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Abstract—This paper presents DNA-Mamba-DeepSC, a novel
multi-task semantic communication system specifically designed
for efficient DNA sequence transmission. The proposed sys-
tem addresses the critical challenges of preserving biological
semantics while achieving high compression ratios and transmis-
sion reliability by leveraging Mamba-2 architecture with linear
computational complexity. Our system simultaneously performs
DNA sequence reconstruction and classification tasks through
joint optimization, enabling superior performance compared
to traditional communication methods. Experimental results
demonstrate significant improvements across multiple metrics:
up to 98.3% edit distance reduction compared to conventional
UTF-8+Turbo methods, consistently high classification accuracy
of 95-96% across various SNR conditions (from -6 dB to 18
dB), 62.1% latency reduction for processing long sequences,
and 85.3% parameter reduction compared to baseline DeepSC
while maintaining superior performance. The multi-task learning
framework successfully preserves both sequence-level fidelity
and semantic information during transmission, making the sys-
tem particularly suitable for genomics research, personalized
medicine, and biotechnology applications requiring reliable DNA
data exchange.

Index Terms—DNA transmission, semantic communication,
multi task learning

I. INTRODUCTION

The exponential growth of biological data, particularly DNA
sequences, has created an unprecedented demand for effi-
cient and reliable transmission systems in genomics research,
personalized medicine, and biotechnology applications. Tra-
ditional semantic communication approaches face significant
challenges when handling DNA data transmission, including
the inability to preserve critical biological semantics during
compression, susceptibility to errors that can alter genetic
meaning, inefficient bandwidth utilization due to the unique
structural properties of genomic sequences, and the extremely
long nature of DNA sequences which can contain millions
or billions of base pairs, making conventional transmission
methods impractical [1]. Semantic communication emerges as
a particularly suitable solution for DNA transmission tasks
because it can intelligently extract and preserve the essen-
tial biological information while discarding redundant data,
maintain the semantic integrity of genetic sequences through
context-aware encoding, efficiently handle the massive scale
of genomic data by focusing on biologically relevant patterns
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rather than raw sequence length, and adapt to the specific char-
acteristics of DNA data such as base pair complementarity and
codon structures, thereby enabling more robust and efficient
transmission of genomically meaningful information [2]—[5].

A. Related Work

Semantic communication has evolved from traditional bit-
level transmission to meaning-focused paradigms, with recent
advances extending into specialized biological domains. Early
developments established foundational approaches for conven-
tional data types, while emerging research has begun exploring
applications to biological sequences.

Multi-modal and Multi-task Systems: Recent advances
have addressed diverse data transmission requirements si-
multaneously. Zhang et al. [6] proposed unified frameworks
serving multiple tasks through domain adaptation techniques.
Do et al. [7] introduced Mamba-based architectures for mul-
tiuser multimodal communication targeting large language
model applications. Cross-modal alignment approaches, such
as CA_DeepSC [8], focus on leveraging correlations between
different modalities to enhance transmission robustness.

Advanced Visual Communication: Image transmission
has seen architectural innovations addressing specific ap-
plication needs. TranGDeepSC [9] demonstrated knowledge
transfer from ViT to CNN-based systems through co-training
algorithms. Specialized applications include super-resolution
techniques for satellite imagery [10], showing the adaptability
of semantic communication to domain-specific requirements.

Knowledge-Enhanced Representations: Sophisticated se-
mantic understanding has been achieved through structural
approaches. Xing et al. [11] utilized knowledge graph inte-
gration for multi-modal semantic fusion, demonstrating how
structural advantages can enhance semantic representation and
transmission efficiency.

Biological Data Communication: The application of se-
mantic communication to biological domains represents an
emerging frontier. Wu et al. [12] introduced semantic Al-
enhanced DNA storage for IoT applications, shifting focus
from complete data preservation to semantic extraction. This
approach addresses the unique constraints of DNA sequences,
including GC content limitations, homopolymer restrictions,
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and insertion/deletion errors inherent in synthesis and sequenc-
ing processes.

The proposed DNA-Mamba-DeepSC extends this biological
semantic communication paradigm by leveraging Mamba-2’s
linear computational complexity to handle extremely long
DNA sequences while simultaneously performing semantic
reconstruction and classification tasks, addressing the gap
between semantic communication principles and genomic data
requirements.

B. Motivations

The development of DNA-Mamba-DeepSC is driven by
several critical challenges and opportunities in genomic data
transmission that existing communication systems fail to ade-
quately address.

Computational Scalability for Long Sequences: Tradi-
tional semantic communication systems, particularly those
based on transformer architectures, face significant compu-
tational bottlenecks when processing extremely long DNA
sequences. With genomic sequences often spanning millions
or billions of base pairs, the quadratic complexity of attention
mechanisms becomes prohibitively expensive, limiting the
practical applicability of existing semantic communication
approaches to real-world genomic data transmission scenarios.

Multi-task Learning Requirements: Genomic applications
typically require simultaneous preservation of both sequence-
level accuracy and high-level semantic information. Current
semantic communication systems are primarily designed for
single-task optimization, either focusing on reconstruction
fidelity or classification accuracy, but not both simultaneously.
This limitation prevents effective utilization of shared semantic
representations that could benefit both tasks through joint
optimization.

Biological Semantic Preservation: DNA sequences con-
tain complex hierarchical semantic structures, from individual
nucleotide patterns to functional genomic elements such as
genes, regulatory regions, and structural motifs. Conventional
communication methods treat DNA as generic text data, failing
to leverage the unique structural properties and biological con-
straints inherent in genomic sequences, resulting in suboptimal
compression and transmission efficiency.

Resource-Constrained Transmission Scenarios: Many ge-
nomic applications, particularly in remote sensing, field re-
search, and point-of-care diagnostics, operate under severe
bandwidth and power constraints. These scenarios demand
communication systems that can achieve high compression
ratios while maintaining the integrity of biologically rele-
vant information, necessitating intelligent semantic extraction
rather than brute-force data transmission approaches.

These motivating factors collectively highlight the need for
a specialized semantic communication system that combines
the computational efficiency of linear-complexity architectures
with multi-task learning capabilities specifically tailored for
genomic data transmission requirements.

C. Contributions

The main contributions of this paper are summarized as
follows:

¢« We propose DNA-Mamba-DeepSC, a novel multi-task
semantic communication system that leverages Mamba-
2 architecture for efficient DNA sequence transmission.
The system addresses the computational challenges of
processing extremely long genomic sequences while si-
multaneously performing semantic reconstruction and
classification tasks.

o We introduce a joint optimization framework that en-
ables simultanecous DNA sequence reconstruction and
class prediction. This multi-task approach preserves both
sequence-level fidelity and high-level semantic informa-
tion during wireless transmission, making the system
suitable for genomic applications requiring both data
integrity and classification accuracy.

o We demonstrate through comprehensive experiments that
DNA-Mamba-DeepSC achieves superior performance
compared to existing baselines across multiple metrics,
including significant improvements in edit distance reduc-
tion, classification accuracy, and processing latency, while
maintaining biological constraints essential for DNA se-
quence validity.

II. PROPOSED SYSTEM

Fig. 1 presents an overview of the proposed multi-task
semantic communication system for DNA transmission. In this
system, a DNA sequence is first semantically encoded and
then transmitted through a wireless channel. At the receiver,
the transmitted sequence is decoded to reconstruct the original
DNA sequence while simultaneously predicting its associated
class labels through the multi-task learning framework.

A. Proposed System Architecture

The proposed system architecture is illustrated in Fig. 2. The
system consists of two main components: encoder side and
decoder side. Firstly, the DNA sequence has length L which
Xpna € RN*LIova i fed into DNA tokenizer to convert the
DNA sequence into a sequence of tokens Xo € RN X Loxx VS,
where Lk < Lpna is the length of the tokenized sequence
and V'S represents for the vocabulary size of tokenizer. Then,
the tokenized sequence is fed into the encoder side which
consists of three main blocks: embedding, semantic encoder
and channel encoder. The embedding convert the tokenized
sequence to a latent representation Xembedding € RYY X Lok X Drem
where Dg., represents the the size of semantic features. After
that, it go through semantic encoder which consists of 3 blocks
of Mamba-2 to extract semantic features, express as follows:

Xsem = Mamba—23(Xembedding) c RN X Liok X Dyem (1)

After that, it go through the channel encoder to compress the
features into symbols suitable for transmission over the noisy
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Fig. 2. Proposed DNA-Mamba-DeepSC architecture showing the multi-task semantic communication system with Mamba-2 blocks for joint DNA sequence

reconstruction and classification

satellite channel. This transformation is achieved through a
non-linear projection

Y = Linear2(ReLU (Linearl(Xgem))) € RN *Luwokx Detan

2
where Y is channel symbol features; D, represents for the
number of channel hidden size. The encoded symbols tra-
verse a wireless channel subject to atmospheric. The encoded
symbols traverse a wireless channel subject to atmospheric
interference and distance-related degradation. We model this
as an Additive White Gaussian Noise (AWGN) channel:

7 =Y _|_'/\/‘(0’ O-TQL) c RNXLkaDcmn (3)

where Z represents the received symbols at the ground station,
and N(0,02) denotes AWGN with variance o2 determined
by the signal-to-noise ratio (SNR). The ground station begins
processing with channel decoding, which mirrors the encoding
structure to recover the semantic features:

Xem = Lineard(ReLU (Linear5(Z))) € RN *LtorxDien
“)
The semantic decoder performs the heavy computational lift-
ing on the ground station side, where resources are more abun-
dant. The decoded features undergo progressive refinement
through three Mamba-2 blocks:

Xdecoded = Mamba'23 (Xsem) ()

The decoded features Xgecoded are then processed in parallel
through two specialized task branches:
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o DNA Reconstruction Branch: This branch recovers the
original DNA sequence from the semantic features:

XpNa = TokenizerDecode(Linear( Xgecodea))  (6)

where XDNA € RN*Ipwa represents the reconstructed
DNA sequence with N being the batch size and Lpna
the sequence length.

o« DNA Classification Branch: This branch predicts the
class labels associated with the DNA sequences:

Cls = Linear(ReLU(Linear(AvgPool 1D (X ecoded))))
(N
where Cls € RVXC represents the classification logits
and C denotes the total number of classes.

This dual-branch architecture enables the system to simulta-
neously preserve sequence-level information for accurate DNA
reconstruction while extracting high-level semantic features
for robust classification, thereby supporting both data fidelity
and semantic understanding in genomic applications.

B. Mamba-2 Block

The Mamba-2 block architecture is illustrated in Fig. 3. The
Mamba-2 block begins by applying dual linear transformations
to the normalized input signal:

¢ = Linear(i) € REX(E*D)

z = Linear(i) € RE*(ExD)

(®)
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Fig. 3. Mamba-2 Block Architecture

where FE indicating the expansion ratio. Subsequently, the
primary pathway undergoes depthwise convolution processing:

.= Conv(x) € REX(ExD) 9)

The core computation involves processing through the state
space model:

Yy = SSMAB,C_’A(GELU(%c)) c

where A, B, C, and A constitute the trainable SSM param-
eters. Following this, the gate pathway modulates the SSM
results through element-wise multiplication:

Ymerged = Y * GGLU(Z) e RLX(EXD)

RLX(EXD) (10)

(1)

Finally, the block produces its output via a linear transforma-
tion combined with skip connection:

RLXD (12)

The integration of Mamba-2 blocks in our DNA-DeepSC
system offers significant advantages for genomic sequence
processing. Unlike traditional transformer architectures that
exhibit quadratic complexity with sequence length, Mamba-
2 provides linear computational complexity, making it partic-
ularly suitable for handling extremely long DNA sequences
that can span millions of base pairs. The state space model
architecture excels at capturing long-range dependencies in-
herent in genetic data, such as regulatory relationships be-
tween distant genomic regions and structural patterns that
extend across entire chromosomes. Furthermore, Mamba-2’s
selective attention mechanism enables the model to focus on
biologically relevant motifs and conserved sequences while
efficiently processing redundant regions, thereby preserving
critical genetic information during semantic compression. This
selective processing capability is crucial for DNA transmission

out = Linear(Ymergea) + 1 €

tasks where maintaining the integrity of functional genomic
elements is paramount for downstream biological applications.

C. Training Loss Function

The proposed multi-task system optimizes two complemen-
tary objectives simultaneously through a weighted combina-
tion of reconstruction and classification losses. The total loss
function is formulated as:

Ltotal = AreconLrecon + )\clchls (13)

where Aecon and A represent the weighting coefficients for
reconstruction and classification tasks respectively.

The reconstruction loss measures the fidelity between the
predicted and original DNA sequences using cross-entropy:

N Lpna 4

"N X Lpna LDNA DD vigwlog(@age) (14

i=1 j=1 k=1

Lrecon =

where y; ; 1. denotes the ground truth one-hot encoding for the
k-th nucleotide at position j in sequence 4, and §; ;. represents
the corresponding predicted probability.

Similarly, the classification loss employs cross-entropy to
measure the accuracy of DNA sequence classification:

1 N C
Lcls:*N‘ZZ zclnglc

where t; . is the ground truth label for class c in sequence i,
Di.c is the predicted probability for that class, and C represents
the total number of classes. This joint optimization enables the
model to preserve both sequence-level details and high-level
semantic information during transmission.

5)

III. NUMERICAL RESULTS

A. Simulation Setup

Experiments utilize an Intel Core Intel(R) Xeon(R) Platinum
8462Y and a NVIDIA H100 GPU. We adopted the DNA
sequence dataset [13] include 6880 sequences in 7 classes.
Table I lists training parameters. To compare performance with
DNA-DeepSC, we adopt two baseline: DeepSC represents for
standard deep-learning-enabled sematnic communication and
UTF-8+Turbo represents for conventional method which uses
UTF-8 as source coding and Turbo as channel coding

TABLE I

SIMULATION PARAMETERS AND CONFIGURATION SETTINGS
Parameter Value Parameter | Value
Batch Size 8 Tokenizer DNABERT-2-117M
Learning Rate 1.00E-04 | Dsgem 128
Training Epoch | 15 Vocab Size | 4096
)\recon 1 DChan 16
Acls 0.2
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B. Evaluation Metrics

We employ two evaluation metrics to assess the performance
of the proposed system against two baseline methods:

1) Edit distance, formally defined as the Levenshtein dis-
tance, constitutes a fundamental string similarity met-
ric quantifying the minimum number of elementary
operations—insertions, deletions, and substitutions—
required to transform one string into another. For strings
S1 and Sy of lengths m and n respectively, the edit
distance D(S7, S2) is computed through dynamic pro-
gramming with recurrence relation:

Dli — 1, 4] + 1(deletion)
Dli,j] = min < D[4, j — 1] + 1(insertion)

Dli — 1,5 — 1] 4 6(4, j)(substitution)

(16)

where §(i, j) = 0 if characters match, 1 otherwise. This
metric satisfies essential mathematical properties includ-
ing non-negativity, symmetry, and triangle inequality,
establishing it as a true distance function in metric space
theory. The algorithm achieves O(mn) time complexity
with O(min(m,n)) space optimization through rolling
array implementation.

2) Classification accuracy quantifies the proportion of
correctly predicted DNA sequence class labels rela-
tive to the total number of predictions. For a dataset
containing N DNA sequences with ground truth la-

bels {y1,¥2,...,yn} and corresponding predictions
{91,92,...,9n}, the classification accuracy A is de-
fined as:
X
A=+ > Iyi = §i) x 100% (17)
i=1

where I(-) denotes the indicator function that equals 1
when the condition is true and O otherwise. This metric
provides a direct measure of the multi-task system’s
capability to preserve semantic class information during
DNA sequence transmission and reconstruction.

C. Performance Comparison

The edit distance performance comparison in Fig. 4 demon-
strates the superior reconstruction accuracy of the proposed
DNA-DeepSC system across various SNR conditions. At
low SNR (-6 dB), DNA-DeepSC achieves an edit distance
of 2.16, outperforming DeepSC (2.25) by 4% and UTF-
8 + Turbo (129.41) by 98.3%, highlighting the robustness
of Mamba-2 based semantic encoding under harsh channel
conditions. At moderate SNR (0 dB), DNA-DeepSC maintains
superiority with 0.125 edit distance compared to DeepSC
(0.177) and UTF-8 + Turbo (72.45), representing 29.4% and
580x improvements respectively. Even at high SNR (18 dB),
DNA-DeepSC (0.003) consistently outperforms both DeepSC
(0.005) and UTF-8 + Turbo (0.008) by 40% and 62.5%
respectively. The consistent performance advantage across
all SNR ranges validates the effectiveness of the multi-task
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—&—DeepSC
UTF-8 + Turbo
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Fig. 4. Edit Distance Performance Comparison across Different SNR Values

learning framework and Mamba-2 architecture in preserving
DNA sequence integrity for reliable genomic information
transmission.
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Fig. 5. Classification Accuracy Performance Comparison across Different
SNR Values

The classification accuracy results in Fig. 5 demonstrate
the exceptional performance of the proposed DNA-DeepSC
system in the multi-task learning scenario. DNA-DeepSC
achieves consistently high classification accuracy ranging from
95.28% at -6 dB to 96.8% at high SNR conditions, signifi-
cantly outperforming both baseline methods across all channel
conditions. In contrast, DeepSC achieves only 31.83-33.87%
accuracy, representing approximately 3x lower performance,
while UTF-8 + Turbo shows the poorest results with 13.97-
29.21% accuracy. The remarkable stability of DNA-DeepSC’s
classification performance (less than 2% variation across SNR
range) compared to the baseline methods highlights the ef-
fectiveness of the joint optimization strategy in the multi-
task framework, where the classification task benefits from
the semantic representations learned during DNA sequence
reconstruction, enabling robust class prediction even under
severe channel impairments.

D. Model Complexity Analysis

Table II demonstrates that DNA-DeepSC achieves supe-
rior performance with only 1,866,207 parameters, represent-
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TABLE II
MODEL PARAMETER COMPARISON

Model Number of Parameters
DeepSC 12,697,553
DNA-DeepSC 1,866,207
UTF-8+Turbo -

ing an 85.3% reduction compared to DeepSC’s 12,697,553
parameters. This efficiency stems from Mamba-2’s linear
complexity architecture, which eliminates the quadratic scal-
ing of transformer-based attention mechanisms. The reduced
parameter count enables deployment in resource-constrained
environments while maintaining lower memory requirements,
faster inference, and reduced energy consumption.

45 [-(—8—DeepSC
—@— DNA-DeepSC

Latency (seconds)

0 | I I I I I I |
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Fig. 6. Processing Latency Comparison for Different DNA Sequence Lengths

The sequence latency analysis in Fig. 6 demonstrates the
computational efficiency advantage of the proposed DNA-
DeepSC system over DeepSC across varying DNA sequence
lengths. DNA-DeepSC consistently exhibits lower process-
ing latency, with particularly significant improvements at
longer sequences: at 1000 nucleotides, DNA-DeepSC requires
1.5ms compared to DeepSC’s 2.48ms (39.5% reduction),
while at 10,000 nucleotides, the latency gap widens dramati-
cally with DNA-DeepSC achieving 16.02ms versus DeepSC’s
42.32ms (62.1% reduction). This superior scalability stems
from Mamba-2’s linear computational complexity O(L) com-
pared to the quadratic complexity O(L?) of transformer-based
architectures in DeepSC, making DNA-DeepSC particularly
suitable for processing extremely long genomic sequences that
are common in real-world DNA transmission applications.

IV. CONCLUSION

This paper presented DNA-Mamba-DeepSC, a novel multi-
task semantic communication system that leverages Mamba-
2 architecture for efficient DNA sequence transmission with
simultaneous reconstruction and classification capabilities. Ex-
perimental results demonstrate significant performance im-
provements including up to 98.3% edit distance reduction
compared to conventional methods, consistently high classi-
fication accuracy of 95-96% across various SNR conditions,
and 62.1% latency reduction for long sequences due to linear

computational complexity. The proposed multi-task learning
framework successfully preserves both sequence-level fidelity
and semantic information during transmission, making it
highly suitable for genomics research, personalized medicine,
and biotechnology applications requiring reliable DNA data
exchange.
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