
Evaluation of Machine Learning Models
for Feint Shrew Attack Detection with Simulated

Network Traffic
Shingo Imai∗, Tomotaka Kimura∗, and Jun Cheng∗

∗Graduate School of Science and Engineering, Doshisha University, Kyoto, Japan
Email: ctwk0120@mail4.doshisha.ac.jp; tomkimur@mail.doshisha.ac.jp; jcheng@ieee.org

Abstract—This study investigated the effectiveness of machine
learning techniques for detecting feint shrew attacks. A shrew
attack exploits the retransmission timeout mechanism of the TCP
protocol by transmitting intermittent bursts of high-rate packets,
which severely degrade communication performance despite its
minimal use of traffic, and is regarded as a representative
type of low-rate denial-of-service (LDoS) attack [1]. In recent
years, the feint shrew attack, a derivative form of the shrew
attack, has emerged, making detection even more challenging by
distributing traffic across multiple terminals or inserting feint
traffic that closely resembles normal communication. To analyze
such attacks, we constructed a network traffic dataset using
ns-3 simulations and applied two machine learning models, a
feedforward neural network (NN) and long short-term memory
(LSTM), to classify normal and malicious traffic. The detection
performance of these models was compared to evaluate the
effect of considering temporal dependencies on feint shrew
attack identification. The experimental results show that the
LSTM model achieves higher detection accuracy than the NN
model, demonstrating that incorporating temporal features is
effective in detecting feint shrew attacks and highlighting the
potential of machine learning-based analysis for understanding
and mitigating LDoS attack behavior.

Index Terms—Low-rate distributed denial-of-service, Machine
learning, Deep learning, ns-3

I. INTRODUCTION

With the rapid expansion of Internet-based social and
economic activities, the availability and reliability of online
services have become increasingly critical. The widespread
adoption of electronic commerce, cloud computing, and the
Internet of Things (IoT) has made these services essential
to both business operations and social infrastructure. Con-
sequently, service disruptions can have a severe impact on
enterprises and society as a whole. Among the various cyber
threats, denial-of-service (DoS) attacks, in which excessive
requests or massive volumes of data are sent to disrupt normal
service operation, remain one of the most serious concerns.
In particular, the sophistication of attack techniques and the
exploitation of botnets have made DoS attacks more difficult
to detect and have led to damage on an increasingly large
scale.

Recently, low-rate DoS (LDoS) attacks have emerged as a
more insidious variant of DoS attacks. Unlike conventional
high-rate attacks that rely on overwhelming traffic volumes,
LDoS attacks exploit protocol-level vulnerabilities to inter-
mittently transmit short bursts of malicious packets. Although

their average traffic rate is low, these attacks can effectively
degrade network performance by synchronizing with protocol
mechanisms such as TCP congestion control or retransmission
timeouts (RTOs). Because of their low traffic intensity and
bursty nature, LDoS attacks are difficult to detect using
conventional traffic volume-based or threshold-based methods.

Among the various LDoS variants, the shrew attack is a
representative and particularly dangerous form because of its
stealthiness. By periodically sending short bursts of packets
that exploit TCP vulnerabilities, the shrew attack can severely
degrade communication performance while remaining unde-
tected for extended periods [2]. Consequently, it poses a
significant threat to the stability of networked systems and
calls for urgent countermeasures.

To address this problem, several studies have proposed
detection methods based on machine learning [3] [4] and
statistical analysis [5]. These approaches extract characteristic
patterns from network traffic and employ anomaly detection
or classification models to determine the presence of attacks.
Although existing methods have achieved high detection accu-
racy and demonstrated effectiveness for the early detection of
shrew attacks, more sophisticated shrew-attack variants have
recently emerged. These evasive shrew attacks further obscure
detection by modifying temporal and statistical features, pre-
senting new security challenges.

For example, coordinated attacks involving multiple com-
promised devices have been proposed [6] in which the aver-
age traffic per device is significantly reduced, making their
detection even more difficult than the detection of conven-
tional LDoS attacks. Moreover, feint shrew attacks have been
reported [7] in which benign-looking traffic is intentionally
mixed with malicious bursts to deceive conventional detectors.
Such attacks are particularly challenging to detect using only
basic statistical features or aggregated traffic patterns. By con-
trast, machine learning-based anomaly detection models have
the potential to capture the complex temporal and statistical
characteristics of network traffic, making them suitable for
detecting sophisticated attacks such as feint shrew attacks.
However, collecting real network traffic that contains LDoS or
feint shrew attacks is challenging. These attacks occur inter-
mittently and at low rates, making packet capture and accurate
labeling extremely difficult, and thus it is challenging to obtain
sufficient training data for machine learning. Consequently,

315979-8-3315-7896-1/26/$31.00 ©2026 IEEE ICOIN 2026

Fig. 1: Typical Shrew Attack

most existing studies rely on synthetic or idealized traffic, and
evaluations using realistic network conditions remain limited.

In this study, we reproduce a feint shrew attack on the ns-
3 simulator and construct a dataset that consists of realistic
attack traffic. Using the generated time-series data, we evaluate
whether machine learning models can effectively classify and
detect LDoS attacks. Specifically, using the collected dataset,
we apply both a simple neural network (NN) and a long short-
term memory (LSTM) model, which is effective for time-series
data, to clarify whether machine learning can successfully
distinguish feint LDoS attacks.

The remainder of this paper is organized as follows. Section
II introduces the shrew attack and its derivative, the feint shrew
attack. Section III describes the methodology and experimental
procedure. Section IV presents the experimental results and
performance analysis. Finally, Section V concludes the paper
and discusses future work.

II. SHREW ATTACKS AND FEINT SHREW ATTACKS

A. Shrew Attacks

Figure 1 illustrates a typical realization of a shrew attack.
The attack exploits the behavior of TCP’s RTO mechanism to
dramatically reduce effective transmission rates. As depicted,
the attacker emits short, high-rate bursts of traffic (at rate R)
lasting L seconds at regular intervals of T seconds. Each burst
induces temporary congestion in the network and provokes
packet losses within the affected TCP flows. To maximize
impact, a classical shrew attack aims to synchronize the burst
interval T with the TCP RTO timing. Because TCP exponen-
tially backs off the RTO after each timeout, an idealized shrew
design would double the burst interval T on each subsequent
attack so that bursts repeatedly coincide with progressively
larger RTOs. Under such conditions, retransmissions are re-
peatedly deferred and lost, leading to connection stalls or
severe throughput degradation.

However, TCP implementations such as CUBIC and
NewReno employ fast retransmit and fast recovery mecha-
nisms that undermine the practical effectiveness of an RTO-
synchronized attack. When a single packet is lost and the
receiver issues three duplicate ACKs, the sender retransmits
the missing packet immediately, before the RTO expires, and
reduces the congestion window by roughly one half; as a
result, the connection can continue without waiting for an

Fig. 2: Collaborative Shrew Attack

RTO. Consequently, inducing an RTO in the first place now
requires multiple consecutive packet losses to be forced in the
initial attack burst, a condition that is difficult to satisfy in
practice.

Because of these protocol-level defenses, this study does
not consider the classical RTO-synchronized shrew attack but
instead focuses on a variant in which the burst interval T is
fixed. In this fixed-interval shrew attack, the primary objective
is not to trigger RTO-based packet drops but rather to repeat-
edly provoke congestion events that cause a fast retransmit and
the associated halving of the sender’s transmission rate. By
repeatedly inducing cwnd reductions, the attacker can steadily
degrade communication quality even against contemporary
TCP stacks that implement fast retransmit/fast recovery.

B. Feint Shrew Attacks

A sophisticated technique to evade detection in shrew at-
tacks is to distribute the attack across multiple collaborating
hosts so that the transmission rate of each individual node is
reduced, as illustrated in Figure 2. By decentralizing the attack
traffic, this collaborative shrew attack reduces the likelihood
of anomaly detection methods that focus on high-rate behavior
from a single host. Building on this concept, a derivative
known as the feint-based shrew attack has recently been
introduced [7]. In this method, the attacker injects feint traffic
(benign-looking packets that resemble normal communication)
during the intervals between the bursts of a conventional shrew
attack (that is, during the period corresponding to the burst
interval T). This insertion effectively conceals the regularity
of attack bursts and increases the attack’s stealthiness against
detection algorithms.

In the feint shrew attack, a random variable r is generated
from a uniform distribution. When r exceeds a predefined
threshold, feint traffic is transmitted at a rate of rR, where
R denotes the fixed-interval attack rate. As a result, even
during the inter-burst periods, the traffic does not become
completely idle but instead exhibits fluctuations that closely
resemble ordinary network activity. This randomized behavior
obscures abnormal periodicity and makes it more difficult for
conventional detectors relying on statistical or temporal traffic
patterns to identify the attack.

316

III. METHODOLOGY

A. Overview

In this study, we aim to verify whether machine learning
models can classify feint LDoS attacks using traffic data
generated through network simulation. Our objective is to
evaluate the effectiveness of existing models when applied
to realistically reproduced attack traffic. The methodology
consists of two main stages: (1) the reproduction of feint shrew
attacks in the ns-3 simulator to generate traffic datasets, and
(2) the application of machine learning models to the collected
time-series data to assess their classification performance.
In this section, Section III-B describes the procedure for
generating the dataset using ns-3 simulations and Section III-C
explains the machine learning models employed to distinguish
between normal and abnormal traffic.

B. Data Generation Using ns-3 Simulation

To obtain traffic data that include feint LDoS attacks, we
constructed a virtual network environment in ns-3 simulator.
The network topology consists of multiple TCP and UDP
users, attack nodes, relay nodes, and a central server. Attack
nodes perform feint shrew attacks, transmitting intermittent
high-rate bursts and inserting low-rate feint traffic during idle
intervals to imitate normal communication. The simulation
was executed 1000 times, and the transmitted data volume
at the server was recorded every 0.05 s as time-series data.
This approach enables the creation of a dataset containing both
normal and attack traffic, which would be difficult to capture
in real network environments.

The network structure is shown in Figure 3. The network
consists of three types of senders: TCP users, UDP users,
and attackers. All nodes communicate with the server via a
relay node and a secondary relay node. As summarized in
Table III, there are ten TCP user nodes, ten UDP user nodes,
and five attacker nodes. The attackers use the UDP protocol to
communicate in order to imitate the behavior of UDP users.

Each link in the network has a different bandwidth between
the sender and the relay node: 5 Mbps between TCP users
and the relay, 10 Mbps between UDP users and the relay, and
10 Mbps between attackers and the relay. The links between
the relay and secondary relay have a transmission rate of 25
Mbps, and those between the secondary relay and the server
have a transmission rate of 50 Mbps. All links have a latency
of 2 ms. The detailed link configurations are summarized in
Table IV.

Each communicator transmits data to the server through its
own dedicated application. The TCP user communicates at
a constant rate of 500 Kbps throughout the simulation. To
increase the diversity of attack patterns, the parameters of the
UDP user and the attacker are randomly selected for each
simulation run. An overview of the traffic behavior between
the UDP user and the attacker is shown in Figures 4 and 5. The
corresponding parameter settings and their variation ranges
are summarized in Tables I and II. In each time interval of
length L, the UDP user generates a uniform random number

Fig. 3: Simulation Network Topology

TABLE I: Parameter Settings for UDP Users

Parameter Range
S (s) 0-3
L (s) 0.05-0.15

R (Mbps) 2-3

r ∈ [0, 1]. If r > 0.5, the user transmits packets at a rate
of rR; otherwise, the transmission rate is set to zero. The
parameter R denotes the reference transmission rate that also
serves as the basis for the attacker’s traffic generation. In
other words, the attacker uses the same rate parameter Ruser

as that of the legitimate UDP user within each simulation,
thereby imitating normal communication behavior to conceal
malicious activity. Furthermore, the attacker’s burst interval
L′ is independently adjusted to flexibly control the timing
of the attack while maintaining similarity to the UDP user’s
communication pattern.

Figure 6 shows the traffic traces generated by our ns-3
simulations that reproduce both a fixed-interval shrew attack
and a cooperative feint shrew attack. Figure 6a depicts the
temporal evolution of the transmission rate when a shrew
attack is performed by a single attacker. During each burst
period of length L, packets are transmitted at a fixed rate R,
producing distinct high-rate spikes that are clearly observable
in the trace. In contrast, Figure 6b shows the average traffic
rate when the same attack behavior is distributed across 100
cooperative nodes. The red-shaded region between 0 s and
10 s indicates the interval during which individual attackers
transmit their bursts; the aggregate traffic peak is slightly
delayed relative to this interval because of transmission delays
and queuing effects in the network. These two examples illus-
trate the difference between a single-node shrew attack and a
distributed, feint variant, and they serve as the primary data
sources for the subsequent time-series analysis and machine
learning experiments described in this study.

To avoid time-dependent bias caused by synchronized attack
timing across simulations, random starting intervals were used
when extracting the data segments for training. Each extracted
sequence was labeled as either “normal” or “attack” depending
on whether it contained active attack intervals. As a result, we
constructed a balanced dataset suitable for binary classification

317

Fig. 4: UDP User Traffic

Fig. 5: Attacker Traffic

tasks.

C. Machine Learning Models

For the classification task, two machine learning models
were employed: a simple NN and an LSTM network. These
two models were used to investigate whether incorporating
temporal information through sequential learning can improve
the ability to distinguish feint LDoS attacks from normal
communication. In particular, the NN serves as a baseline
model that processes static input vectors, whereas the LSTM
should capture time-dependent variations that could reveal
subtle attack patterns. Attempts to utilize such time-series
features for detection are being widely pursued. [8] [9]

NN The NN model consists of three fully connected
(Linear) layers, each followed by a ReLU activation
function. A dropout layer (dropout rate = 0.2) was
inserted after the first and second fully connected
layers to prevent overfitting. This network captures
static statistical relationships within each input
vector but does not model temporal dependencies
across time steps.

TABLE II: Parameter Settings for Attackers

Parameter Range
S (s) 0-3
T (s) 0.2-0.5
L (s) 0.05-0.15
L’ (s) T [Luser

T
]

R (Mbps) Ruser

(a) Traffic of one device

(b) Average Traffic of 100 devices

Fig. 6: Comparison of Shrew Attack Traffic Behavior Based
on Number of Devices

LSTM The LSTM model is composed of two stacked
LSTM layers followed by a fully connected output
layer. Each LSTM layer has 64 hidden units with
a tanh activation in the cell state and sigmoid
activations for the input, forget, and output gates.
This architecture allows the model to learn long-term
temporal dependencies within sequential data. By
controlling information flow through the gating
mechanism, the LSTM retains meaningful temporal
features while filtering out irrelevant fluctuations,
making it particularly effective for analyzing
dynamic traffic patterns associated with feint LDoS
attacks.

Both models take as input a time-series vector of observed
traffic values. Specifically, the observed traffic volume at time
t is denoted as x(t), and a continuous sequence of N traffic
values from t to t+ (N − 1)δ is represented as the vector

x(t) = (x(t), x(t+ δ), . . . , x(t+ (N − 1)δ)).

By generating time-series traffic data over multiple time
steps with and without shrew attacks, we constructed a dataset

318

TABLE III: Configuration of the Senders

Number of Nodes Protocol
TCP Users 10 TCP
UDP Users 10 UDP
Attackers 5 UDP

TABLE IV: Link Configuration

Link Transmission Rate (Mbps) Delay (ms)
TCP User – Router 1 5 2
UDP User – Router 1 10 2
Attacker – Router 1 10 2
Router 1 – Router 2 25 2
Router 2 – Server 50 2

X composed of vectors x(t). Each sample in X was labeled
according to whether the corresponding time window repre-
sents an attack or normal communication. Using this dataset,
a binary classification model f was trained to output the
probability of each class (attack/normal) through two output
nodes.

As a result of the specifications of the ns-3 simulation
program, all shrew attacks were executed using the same
timing in every simulation run. To prevent time-dependent bias
arising from this synchronization, we adopted a data extraction
approach that randomly selects fixed-length intervals with
varying start times. This strategy removes the influence of
absolute time and allows the dataset to capture the intrinsic
characteristics of shrew attacks rather than artifacts of syn-
chronization.

When constructing the training and testing datasets, data
obtained from the same terminal within a single simulation
were strictly separated to prevent data leakage and over-
fitting. To evaluate model robustness, we varied the input
vector length N under six different settings, where N ∈
{11, 16, 21, 31, 41, 61}. Since traffic data were recorded at
0.05-s intervals (δ = 0.05), these lengths correspond to time
windows of approximately 0.5, 0.75, 1.0, 1.5, 2.0, and 3.0
seconds, respectively.

The architectures of both models are summarized in Ta-
bles V and VI. Each model performs binary classification to
distinguish between normal and attack traffic. During training,
the number of samples corresponding to UDP users and shrew
attackers was balanced to mitigate class imbalance and ensure
fair learning. Both models were trained using the cross-entropy
loss function and optimized with the Adam optimizer (learning
rate = 0.001, batch size = 32, number of epochs = 50).

IV. EVALUATION RESULTS

This section presents the experimental evaluation of ma-
chine learning models for detecting LDoS attacks. We examine
and compare the detection performance of a NN and an
LSTM model trained on the traffic dataset generated by ns-
3 simulator. The objective of this evaluation is to investi-
gate whether incorporating temporal dependencies through the
LSTM enhances the ability of machine learning models to
distinguish feint LDoS attacks from normal traffic.

TABLE V: Details of the NN Architecture

Layer No. Description
1 Fully Connected (Linear)

Activation Function (ReLU)
Dropout

2 Fully Connected (Linear)
Activation Function (ReLU)

3 Fully Connected (Linear)

TABLE VI: Details of the LSTM Network Architecture

Layer No. Description
1 LSTM
2 LSTM
3 Fully Connected (Linear)

First, the effectiveness of the NN and LSTM models against
the fixed-interval shrew attack was evaluated. Figure 7 presents
the results for recall, precision, and accuracy as functions of
window size N . Both the NN and LSTM models achieved high
performance results at relatively small values of N , indicating
that these models are effective at detecting the fixed-interval
shrew attack.

Next, the effectiveness of the machine learning models
against the feint shrew attack was evaluated. Figure 8 shows
the variations in recall, precision, and accuracy as functions
of window size N . In contrast to its performance when
detecting the fixed-interval shrew attack, the NN performed
worse at small values of N , suggesting it has a limited ability
to capture the temporal characteristics of the feint traffic.
By contrast, the LSTM model maintained high performance
even at small N , demonstrating that incorporating temporal
dependencies enables more accurate discrimination between a
feint shrew attack and normal communication. Furthermore,
when the LSTM model was used, the accuracy was almost
1.0 for N = 41 and N = 61, indicating that the proposed
approach can accurately detect feint shrew attacks from only
a few seconds of input data. These results clearly confirm that
employing LSTM is highly effective for detecting feint shrew
attacks.

V. CONCLUSION

In this study, we constructed a network traffic dataset using
ns-3 simulations to analyze the effectiveness of machine learn-
ing models for detecting feint shrew attacks. A shrew attack
is a type of LDoS attack that can severely degrade network
performance despite generating only a small amount of traffic.
The feint variant, which inserts benign-like communication
packets, poses an even greater challenge for conventional
statistical detection methods. Using the simulated dataset, we
trained and compared two models, a feedforward NN and an
LSTM network, to evaluate the impact of temporal modeling
on detection performance. The experimental results showed
that the LSTM model achieved substantially higher detection
accuracy than the NN model, demonstrating that incorporating
temporal dependencies is effective for identifying feint shrew
attacks.

319

TABLE VII: Machine Learning Training Parameters

Parameter Description
Number of Training Samples 4800

Number of Test Samples 1200
Loss Function Cross-Entropy Error

Optimizer Adam

(a) Recall

(b) Precision

(c) Accuracy

Fig. 7: Performance Metrics for the Fixed-Interval Shrew
Attack.

ACKNOWLEDGMENT

This research was supported by JSPS KAKENHI
(23K11077).

REFERENCES

[1] A. Kuzmanovic and E. W. Knightly, “Low-rate tcp-targeted denial of
service attacks: the shrew vs. the mice and elephants,” in Proceedings
of the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, 2003, pp. 75–86.

[2] W. Zhijun et al., “Low-rate DoS attacks, detection, defense, and chal-
lenges: A survey,” IEEE Access, vol. 8, pp. 43 920–43 943, 2020.

[3] R. Bocu and M. Iavich, “Enhanced detection of low-rate ddos attack pat-
terns using machine learning models,” Journal of Network and Computer
Applications, vol. 227, p. 103903, 2024.

(a) Recall

(b) Precision

(c) Accuracy

Fig. 8: Performance Metrics for the Feint Shrew Attack.

[4] A. O. M. Salih, “Exploring LDoS attack detection in sdns using ma-
chine learning techniques,” Engineering, Technology & Applied Science
Research, vol. 15, no. 1, pp. 19 568–19 574, 2025.

[5] N. Gogoi et al., “Shrew DDoS attack detection based on statistical
analysis,” ISeCure, vol. 16, no. 2, 2024.

[6] H. Singh et al., “Shrew distributed denial-of-service attack in IoT appli-
cations: A survey,” in Internet of Things. Advances in Information and
Communication Technology, Cham, 2024, pp. 97–103.

[7] T. Cai et al., “Catch me if you can: A new low-rate DDoS attack strategy
disguised by feint,” in Proc. of CSCWD’23. IEEE, 2023, pp. 1710–1715.

[8] C. Xu, J. Shen, and X. Du, “Low-rate dos attack detection method based
on hybrid deep neural networks,” Journal of Information Security and
Applications, vol. 60, p. 102879, 2021.

[9] Y. Fu, X. Duan, K. Wang, and B. Li, “Low-rate denial of service attack
detection method based on time-frequency characteristics,” Journal of
Cloud Computing, vol. 11, no. 1, p. 31, 2022.

320

