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Abstract—With the rise of smart factories employing Auto-
mated Guided Vehicles (AGVs) and Autonomous Mobile Robots
(AMRs), ensuring reliable wireless communication has become a
critical requirement for safe and continuous operation. However,
in industrial Wi-Fi networks, frequent roaming often cause un-
expected disconnections, undermining communication reliability
and operational stability. This study aims to proactively predict
roaming events in industrial Wi-Fi networks using large-scale
data collected from AGVs and access points (APs) in real-world
automobile factory. An Long Short-Term Memory(LSTM)-based
model is employed to forecast each AGV’s next AP, and roaming
likelihood is further analyzed using the entropy of predicted
probabilities. Our model detects more than 80% of roaming
events in advance, contributing to improved communication
stability in industrial environments.

Index Terms—Automated Guided Vehicle (AGV), Software
Defined Factory (SDF), Industrial Wireless, Industry 4.0

I. INTRODUCTION

Factory automation is accelerating under Industry 4.0,
leading to smart manufacturing environments where auto-
mated guided vehicles (AGVs) and autonomous mobile robots
(AMRs) play key roles in material transport. To operate safely
and efficiently, AGVs must continuously communicate with
a central controller to exchange time-critical commands and
sensor data. Thus, maintaining highly reliable and low-latency
wireless links is essential for stable operation. If connectivity
is interrupted, AGVs may stop or deviate from their assigned
tasks, leading to line delays or productivity losses.

As wireless connectivity becomes mission-critical in smart
manufacturing, traditional rule-based network management
struggles with dynamic interference, multipath fading, and
mobility-driven topology changes. Machine learning (ML) has
emerged as a promising approach for network prediction [1],
anomaly detection [2], and performance optimization. By
leveraging time-series metrics such as RSSI, throughput, and
latency, ML models–particularly sequence-learning architec-
tures like long short-term memory (LSTM)–can capture tem-

This research was supported by the Hyundai Motor Group, also by the
National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No. RS-2024-00359450), and also by the Institute of
Information & Communications Technology Planning & Evaluation(IITP)-
ITRC(Information Technology Research Center) grant funded by the Korea
government(MSIT)(IITP-2025-RS-2022-00156353).

J. Paek is the corresponding author.

Wi-Fi AP

AGV

Wi-Fi Frame

Fig. 1: Overview of AGV roaming scenario.

poral patterns that static threshold-based methods overlook,
enabling proactive detection of link degradation or roaming
behavior. Prior studies have also explored ML-based handover
prediction in cellular and Wi-Fi networks [3]–[5], showing
the feasibility of forecasting mobility events using sequence
models.

Despite these advances, predicting roaming in advance
remains challenging because AGV mobility and channel con-
ditions evolve quickly, and simple thresholding on RSSI or
link quality fail to capture these dynamics. This motivates a
data-driven sequential modeling approach tailored to industrial
Wi-Fi.

In this paper, we propose a framework for proactive roaming
prediction in factory Wi-Fi networks. Using real-world logs
collected from AGVs and access points, we design an LSTM-
based next-AP prediction model augmented with an entropy-
based metric to estimate roaming likelihood and identify
unstable link states.
The contributions of this paper are summarized as follows:
• We analyze real-world wireless traces from AGVs and Wi-

Fi APs in an operational automobile factory to characterize
roaming-related disconnect phenomena.

• We design an LSTM-based model for next-AP prediction
and introduce an entropy-based metric to quantify roaming
likelihood and link stability.

• We evaluate the proposed framework on field data and
demonstrate its effectiveness in proactively identifying
roaming events before they occur.
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TABLE I: Total dataset analysis

Total Test Ratio
Data size (timesteps) 93,083,287 16,436,677 17.65%

Roaming events (count) 101,333 22,167 21.87%

Roaming event ratio 0.108% 0.135% -

II. RELATED WORK

Manalastas et al. [3] developed a data-driven framework to
predict and mitigate inter-frequency handover failures in 5G
networks. Their focus lies in cellular environments and failure
avoidance through radio-parameter adaptation, which differs
from our objective of predicting proactive roaming behavior
in Wi-Fi networks deployed in industrial facilities.

Lima et al. [4] treated handover prediction as a sequence
learning problem using models such as LSTM and Gated
Recurrent Unit (GRU). Although similar in methodology, their
work targets conventional mobile networks with standardized
RAN measurements, not dense industrial Wi-Fi systems with
AGV-specific signal and mobility characteristics.

Dzaferagic et al. [5] demonstrated ML-based handover
prediction in an O-RAN testbed using an LSTM-based xApp.
While they addressed real-time roaming triggering, their goal
was limited to determining whether a handover should occur,
rather than identifying the next target cell or AP, which is
central to proactive mobility management in industrial Wi-Fi.

In contrast to these studies, our work focuses on pre-
dicting the next AP in a factory Wi-Fi network using fine-
grained AGV-side measurements and sequence-based learning,
offering actionable insights for proactive roaming control in
industrial environments.

III. METHODOLOGY

In this section, we present data analysis, labeling method-
ology, and the approaches evaluated.

A. Dataset

We utilize real-world operational data collected from a
vehicle manufacturing plant in the United States. The dataset
spans approximately four months, from November 20, 2024, to
March 20, 2025. To ensure consistent production conditions,
we exclude weekends and public holidays, resulting in 79
working days of valid logs. During this period, more than 80
AGVs operated concurrently across the plant, communicating
through over 40 Wi-Fi1 access points (APs).

For model training, we use AGV-side telemetry sampled
every 2 seconds. Each record contains the currently connected
AP, RSSI, latency, bitrate, noise floor, and connected time
since association. Furthermore, to enable supervised learning
for early next-AP prediction, we augment each record with
the AP identifier observed 10 seconds later in time. If the
AGV remained associated with the same AP, the future label
is marked as unchanged; otherwise, it is labeled as the new
AP that the AGV roamed to.

1This system uses IEEE 802.11ax Wi-Fi 6 for all devices.

Table I presents that the entire dataset consists of 93,083,287
samples, including 101,333 roaming instances. For evaluation,
we reserve data from March 2025 as the test set, comprising
16,436,677 samples and 22,167 roaming events.

In summary, the input features and labels used in this study
are as follows:
• Input features: datetime, latency, connected AP, bitrate,

noise floor, RSSI, and connected time since association.
• Target label: next AP identifier observed 10 seconds after

the current timestamp.

B. Motivation

When a disconnection occurred, we analyzed the dmesg
logs of affected AGVs [6] to identify possible causes. Among
all events with connectivity loss exceeding 6 seconds2, a
total of 331 cases contained valid dmesg traces. Remarkably,
297 cases (89.46%) were observed immediately before or
after a roaming event. This strong correlation indicates that
severe disconnections are most likely to occur near roaming
transitions, emphasizing the importance of predicting roaming
events in advance.

C. Approach

We design a data-driven framework for proactive roaming
prediction based on sequence learning. The proposed model
combines a Long Short-Term Memory (LSTM) network [7]
and a Dense layer to predict the next AP that an AGV
will connect to. The model takes as input a sequence of
wireless features and outputs a probability distribution over all
candidate APs. The AP with the highest probability is selected
as the predicted next AP.

To evaluate the prediction confidence, we compute the
entropy using probability distribution. In our design, high-
entropy outputs often coincide with unstable wireless con-
ditions or impending roaming transitions. Therefore, we use
entropy as an indicator of potential roaming events: when
entropy exceeds a defined threshold, the model flags a high
likelihood of roaming occurrence. Based on this idea, when
the entropy exceeds a threshold of 0.5, the model flags the
current state as a high-likelihood roaming condition.

IV. EVALUATION

In this section, we describe the experimental environment
and present the results of our roaming prediction evaluation.

A. Evaluation Setup

All experiments are conducted on an Intel i5-14600KF CPU,
an NVIDIA GeForce RTX 4070 SUPER (12 GB VRAM), and
48 GB RAM, running Ubuntu 20.04.6 LTS with Python 3.12,
CUDA 12.6, and TensorFlow Keras 3.10.0 [8]. The input
window size was set to 15 time steps. Numerical features
(RSSI, latency, bitrate, noise floor, and connected time) are
min–max scaled, while categorical features (current AP) were

26 seconds is the threshold and a requirement set by the application to
distinguish between a temporary disconnection and a long-term disconnection
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Latency(ms) Curr AP Prev AP Bitrate(Mbps) RSSI(dBm) Connect time(ms) Target AP Predicted AP Entropy

2.746 AP08 AP24 68.8 -69 340 AP08 AP08, AP19 0.9919
3.695 AP08 AP24 68.8 -70 342 AP08 AP08, AP19 1.2271

10.659 AP08 AP24 74.8 -69 344 AP08 AP08, AP19, AP24 1.2984
3.781 AP08 AP24 74.8 -69 346 AP24 AP08, AP19, AP24 1.396
3.074 AP08 AP24 86 -70 348 AP24 AP08, AP19, AP24, AP25 1.4486
5.797 AP08 AP24 86 -71 350 AP24 AP08, AP19, AP24, AP25 1.4968
5.935 AP08 AP24 74.8 -71 352 AP24 AP08, AP19, AP24, AP25 1.5363
3.245 AP08 AP24 74.8 -72 354 AP24 AP08, AP19, AP24, AP25 1.6259

11.727 AP24 AP08 149.7 -59 0 AP24 AP24 0.2596
3.120 AP24 AP08 149.7 -57 2 AP24 AP24 0.0271

TABLE II: Example of test data and predict result

Fig. 2: CDF of next-AP prediction accuracy for all timesteps,
including non-roaming cases.

Fig. 3: CDF of roaming detection rate. The blue curve represents
detection based on the predicted next AP differing from the current
AP, while the orange curve shows detection based on prediction
uncertainty (Entropy > 0.5).

one-hot encoded. The model consists of a single LSTM layer
with 32 hidden units followed by a Dense layer with softmax
over all AP classes. We optimize the network with Adam using
sparse categorical cross-entropy, training for 100 epochs with
a batch size of 128 and a validation split of 0.2.

B. Evaluation Results

We evaluate the proposed framework using AGV–AP traces
collected from the operational automobile factory. Our eval-
uation focuses on three key dimensions: overall next-AP
prediction performance, roaming-specific prediction accuracy,
and entropy-based identification of imminent roaming.

Table II shows an example of input features, ground-truth
labels, and model outputs for a roaming event. The first six

columns (Latency through Connected Time) represent AGV-
side input features. The target AP column denotes the true
next AP observed 10 seconds later, while the predicted AP
column lists APs with the highest predicted probabilities. The
Entropy column indicates uncertainty in the model’s output
distribution. As illustrated, entropy rises before roaming and
decreases once the AP association stabilizes, reflecting its
relationship with prediction uncertainty.
Next-AP Prediction (Fig. 2) The model shows high accu-
racy in predicting the next AP association. However, this
performance is somewhat inflated because roaming events are
relatively rare compared with stable connections. In other
words, the dataset is dominated by non-roaming samples,
where the AGV continues to stay connected to the same AP,
leading to naturally higher accuracy values.
Roaming Prediction Accuracy (Fig. 3) To better understand
model behavior under roaming scenarios, we evaluate the
prediction accuracy only during actual roaming transitions.
The blue curve(top-1 accuracy) represents cases where the
predicted next AP exactly matches the true AP, while the
orange curve corresponds to candidate-based accuracy, where
the true AP is included among candidates whose predicted
probability is greater than 5%. The top-1 accuracy drops
significantly in roaming conditions. In contrast, the candidate-
based metric achieves considerably higher accuracy, showing
that the model can still capture multiple plausible AP transi-
tions. Approximately 10% of the samples exhibit 0% accuracy
because they contain very few roaming occurrences during the
observation window.
Roaming Detection Using Entropy (Fig. 4) Finally, we assess
the ability to proactively detect roaming events. Roaming is
considered detected when either (i) the predicted next AP
differs from the current AP (blue curve) or (ii) the entropy
of the predicted probability distribution exceeds 0.5 (orange
curve). The entropy-based approach detects roaming earlier
and more smoothly, indicating that prediction uncertainty
serves as a reliable signal of imminent handover and link
instability.
Temporal Visualization of Roaming Prediction (Fig. 5)
Fig. 5(a) evaluates where the device will roam by comparing
the ground-truth next AP with the model’s predicted next
AP at each time step. Vertical green and red markers indi-
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Fig. 4: CDF of next-AP prediction accuracy under roaming condi-
tions. The blue curve indicates the accuracy of correctly predicting
the next AP, whereas the orange curve represents cases where
the true next AP appears among candidate APs with prediction
probability above 5%.

(a) Comparison of predicted AP and target AP over time. Green and red
bars denote correct and incorrect predictions.

(b) Time-series roaming prediction and entropy-based detection. The orange
dashed lines indicate entropy ≥ 0.5.

Fig. 5: Qualitative visualization of roaming behavior along the AGV
trajectory. The upper plot shows next-AP prediction performance at
actual roaming transitions, while the lower plot illustrates entropy-
based detection of roaming occurrence (roaming vs. non-roaming)
in real time.

cate, respectively, correct and incorrect next-AP predictions at
actual roaming instances. As shown in Fig. 5, the next-AP
prediction accuracy during roaming remains around 50%, and
the same trend is visible in the upper plot: the model correctly
identifies roughly half of the actual roaming transitions, while
the remaining cases exhibit deviations due to the inherent
uncertainty of wireless conditions during handover.

Fig. 5(b) evaluates whether a roaming event will occur using
entropy-based detection. Here, the orange dashed trace marks
time instants where the entropy exceeds the roaming threshold
(H ≥ 0.5), and the blue markers denote ground-truth roaming
occurrences. This binary signal does not predict the target AP;
instead, it flags imminent roaming (roaming vs. non-roaming).
The dense activations around transition points illustrate that
entropy provides early warnings of link instability.

V. CONCLUSION

This paper presented a data-driven framework for proactive
roaming prediction and connection stability estimation in
industrial Wi-Fi networks. Using real-world datasets collected
from AGVs and Wi-Fi access points in an automobile man-
ufacturing plant, we analyzed disconnection phenomena and
found that severe connectivity losses frequently occur near
roaming transitions. However, anticipating roaming events is
difficult for human operators due to rapidly changing wireless
conditions, making automated prediction essential for reacting
before link failure occurs. To address this, we proposed an
LSTM-based next-AP prediction model that leverages time-
series signal patterns and introduces an entropy-based metric
to quantify roaming likelihood. Experimental results show that
the proposed framework accurately predicts roaming events
and unstable link states in advance. Entropy-based detection
achieved up to 95% accuracy for AGVs with frequent roaming
and a median accuracy of 87% across all AGVs, significantly
improving industrial Wi-Fi reliability.

As future work, we plan to enable earlier diagnosis of
disconnect after roaming and develop automated responses that
can prevent disconnects before they impact AGV operation.
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