979-8-3315-7896-1/26/$31.00 ©2026 IEEE

Energy-Aware Distributed Data-Center GPU

Scheduling via Constrained Hybrid SAC with
Adaptive Frequency

Ma Viet Duc, Nguyen Dang Duong, Nguyen Duc Huy, Nguyen Duc Tuyen,
Nguyen Tai Hung, Nguyen Huu Thanh
Hanoi University of Science and Technology, Hanoi, Vietnam

Abstract—Al training jobs increasingly arrive from multiple
ingress points and must be placed across heterogeneous, geo-
distributed GPU data centers. In this scenario, energy use
increases rapidly if schedulers overlook where to route, how
many GPUs to allocate, and which frequency to use. We present
CHSAC-AF (Constrained Hybrid Soft Actor—Critic with Adap-
tive Frequency), a learning-based scheduler that factorizes the
discrete action into data-center choice and GPU-count selection
with feasibility masks, and delegates per-site DVFS to a model-
based oracle that picks the energy-optimal clock on the local
discrete frequency set. Constraints on queue/latency are handled
via a CMDP with dual updates, and distributional critics stabilize
learning under heavy-tailed service times. In a WAN-connected
simulation with heterogeneous GPU clusters, CHSAC-AF simul-
taneously improves capacity and efficiency, completing jobs up to
1.6 times faster than a default policy while reducing the average
energy per unit of work by about 17% compared to the default
baseline. The learned policy keeps queues stable by steering
arrivals away from bottleneck sites and selecting just-enough
GPUs with energy-appropriate frequencies, demonstrating that
energy-aware scheduling need not sacrifice throughput or service
quality in distributed GPU data centers.

Index Terms—Distributed Data Center, Large Language
Model, Fine-tuning Model, Reinforcement Learning, Cloud Com-
puting

I. INTRODUCTION

Large-scale Artificial Intelligence (AI) development has
shifted from a handful of centrally hosted training runs to
a steady stream of fine-tuning jobs from many tenants, enter-
prises adapting foundation models to domains, product teams
iterating on features, and researchers exploring new prompts
and adapters. These workloads are increasingly launched from
multiple geographic ingress points and must be placed onto
distributed Data Centers (DCs) that differ in GPU types,
counts, queues, and network positions. In this setting, routing
jobs to the “right” site and allocating just-enough accelerators
are as important as raw cluster scale for sustaining throughput
and user experience.

Energy and carbon are now primary considerations in
DC, particularly in geographically distributed Al training. A
bottom-up analysis in [1] estimates that data centres consumed
205 TWh in 2018 (=~ 1% of global electricity), establishing
the scale of the baseline DC load. Building on this baseline,
worldwide AI workloads alone could add 85-134 TWh per
year by 2027 if current hardware deployment trends continue,

370

underscoring the need for energy-aware routing, GPU alloca-
tion, as well as methods for dynamic voltage and frequency
scaling (DVFS) [2].

Compounding the challenge, operators face hard physical
limits in power delivery, cooling, and space at single sites. The
industry response is to “scale across”: distribute Al workloads
over multiple data centers and interconnect domains rather
than attempting to scale further within one campus. In such
geo-distributed deployments, admission control, routing, GPU-
count selection, and DVFS become tightly coupled decisions
that determine both energy efficiency and service quality.

As illustrated in Fig. 1, we consider a distributed DC
environment with multiple ingress nodes acting as request
traffic from users. Each ingress receives training/fine-tuning
requests that must be admitted, routed to a data center, and
assigned a GPU count; the chosen DC then runs the job at
an appropriate GPU frequency. The objective is to minimize
energy per unit of useful work while satisfying system-level
service constraints (e.g., keeping queues stable and meeting
latency/throughput targets). The key difficulty is balancing
heterogeneous, time-varying capacities across sites with the
energy—performance trade-offs induced by GPU counts and
DVEFS.

In this paper, we introduce Constrained Hybrid Soft Actor—
Critic with Adaptive Frequency (CHSAC-AF), a learning-
based scheduler that (i) learns capacity-aware routing and
GPU-count selection via a masked, factorized categorical
policy over discrete DC and GPU actions, while (ii) delegating
per-site GPU frequency to a model-based oracle that selects
the energy-optimal frequency on the local discrete DVFES set.
Constraints such as latency/queue budgets are handled through
a Constrained Markov Decision Process (CMDP) formulation
with dual updates, allowing the policy to be explicitly energy-
aware without sacrificing service guarantees. This hybrid
design shrinks the exploration space, respects feasibility at
training time, and adapts naturally to heterogeneous, geo-
distributed clusters.

Our contributions are listed as follows:

o We propose CHSAC-AF, a hybrid reinforcement learning
method that factorizes the discrete action space with
feasibility masks and uses a model-based energy-optimal
frequency oracle to minimize per-site energy.

ICOIN 2026

@. Ingress Node
a Data Center G 7
— WAN link @ 16 x

H200-PCle: C

128 x L4

H100-PCle &

F © H100-SXM

Fig. 1. Distributed Geographical Data Center architecture with multi-ingress
nodes for Al training (fine-tuning LLM) requests.

o We incorporate constraint handling via dual variables and
distributional critics to stabilize learning under heavy-
tailed service times and dynamic feasibility.

o We build a simulator of heterogeneous, WAN-connected
DCs and show that CHSAC-AF increases completed jobs
while reducing energy per unit, demonstrating that energy
awareness need not come at the expense of capacity.

II. RELATED WORK

Motivated by the growing environmental concerns, recent
studies have shifted focus toward carbon- and energy-aware
scheduling strategies. At the cluster level, [3], [4] introduce
power/performance models as functions of GPU count and
clock frequency, thereby enabling energy-efficient resource
allocation for heavy Al workloads. For LLM serving, Sto-
jkovic et al. [5] adaptively tune instance count, parallelism,
and GPU frequency to reduce energy and carbon under
latency constraints. Exploiting temporal flexibility, Kang et
al. [6] follow intraday electricity prices to cut cost under
deadlines, whereas [7] shift workloads to low-carbon periods
with minimal job completion time (JCT) impact. The above
systems provide solid foundations for energy-efficient cluster
management, but they are typically single-cluster and lack
scalability to distributed deployments.

A few studies extend scheduling to geo-distributed and
edge—cloud settings, emphasizing cross-site coordination and
renewable integration [8]. Some efforts leverage RL for dis-
tributed scheduling: Xing et al. [9] decouple job ordering from
placement to reduce JCT, and Sarkar et al. [10] propose hier-
archical, carbon-aware spatio-temporal control. Still, existing
methods suggest that energy-aware scheduling in distributed
settings remains underexplored.

To bridge this gap, we present CHSAC-AF, a constrained
hybrid SAC scheduler for geo-distributed data centers. It learns
to couple cross-site routing and GPU-count selection with a
model-based DVFS oracle. We enforce latency/queue budgets
with a CMDP, yielding energy-aware decisions that preserve
service guarantees across heterogeneous sites.

ITI. SYSTEM AND MODELING

We consider a geo-distributed GPU infrastructure with
ingress set Z and data-center set D. Each job j arriving at
ingress ¢ € Z has a training work size S; (in units). If j is
routed to d € D, allocated n GPUs, and the site runs at a GPU
frequency f € Fy, the per-unit service time and active power
are Tunie(n, f;d) and P(n, f;d), yielding per-unit energy. We
then define:

Eunit(na f; d) = P(TL, VE d)Tunit(na fi d) (D

In practice, the processing-time model for a training job and
its energy-consumption model have been extensively studied
in conjunction with DVFS, which captures the impact of clock
frequency on performance and power [3], [11]. At event ¢, the
scheduler chooses an action a; = (d¢,n¢); frequency is then
selected by a local oracle as the energy-optimal discrete clock

*d i Euni) 7d 2
f(,n)earg}gg «(n, f;d) (2)

Let U; be the number of work units processed during step ¢ and
let D; denote the end-to-end latency of job j. Our objective is
to minimize long-run energy per useful work while preserving
service quality and queue stability across sites:

E [th:l Eunit (nn f*(dy, nt)dt)7 Ut}
E {Zle Ut}
3)

s.t. E[D;] < 7, Qg < Q4™,Vd € D (4)

min J(7) = lim sup
'“' T—00

Here lim sup denotes the limit superior of the long-run average
ratio, 7, sets a latency budget, and @, bounds long-run
queue occupancy at each d. This formulation captures the
core trade-off our system optimizes, routing and right-sizing
GPU allocations to minimize energy per unit of completed
work, while explicitly constraining latency and stability in a
heterogeneous, geo-distributed environment.

IV. PROPOSED METHOD

We propose a constrained hybrid reinforcement-learning
approach that (i) selects a data center and a GPU count via a
masked categorical policy, and (ii) delegates GPU frequency
to a model-based energy-optimal oracle. We next detail the
CMDP formulation, policy/critic design, and the training loop
in Algorithm 1.

A. Constrained Markov Decision Process formulation

Building on the long-run energy-efficiency objective in (3)
under the service constraints in (4), we formulate the schedul-
ing problem as a CMDP [12] as (S, A, Pr,ry, {ck}, {76 },7)-
At step time ¢:

o State s, € S with state space S stacks per-DC features:
total/busy/free GPUs, current frequency, queue lengths
for training, and time.

o Action a; = (di,nt) € A with action space A, dictates
the data center selection (d;) and GPU allocation (n;).

371

o Transition probability Pr(s:;1|s:, at) follows the envi-
ronment (arrivals, service time, service completion).
In this CMDP formulation, service constraints defined by cy
and 75, are enforced via Lagrangian relaxation, guiding the
policy optimization detailed in Algorithm 1.

Let Ejop, be the job energy and U; the number of units
processed at step t. Define the per-unit energy EM"' = %j”
Let n; be the number of GPUs allocated by the policy and
o, > 0 a small coefficient that softly prefers fewer GPUs.
The reward used in our implementation is

ry = — Bty 20 (5)

i

The term — E™it promotes energy efficiency per unit of useful
work, making improvements comparable across heterogeneous
jobs and sites. In training workloads, using fewer GPUs
typically reduces energy consumption, albeit at the cost of
longer training time [13]. To balance this trade-off, we add
a small preference term, cv,/n;, to the reward. This gently
discourages over-provisioning GPUs, and the coefficient «,
tunes the strength of this preference so the adjustment remains
modest when marginal energy savings are negligible. Hard
service requirements (e.g., latency or throughput thresholds)
are not baked into 74; instead, they are enforced via the
Lagrangian penalties in (6)—(7), cleanly separating utility from
constraints.

This objective treats 7, as the instantaneous utility and
penalizes any violations ck(sy,a;) > 7 via the positive-
part operator () = max(z,0), while preserving exploration
through an entropy regularizer on the policy. Therefore, the
Lagrangian objective maximized by the policy is:

B[309" (re = 30 A (exlsts00) = 7)1 + aH(r([s0)))]

>0 k

(6)
Here, the entropy term oM (m(-|s;)) balances exploration and
exploitation; the coefficient o is automatically tuned using
SAC’s entropy-adjustment mechanism during actor optimiza-
tion. Dual variables update as

A — | A\ + nAE(Ck — Tk)]+ @)

Dual variables \j increase when constraints are violated,
pushing the policy away from violation-inducing actions.
State Encoder. We encode the vectorized state s € R
(concatenated per-DC features and time, optionally user pref-
erences) with a 3-layer Multilayer Perceptron (MLP):

h=y(s) = a(W3 o (Wa o (Wys + by) + by) + b3) (8)

where o(-) is ReLU, W € R256xd W, ¢ R2%6x256 |/, ¢
R256x256 The latent h is shared by the categorical actor (DC,
GPU count) and the twin quantile critics. This simple ReLU
MLP suffices in our experiments.

Given the state s; and the feasibility-filtered action space
A(s;), we embed s; into a latent vector h; in event time ¢ using
the encoder from (8). This shared representation parametrizes
both the factorized categorical actor over (d:,n;) and the

twin distributional critics will be shown in (10). Importantly,
feasibility masks are applied to the actor logits before softmax
and are respected when forming critic targets, ensuring updates
remain consistent with A(s;).

B. Policy and Critic

The actor is purely categorical
mo(aclst) = mo(de|st)mo(nelse) 9)

We learn two quantile critics Qé, Qi following distribu-
tional RL via quantile regression [14], over T-quantiles of the
return, improving stability under heavy-tailed latency. Given
latent state i and action one-hots, critics output N, quantiles.
The critic loss is the quantile Huber loss:

Lg= Huberquanme(Q(lﬁ7 target) + Huberquamile(Qi, target)
(10)

with targets computed by the target critic and the current
actor, following Soft Actor-Critic (SAC) [15]. Both the DC
index and the GPU count are discrete and exhibit time-varying
feasibility; a factorized policy from (9) mirrors this struc-
ture and enables per-head masking. The critics consume h;
concatenated with one-hot actions to predict return quantiles,
which improves robustness under heavy-tailed service times
while preserving precise credit assignment for each discrete
choice.

SAC actor loss. Let ¢, = min(Q}, Q) averaged across
quantiles. The policy loss with entropy temperature « is

Y

Eﬂ' =]ESND, a~Tg [Ck IOg 71—0(0’|S) - qﬂ(sv (l)]

and « is tuned toward a target entropy.

Given a; = (d¢,n:), the system chooses f* by solving
(2) on the discrete frequency grid Fy,. This reduces the
exploration burden, accelerates learning, and deterministically
enforces an energy-minimizing DVFS choice that is compati-
ble with RL’s higher-level scheduling.

C. Training and Data Interface

At the completion of each job, the RL records the utilization
U, the power consumption P, and the per-unit latency T p;;
these quantities are then used to compute 7; as in (5). During
training, we update both the critic and the actor using the
effective reward, defined in (12) as follows:

i =1y = Neleks —)+ (12)
k

Each training step ties the pieces together as follows: compute
the effective reward r,?ff in (12), update quantile critics with
masked, bootstrapped targets, improve the actor by the SAC
objective in (11) with automatic temperature tuning, and
ascend the dual variables by (7). This loop jointly optimizes
energy-aware utility while pushing constraint violations back
under their RL thresholds.

Replay schema. This buffer is designed to be self-
contained, preserving the full context of resource constraints
at the time of data collection. Specifically, in addition to the
state, action, and reward, we store feasibility masks for the

372

Algorithm 1 CHSAC-AF: Constrained Hybrid SAC with
Adaptive Frequency

1: Initialize encoder with (8), actor (categorical DC/GPU),
distributional twin critics, target critics, replay buffer.

2: Initialize Lagrange multipliers Ax > 0.

3: for each environment step do

4: Build state s;; derive masks Dy, G;.

5 Sample a; = (d¢,nt) ~ mo(+|s¢) with masks.

6: Compute f* < EnergyOptimalFreq(d;, n;) via (2).

7 Execute (d;, n¢, f*); observe r, by (5), constraint costs
Ck,t, NEXt state sy, done.

8: Store transition in replay.

9: if buffer warm then

10: Update Effective reward rfff via (12).
11: Critic update via quantile Huber loss.
12: SAC with entropy temperature tuning.
13: Soft-update target critics.

14: Update Dual variables Ay via (7).

15: end if

16: end for

DC choice and the number of GPUs. This enables the actor,
during off-policy training, to mask logits before the softmax
so that no probability is assigned to invalid actions, while the
critic computes Q-targets that are consistent with the action
space feasible at the time the transition was collected. We
store self-contained transitions in the replay buffer:

dc g
(St7 dt, Nty Tty St+1, d()net7 maskt s maskt) (13)

Semantics of the symbols.

o done;: Episode termination flag in {0, 1}; when done; =
1, bootstrap terms are disabled in critic targets.

o mask®: A validity mask over DC choices, maski® &
{0,1}|D‘, where O indicate infeasible DCs at s (e.g.,
insufficient available GPUs, maintenance).

o mask}: A validity mask over GPU-allocation choices,
maskf € {0,1}%max, where 0 indicate infeasible GPU
counts at sy.

Storing maskgC and mask$ with each transition (i) guarantees
that off-policy updates respect action feasibility at the time
the data were generated; (ii) prevents the actor from assigning
probability mass to illegal actions (by masking logits before
the softmax); and (iii) reduces non-stationarity in training
when resource constraints vary over time.

During updates, batches sampled from the buffer apply the
stored masks to the actor heads before computing the policy
loss L, from (11), and set the bootstrap multiplier to (1 —
done;) when forming critic targets for Lo from (10). This
makes training reproducible and consistent under time-varying
feasibility.

After all, the preceding sections have presented the essential
components of our RL framework. To integrate these com-
ponents into a unified optimization pipeline, we introduce
Algorithm 1, denoted Constrained Hybrid Soft Actor-Critic

TABLE I
SIMULATION PARAMETERS

Parameter Value

GPU types [H200-PClIe, H100-SXM, H100-PClIe, A100-
PCle, L4, L40S, A30, A10]

GPU counts [16, 16, 16, 32, 128, 256, 512, 512]

Arrivals Poisson (A = 0.02)

Job sizes LogNormal (¢ = 10.82, 0 = 0.4)

Simulation time 7 days

an 0.05

Replay buffer capacity 200000

Batch size 256

with Adaptive Frequency (CHSAC-AF). CHSAC-AF imple-
ments a primal-dual policy-gradient method for the CMDP,
jointly optimizing energy consumption and service capacity.
The algorithm is explained as follows:

e Lines 1-2: Initialize the encoder with MLP from (8), the
actor, two critics (Q}, Q3), the target critics, the replay
buffer from (13), and the Lagrange multipliers (\g).

o Line 4: Construct the state s; and the masks from (13)
to ensure action validity (e.g., a data center that does not
have enough GPUs is masked out).

o Lines 5-7: Sample an action (d;,n;) ~ my, select the
energy-optimal frequency f* according to (2), execute
the action, and observe the reward, costs, and next state.

o Lines 8-13 (when the buffer is warm): (i) compute the
adjusted reward r$; (i) update the critics by minimizing
Lq; (iii) update the actor by minimizing £, with auto-
matic tuning of «; (iv) soft-update the target critics; (v)
update the multipliers Ag. This block implements (10)—
(11) with automatic temperature tuning and soft target
updates

V. EXPERIMENT SETUP
A. Simulation Setup

Simulation settings. We built a simulator in Python for
scheduling across geo-distributed data centers. The environ-
ment models a WAN-connected topology with 8 data centers
and 8 ingress points (Fig. 1). Table I details the specific
GPU types and counts per site. At each ingress, arrivals are
independently generated and follow a Poisson process, and job
sizes are LogNormal distributed. Code and experiment scripts
are available at github.com/filrg/distributed_cluster_GPUs.

RL settings. The RL agent’s off-policy training is im-
plemented in PyTorch. Key hyperparameters, including the
reward function coefficient «,, replay buffer capacity, and
batch size, are listed in Table I.

B. Baseline Methods

For comparison, we implemented three baseline methods:

o Default Policy (DP): No power/frequency-tuning is ap-
plied. Upon arrival, the scheduler allocates GPUs using
the default allocation policy and runs all jobs at the GPU’s
default frequency (typically the maximum).

373

TABLE 11
THE NUMBER OF COMPLETED JOBS AND THE AVERAGE ENERGY
CONSUMPTION BY LOAD (E}™'") AFTER THE SIMULATION IS COMPLETED

Algorithm DP UCBI JointNF ~ CHSAC-
AF

Completed jobs 60595 63111 67396 96399

Energy by load (J/unit) 11.80 11.70 10.34 9.77

o UCBI: We formulate the choice of GPU frequency f
as a k-armed bandit problem [16]. At each arrival, the
scheduler selects f via the Upper Confidence Bound rule
(UCB1). When a job completes, it updates the empirical
reward based on the job’s energy consumption per unit, SO
naturally, UCB1 will favor energy-efficient frequencies.
UCBI and its variants form classical foundations for the
exploration-exploitation dilemma in online learning.

o JointNF: Inspired by [17], JointNF leverages frequency
tuning for energy efficiency. When a job arrives, it per-
forms a grid search over GPU counts and frequency levels
to find the most energy-efficient configuration under the
service-level objective (SLO) constraint.

The baseline methods do not specify inter-DC routing, hence
we assume uniform distribution across all data centers.

VI. RESULTS AND DISCUSSION

A. Power Consumption

Table II shows CHSAC-AF delivers both the highest
throughput and the best energy efficiency. By jointly learning
routing and frequency decisions, the agent directs jobs to
suitable data centers given queue state and GPU availability, so
more requests are admitted and finish. Consequently, CHSAC-
AF completes 96,399 jobs — 43% higher than the next best
method, JointNF (67,396). At the same time, it yields the
lowest average energy per load at 9.77 J/unit, outperform-
ing JointNF (10.34) and clearly the frequency-agnostic DP
(11.80) and the frequency-only UCB1 (11.70). The resulting
policy avoids congested sites, runs at optimal frequencies to
maximize throughput within a fixed power budget.

Figure 2 plots the aggregate power across all DCs for four
schedulers. CHSAC-AF exhibits a brief warm-up transient
while probing DC/GPU-frequency combinations. It then settles
at a higher mean power, as its multi-objective reward trades
energy for service rate and latency by allocating more GPUs or
sustaining higher utilization to keep queues short. This behav-
ior also induces visibly larger variance as the job mix shifts.
In contrast, JointNF explicitly favors smaller GPU allocations
per training job, resulting in the lowest and smoothest trace
with mild workload-driven oscillations. DP lacks frequency
control, so its power closely tracks the incoming load and
remains near the minimum—overlapping JointNF for much
of the run. UCBI1 explores briefly and converges to energy-
efficient frequencies, producing a curve between the low-
power DP/JointNF band and the higher-power CHSAC-AF
regime after warm-up.

100 4
_. 804
z
o]
z
o
2 60
8
e
40
—— UCB1
—— JointNF
204 —— CHSAC-AF
0 25000 50000 75000 100000 125000 150000 175000 200000
Execution Time (s)
Fig. 2. Total power consumption over operating time
TABLE III
QUEUE SIZE OVER EXECUTION DAYS
Simulation 2 3 4 5 6 7
time (day)
Dp 9996 15166 20271 25672 30957 36083
UCBI 9401 14224 19007 24055 28868 33572
JointNF 8059 12228 16382 20712 24889 28908
CHSAC-AF 0 0 0 0 0 0

B. Training Latency

Table III shows CHSAC--AF keeping queues essentially
flat, whereas DP, UCBI1, and JointNF accumulate backlog.
The difference stems from capacity-aware routing: given in-
stantaneous queues and GPU availability, CHSAC-—AF diverts
arrivals from bottlenecks and avoids overload. By contrast, the
baselines often send traffic to small clusters (e.g., 16 xH100-
PClIe/SXM, 16 xH200-PCle), where contention builds and the
aggregate queue balloons. The latency distributions in Fig. 3
reflect the same trade-offs. CHSAC-AF attains lower latency
than JointNF, which aggressively limits GPUs per job to save
energy and therefore suffers long service times and heavy tails.
DP and UCB1 show lower per-job running latency because
they typically run at default or high frequencies and allocate
more GPUs to each training job; however, that exhausts
capacity at small-GPU DCs and increases waiting. Viewed
end-to-end, CHSAC-AF keeps queues stable and maintains
competitive latency, close to DP/UCBI for running jobs, while
avoiding the systemic queueing delays those methods create.
This is achieved by joint routing and frequency selection that
respects heterogeneous DC capacities.

C. Adaptive Routing

Figure 4 visualizes CHSAC-—AF’s routing behavior on
the multi-ingress, geo-distributed topology. Instead of simple
nearest-site dispatch, CHSAC-AF adapts routes based on
per-DC queue lengths, GPU availability, and energy state,

374

(o}
]
25000
[
o]
(o}
20000
]
]
n [+
2 15000 A o
>
9
2
Q
2
©
K|
10000
5000
ol L L
DP UCBL JointNF CHSAC-AF
Fig. 3. Latency distributions of training jobs
100
H 33% 6.1% 21.1% 26.2% 20.4% 4.0% 14.6% 4.2%
6] am Gu% 21a% 2se% 208% 4% 142% 4% I
F 3.9% 6.0% 21.5% 25.4% 20.5% 4.2% 14.4% 4.1%
g
o 60 2
SE{ so% 5.8% 20.9% 27.2% 202% 2.0% 13.9% 42% k!
< 5
@ o
8 g
2D 3.7% 6.3% 20.9% 26.1% 20.1% 4.2% 14.4% 4.4% g
H 40 g
&
C 4.0% 6.1% 20.9% 25.8% 21.1% 3.8% 14.0% 4.3%
B 3.9% 6.1% 20.6% 26.6% 20.7% 42% 14.0% 3.9% 20
A 4.1% 6.4% 20.6% 26.0% 20.2% 4.0% 14.5% 4.2%
0 0 S o A o
R0 pCe P [\ a0 SN o1V poe
(0% 200 S A2t 6% 00 32 20
sor™ P B B 25 Jor¥ Jort

Destination DC

Fig. 4. Heat map of ingress-to-data-center traffic shares under the CHSAC—
AF policy

favoring data centers with sparse compute while taking energy
efficiency into account. Consequently, each ingress primarily
dispatches requests to high-capacity clusters (512xA10/A30,
256x140S), with only a small fraction sent to 16-GPU fa-
cilities (H100-PCIe/SXM, H200-PCle), which are more prone
to congestion. The pattern is consistent across ingress points,
indicating a stable global policy that prefers compute-rich
sites when feasible, uses mid-tier DCs to absorb bursts, and
limits the load on small sites. Overall, CHSAC—-AF balances
proximity and capacity, maintaining stable performance under
mixed, time-varying demand.

VII. CONCLUSION AND FUTURE WORK

In summary, the proposed RL-based scheduler (CHSAC—
AF) reduces energy per completed job while sustaining high
job acceptance across heterogeneous, geo-distributed data
centers. By learning from interaction rather than hand-tuned
heuristics, the controller adapts automatically to diverse net-
work topologies, hardware mixes, and traffic patterns with
minimal configuration effort. A current limitation is the
frequency-selection component: when thresholds are poorly
calibrated, it can induce unnecessary delays.

375

Future work will (i) broaden large-scale parameter sweeps
and ablations to characterize robustness, (ii) extend the for-
mulation to jointly schedule inference and training workloads,
and (iii) develop a fully automatic mechanism for selecting
the operating frequency f that explicitly balances energy
efficiency with SLA/latency targets.

ACKNOWLEDGMENT

This work is funded by Hanoi University of Science and
Technology (HUST) under project T2025-TN-003.

REFERENCES

[1] E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey, “Recalibrating
global data center energy-use estimates,” Science, vol. 367, no. 6481,
pp. 984-986, 2020.

[2] A. De Vries, “The growing energy footprint of artificial intelligence,”
Joule, vol. 7, no. 10, pp. 2191-2194, 2023.

[3] D. Gu, X. Xie, G. Huang, X. Jin, and X. Liu, “Energy-efficient gpu
clusters scheduling for deep learning,” arXiv preprint arXiv:2304.06381,
2023.

[4] Y. Wang, Q. Guo, and M. Chen, “Providing load flexibility by reshaping
power profiles of large language model workloads,” Advances in Applied
Energy, p. 100232, 2025.

[5] J. Stojkovic, C. Zhang, i. Goiri, J. Torrellas, and E. Choukse, “Dy-
namollm: Designing llm inference clusters for performance and energy
efficiency,” in 2025 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pp. 1348-1362, IEEE, 2025.

[6] D.-K. Kang, K.-B. Lee, and Y.-C. Kim, “Cost efficient gpu cluster
management for training and inference of deep learning,” Energies,
vol. 15, no. 2, p. 474, 2022.

[71 K. Xu, D. Sun, H. Tian, J. Zhang, and K. Chen, “{GREEN}: Carbon-
efficient resource scheduling for machine learning clusters,” in 22nd
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 25), pp. 999-1014, 2025.

[8] Z. Miao, L. Liu, H. Nan, W. Li, X. Pan, X. Yang, M. Yu, H. Chen, and
Y. Zhao, “Energy and carbon-aware distributed machine learning tasks
scheduling scheme for the multi-renewable energy-based edge-cloud
continuum,” Science and Technology for Energy Transition, vol. 79,
p- 82, 2024.

[9] M. Xing, H. Mao, S. Yin, L. Pan, Z. Zhang, Z. Xiao, and J. Long, “A
dual-agent scheduler for distributed deep learning jobs on public cloud
via reinforcement learning,” in Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 2776-2788,
2023.

[10] S. Sarkar, A. Guillen-Perez, V. Gundecha, A. Naug, R. L. Gutierrez,
S. Mousavi, P. Faraboschi, C. Bash, and H. P. Enterprise, “Carbon-aware
spatio-temporal workload distribution in cloud data center clusters using
reinforcement learning,”

[11] H. Luo, K. Yang, Q. Huang, and S. Dustdar, “A novel hierarchical co-
optimization framework for coordinated task scheduling and power dis-
patch in computing power networks,” arXiv preprint arXiv:2508.04015,
2025.

[12] E. Altman, Constrained Markov decision processes. Routledge, 2021.

[13] N. C. Frey, B. Li, J. McDonald, D. Zhao, M. Jones, D. Bestor, D. Tiwari,
V. Gadepally, and S. Samsi, “Benchmarking resource usage for efficient
distributed deep learning,” in 2022 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1-8, IEEE, 2022.

[14] W. Dabney, M. Rowland, M. Bellemare, and R. Munos, “Distributional
reinforcement learning with quantile regression,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 32, 2018.

[15] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning, pp. 1861-1870,
Pmlr, 2018.

[16] T. Lattimore and C. Szepesvari, Bandit algorithms. Cambridge Univer-
sity Press, 2020.

[17] A. K. Kakolyris, D. Masouros, S. Xydis, and D. Soudris, “Slo-aware
gpu dvfs for energy-efficient 1lm inference serving,” IEEE Computer
Architecture Letters, vol. 23, no. 2, pp. 150-153, 2024.

