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Abstract—The proliferation of Internet-connected devices has
intensified the risk of large-scale network intrusions, necessitating
more advanced detection methodologies for the post quantum
era. This work presents, to the best of our knowledge, a com-
prehensive investigation of quantum machine learning (QML)
for anomaly detection on the BoT-IoT dataset, a widely adopted
benchmark for IoT security. Leveraging feature-engineered rep-
resentations, we implement and evaluate four representative
quantum classifiers: Quantum Support Vector Classification
(QSVC), Quantum Neural Networks (QNN), and Variational
Quantum Classifiers (VQC).

Index Terms—Quantum Machine Learning (QML), Anomaly
Detection.

I. INTRODUCTION

The proliferation of digital technologies and the Internet of
Things (IoT) has generated vast, high-dimensional datasets in
domains such as consumer electronics, finance, and critical
infrastructure. As these systems become more interconnected,
the challenge of detecting anomalies—ranging from device
failures to financial fraud—has grown increasingly urgent.
While classical machine learning (ML) has achieved notable
success in anomaly detection, it often struggles with scalabil-
ity, robustness in high-dimensional spaces, and generalization
to novel threats [1]. Quantum computing, leveraging super-
position and entanglement, offers a fundamentally new com-
putational paradigm that can surpass classical limits [2]-[4].
Within this paradigm, quantum machine learning (QML) [5],
[6] has shown promise for complex, high-dimensional, and
noisy data [1], [3], [7], with emerging evidence suggesting its
potential to efficiently identify rare and subtle anomalies.

Hybrid quantum-classical models have demonstrated early
success in [oT and consumer electronics by capturing intricate,
non-linear correlations [1]. In finance, quantum kernel meth-
ods have outperformed classical RBF kernels as feature di-
mensionality increases, especially in unsupervised settings [3].
Variational quantum circuits and quantum support vector ma-
chines further mitigate overfitting and enhance generalization
in heterogeneous and noisy data [3].

Despite these advances, practical deployment of QML-based
anomaly detection faces challenges, including the computa-
tional cost of large quantum kernel matrices and hardware
limitations such as qubit count and gate fidelity [7]-[9]. On-
going research into efficient kernel evaluation, sparse matrix
techniques, and hardware-specific optimizations is gradually
improving feasibility [3].
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In this work, we systematically investigate the potential
and limitations of QML for anomaly detection in real-world
domains. By benchmarking quantum and classical methods on
representative datasets, we delineate the conditions for quan-
tum advantage and highlight key algorithmic and hardware
bottlenecks. Our findings offer new insights into the expressiv-
ity, robustness, and scalability of quantum-enhanced anomaly
detection, guiding future progress toward practical quantum
advantage in security-critical, data-intensive environments.

A. Key Contributions

e We propose a unified QML framework for anomaly
detection, instantiated and evaluated on the BoT-lIoT
benchmark dataset [10], providing the first systematic
study of quantum enhanced methods in this security
critical domain.

o We rigorously assess the influence of dimensionality
reduction techniques including Behavioral and Statistical
Analysis (BSA), principal component analysis (PCA),
and t-distributed stochastic neighbor embedding (t-SNE)
on the performance and robustness of quantum classifiers.

« We implement and benchmark four state-of-the-art QML
models Quantum Support Vector Classifier (QSVC), Vari-
ational Quantum Classifier (VQC), Quantum Neural Net-
work (QNN) for anomaly detection in IoT network traffic.

¢ We provide a comparative performance evaluation of
these quantum approaches against classical baselines,
identifying the conditions under which QML models
yield advantages, and analyze their scalability, general-
ization, and deployment feasibility for real-world IoT
security applications.

II. METHODOLOGY

We propose a novel framework for implementing and
evaluating quantum machine learning (QML) algorithms for
anomaly detection in IoT network traffic, using the BoT-IoT
dataset. The framework comprises two main stages: (i) dimen-
sionality reduction and feature selection, and (ii) quantum-
based classification.

Feature Selection and Dimensionality Reduction: The
dataset is first preprocessed to identify the most relevant
features. Feature importance is quantified using behavioral
and statistical metrics, including point-biserial correlation, chi-
square tests, and ANOVA F-tests, with aggregated scores used
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to rank and select top features. For linear dimensionality re-
duction, we apply Principal Component Analysis (PCA) [11],
which projects data onto a lower-dimensional subspace by
solving the eigenvalue problem: Cv; = \;v;, where C is the
covariance matrix, v; are eigenvectors, and \; are eigenvalues.

To capture non-linear structure, we employ t-distributed
Stochastic Neighbor Embedding (t-SNE), which preserves lo-
cal similarities by minimizing the Kullback—Leibler divergence
between high- and low-dimensional probability distributions:
KL(P(|Q) = 32,4 pijlog %, where p;; and ¢;; denote
pairwise similarities in the original and embedded spaces,
respectively.

Quantum Classification: The reduced feature sets are then
used as input to several quantum classifiers. Each model
exploits different quantum mechanisms to enhance discrim-
ination power in high-dimensional and noisy regimes.

A. Quantum Support Vector Classifier (QSVC)

QSVC extends classical support vector machines by em-
ploying quantum kernels that map data into a high-dimensional
Hilbert space [5], [8], [12]. The kernel function between
two input vectors = and z’ is expressed as K(z,a';0) =
[((z,0) | (a’,0))?, where t(x,0) is the quantum state
generated by a parameterized feature map. This formulation
enables QSVC to capture complex correlations inaccessible to
classical kernels, particularly in high-dimensional IoT traffic
data.

Algorithm 1 Quantum Support Vector Classifier (QSVC)

1: procedure QSVC_TRAIN({(%;, )}, feature_map,
optimizer)

Apply dimensionality reduction to &;

Normalize features

Initialize parameters 6

for each pair (Z;,7;) do

Prepare quantum states |¢(Z;, 0)), |¢(Z;,0))

end for

Optimize 6 to minimize SVC loss

Train QSVC with optimized kernel K and labels y;
10: return trained QSVC model
11: end procedure
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B. Variational Quantum Classifier (VQC)

VQC is a hybrid quantum-classical algorithm that uses a
parameterized quantum circuit and a classical optimizer to
learn a decision boundary [4], [12]. The model minimizes:

N

min L(0) = Zf(fa(l‘i),yi)

=1

where fg(z;) is the predicted probability and ¢ is a loss
function.

Algorithm 2 Variational Quantum Classifier (VQC)

1: procedure VQC_TRAIN({(Z;,y;)} Y,
ansatz, optimizer)

2 Apply dimensionality reduction to &;

3 Normalize features and Initialize parameters 6

4 for each training iteration do

5 for each Z; do

6: Prepare quantum state with feature_map,ansatz

7

8

9

feature_map,

Compute predicted probabilities fo(Z;)
end for
: Compute loss £(0)
10: end for
11: return trained VQC model
12: end procedure

C. Quantum Neural Network (QNN)

QNN are parameterized quantum circuits that approximate
complex functions, analogous to classical neural networks [2],
[4], [8], [12]. The QNN output is the expectation value:

fo(z) = (0|UT(x,0)0U (x,0)|0)

where U(z,0) is the parameterized circuit and O is the
measurement observable.

Algorithm 3 Quantum Neural Network (QNN)

1: procedure QNN_TRAIN({(Z;,v:)}¥,,
ansatz, optimizer)

2 Apply dimensionality reduction to &;

3 Normalize features and Initialize parameters 6

4: for each training iteration do

5: for each 7; do

6

7

8

9

feature_map,

Prepare quantum state with feature_map,ansatz
Compute output fp(Z;)

end for
: Compute loss £(6)
10: end for
11: return trained QNN model

12: end procedure

To instantiate our framework, we use the BoT-IoT dataset
preprocessed following [10]. From the original traffic traces,
we retain flow-level statistical and behavioral features (e.g.,
packet counts, byte rates, inter-arrival times, and flag-based
indicators), yielding 20 features after BSA-based ranking. The
resulting dataset is randomly partitioned into 70% training,
15% validation, and 15% test sets, stratified by attack/benign
labels to preserve class proportions. All features are z-score
normalized prior to dimensionality reduction (PCA or t-
SNE) and subsequent quantum encoding. Quantum circuits
are simulated using Qiskit Aer on a Mac-OS, ensuring that
performance comparisons reflect realistic near-term execution
costs for QML-based anomaly detection.
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TABLE I: Performance of Classical ML and QML Algorithms for Anomaly Detection on the BoT-IoT Dataset Using Different

Dimensionality Reduction Techniques.

Algorithm Accuracy | Precision | Fl-score | Recall | Time (s) | Dimensionality reduction Technique
SVC (classical ML) 0.87 0.71 0.83 0.88 268 BSA
QSVC 0.85 0.72 0.85 0.78 736 BSA
QNN 0.85 0.85 0.72 0.92 164 BSA
VQC 0.95 0.96 0.95 0.95 266 BSA
SVC (classical ML) 0.97 0.91 0.93 0.88 141 PCA
QSVC 0.94 0.97 0.95 0.94 2152 PCA
QNN 0.74 0.71 0.83 0.79 472 PCA
VQC 0.52 0.64 0.49 0.58 2230 PCA
SVC (classical ML) 0.77 0.81 0.76 0.78 285 t-SNE
QSVC 0.89 0.80 0.91 0.94 872 t-SNE
QNN 0.62 0.67 0.62 0.73 130 t-SNE
VQC 0.74 0.73 0.74 0.85 132 t-SNE

Abbreviations: QSVC = Quantum Support Vector Classifier; QNN = Quantum Neural

etwork; VQC = Variational Quantum Classifier;

BSA = Behavioral and Statistical Analysis; PCA = Principal Component Analysis; t-SNE = t-distributed Stochastic Neighbor Embedding.

II1. RESULTS AND EXPERIMENTATION

Table I presents the performance of three QML algorithms
(QSVC, QNN, and VQC) and classical SVC on the BoT-IoT
dataset with three dimensionality reduction techniques: BSA,
PCA, and t-SNE. Metrics include accuracy, precision, recall,
Fl-score, and computational time. VQC with PCA achieves
the highest accuracy and Fl-score, while QSVC offers strong
precision with lower computational cost. Training loss visu-
alizations (Figures 1-4) indicate that VQC converges faster
and more stably across dimensionality reduction methods,
suggesting its promise for scalable IoT anomaly detection.

Classical SVC generally matches or outperforms QML
models in both accuracy and efficiency. Nonetheless, QML
algorithms already show competitive results, and as quantum
hardware and algorithms mature, they are expected to surpass
classical methods, particularly for complex, high-dimensional
data.

A. Behavioral and Statistical Analysis (BSA)

Figure 1 illustrates the convergence trajectories of QNN,
VQC, and QSVC using BSA features. VQC exhibits rapid loss
minimization, approaching near-zero within 30 iterations, con-
sistent with its top performance (accuracy = 0.95, F1 = 0.95).
QNN converges more gradually over 50 iterations, reflecting
its robust recall (0.92), while QSVC displays pronounced
oscillations between 0.6—1.0, indicating unstable training de-
spite moderate accuracy (0.85). These results suggest that
BSA-derived representations are more effectively leveraged by
parameterized quantum circuits (VQC, QNN) than by kernel-
based methods.

B. Principal Component Analysis (PCA)

Figure 2 shows the convergence behavior of QSVC, QNN,
and VQC on PCA-reduced features. QSVC exhibits smooth
and consistent convergence, achieving the highest accuracy
(0.94) and Fl-score (0.95), highlighting its suitability for
linearly compressed representations. QNN converges slowly,
suggesting limited expressivity on PCA-transformed features,
while VQC experiences sharp loss spikes and unstable train-
ing, resulting in poor accuracy (0.52). Notably, both QSVC
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Fig. 1: Normalized training loss across iterations for QNN,
VQC, and QSVC using BSA.

and VQC incur high computational costs (>2000 s), indicating
that while PCA can enhance QSVC performance, it also
substantially increases runtime.
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Fig. 2: Normalized training loss across iterations for QNN,
VQC, and QSVC using PCA.

C. t-distributed Stochastic Neighbor Embedding (t-SNE)

Figure 3 illustrates the training dynamics of QSVC, QNN,
and VQC on t-SNE features. QSVC demonstrates nearly
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linear, monotonic convergence from loss = 1.0 to 0.0, con-
sistent with its strong recall (0.94) and robust F1-score (0.91).
QNN and VQC exhibit oscillatory convergence, stabilizing
after 100 iterations, with VQC ultimately achieving lower
final loss and higher accuracy (0.74 vs. 0.62). Notably, t
SNE significantly improves computational efficiency, reducing
runtime for QNN (1305s) and VQC (132 s) compared to PCA-
based training, highlighting its effectiveness for fast, high-
dimensional anomaly detection.
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Fig. 3: Normalized training loss across iterations for QNN,
VQC, and QSVC using t-SNE.

D. Loss Distribution Across Models and Dimensionality re-
duction Techniques

Figure 4 presents violin plots of normalized loss distri-
butions for all algorithm—Dimensionality reduction combina-
tions. VQC with BSA exhibits the narrowest, lowest-centered
distribution, confirming both stable training and superior pre-
dictive performance. QSVC on PCA, despite high accuracy,
shows the widest spread, reflecting substantial variability
across iterations. t-SNE yields more balanced distributions
for all algorithms, with QSVC maintaining consistently lower
spread than QNN and VQC. Overall, these results indicate
that BSA optimally stabilizes VQC, PCA favors QSVC, and
t-SNE offers a compromise between computational efficiency
and moderate reliability.
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Fig. 4: Distribution of normalized losses for QNN, VQC, and

QSVC under different Dimensionality reduction techniques
(BSA, PCA, t-SNE).

E. Comparative Analysis

Integrating the quantitative outcomes (Table I) with conver-
gence and distribution analyses (Figures 1-4), three conclu-
sions emerge:

e VQC + BSA achieves the most favorable trade-off be-
tween stability, accuracy, and computational time.

e« QSVC + PCA delivers the highest accuracy but incurs
significant computational costs and variance in loss.

e QSVC + t-SNE provides strong recall with smooth
convergence and efficient runtimes, making it attractive
for resource-constrained deployments.

IV. CONCLUSION

This paper presented a comparative evaluation of QML
algorithms for anomaly detection on the BoT-IoT dataset
using different dimensionality reduction techniques. Our re-
sults show that VQC combined with BSA achieved the best
overall trade-off between accuracy, stability, and runtime,
while QSVC with PCA delivered the highest accuracy at the
cost of significant computational time. QSVC with t-SNE
provided efficient convergence with strong recall, making it
suitable for resource-limited IoT environments. In practice,
t-SNE driven feature compression reduces circuit depth and
evaluation time, which is particularly beneficial when QML
inference is offloaded from cloud backends to edge gateways
or lightweight security appliances, thereby aligning our design
with the stringent latency and resource constraints typical of
IoT deployments. QNN demonstrated robustness in recall but
exhibited greater variability across reductions.
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