;l VistaDream Il/nii:sgf:atfnl
(a) 0. 2045 0. 2289 0.6728 0. 6335
(b) 0. 1482 0. 2756 0. 6597 0.5175
(c) 0. 2389 0.2744 0. 5658 0.5213
(d) 0. 4536 0. 5806 0. 6047 0. 5232
(e) 0.3788 0. 4985 0. 5370 0. 4265
() 0. 1871 0. 2599 0. 7584 0. 5526
(g) 0.2176 0. 4285 0. 6553 0. 4239
(h) 0. 4619 0. 5569 0. 5645 0. 4633
(1) 0. 2502 0. 3474 0.5743 0. 5301
G) 0.5174 0. 5837 0.5192 0. 4160
(k) 0. 4428 0. 5416 0.6185 0.5104

V. CONCLUSION

This work demonstrates that the proposed combination of
progressive outpainting and sequential registration of Scaffolds
enables the generation of panoramic images with a 120° FoV
while effectively suppressing semantic drift. By gradually
expanding the input image and then carefully integrating the
resulting 3D representations, the method maintains both
semantic consistency and geometric continuity, which are
essential for high-quality 3D scene reconstruction. Compared to
VistaDream, Incremental VistaDream achieved statistically
significant improvements of +31% in SSIM and -18% in LPIPS,
demonstrating clear advantages in both structural preservation
and perceptual quality. These improvements confirm that
stepwise expansion and robust integration directly contribute to
more stable reconstructions, providing practical benefits for
wide-FoV panoramic content suitable for high-quality 3D scene
reconstruction.
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As a future direction, we plan to incorporate feature-based
constraints into the outpainting stage to further suppress failure
cases and improve robustness in visually ambiguous regions.
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