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Abstract—Japan frequently experiences natural disasters such
as earthquakes and torrential rains, and the risk of future
disaster occurrences remains high. In such circumstances, the
terrestrial communication infrastructure may become inopera-
ble. Estimating the number of mobile terminals within a specific
area under these conditions can serve as a proxy for population
estimation, thus playing an essential role in supporting emer-
gency response planning. Even under normal conditions, the
ability to quickly assess the distribution of people in areas where
communication infrastructure is temporarily unavailable offers
significant advantages for various applications such as urban
planning and traffic management. To address these challenges,
the authors have previously proposed a system for estimating the
density of smartphones on the ground by analyzing the Received
Signal Strength Indicator (RSSI) obtained through sensing from
Low Earth Orbit (LEO) satellites. In this paper, we demonstrate
through estimation simulations using multiple machine learning
algorithms that the proposed system can accurately estimate
the scale of terminal density within a target area. The results
confirm both the feasibility and the effectiveness of the proposed
approach.

Index Terms—LEO, Machine Learning, Smartphone, Wi-Fi,
Density Estimation, RSSI

I. INTRODUCTION

A. Background

In recent years, satellite communication has attracted grow-
ing attention as a means to enhance communication resilience
in the event of terrestrial infrastructure failure during natural
disasters, and as a complementary technology to overcome the
increasing difficulty of deploying dense base-station networks
in the 5G/6G era. Earth-orbiting satellites are classified by
altitude into Geostationary Earth Orbit (GEO, 36,000 km),
Medium Earth Orbit (MEO, 2,000–36,000 km), and Low
Earth Orbit (LEO, up to 2,000 km). GEO and MEO satellites
offer wide-area coverage and are widely utilized in systems
such as the Global Navigation Satellite System (GNSS) and
satellite broadcasting. In contrast, LEO satellites, owing to
their lower altitude, provide shorter propagation distances
and reduced latency, making them particularly suitable for
applications requiring high spatial resolution.

Building on these characteristics, numerous studies and
commercial deployments of wireless communication systems
using LEO satellites have emerged in recent years. Shayea et
al. [1] organized the challenges and opportunities associated
with the integration of LEO satellites with 5G/6G and IoT sys-
tems, emphasizing the societal value of LEO-based networks
capable of low-latency and high-resolution observation. Sim-
ilarly, Castro-Carrera et al. [2] conducted a systematic review

of LEO satellite services for IoT applications, showing that
their usage is expanding beyond communication to include
observation and monitoring purposes.

These studies demonstrate that LEO satellites possess
strong potential not only as communication relays but also as
independent, wide-area observational platforms. Particularly,
their ability to operate unaffected by ground-level damage dur-
ing disasters makes them highly effective for obtaining infor-
mation—such as population or terminal distribution—without
relying on terrestrial infrastructure.

B. Related Works

A variety of studies have investigated the use of LEO
satellites for wireless communication and sensing applications.
Dwivedi et al. [3] analyzed the performance of LEO satellite-
based IoT networks under interference and quantitatively
evaluated how terminal density and satellite altitude affect
communication quality. Zhang et al. [4] proposed a resource
optimization method for LoRa-based LEO IoT systems and
demonstrated the improved efficiency of satellite IoT com-
munications. These studies suggest that LEO satellites can be
effectively applied to large-scale sensing and ground terminal
observation.

In the terrestrial wireless sensing domain, numerous studies
have explored the estimation of crowd size or device count
using the RSSI. Janssens et al. [5] proposed a non-contact
crowd estimation method based on wireless sensor networks
(WSN) and demonstrated that the number of individuals can
be accurately classified from RSSI distributions. Similarly,
Zaidan et al. [6] estimated the number of people in indoor
environments using Wi-Fi RSSI measurements and achieved
reasonable accuracy even with a single receiver. Depatla et al.
[7] further investigated crowd counting using Wi-Fi signals
through walls, showing that spatial variations in received
power can be exploited as indicators of human presence.

While these studies demonstrate that spatial variations in
signal strength can serve as reliable indicators of population
or terminal density, they are all limited to terrestrial or indoor
environments. To the best of our knowledge, no prior work
has attempted to estimate the number of ground terminals
from a macroscopic, top-down perspective using LEO satellite
observations. This study aims to bridge this research gap
by proposing a novel estimation framework that leverages
RSSI data observed from LEO satellites and applies machine
learning techniques to estimate terminal density, even under
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Fig. 1: Concept of the proposed estimation system.

disaster conditions where terrestrial infrastructure is unavail-
able.

In previous work, the authors proposed a system to esti-
mate the number of smartphones by observing radio signals
received by LEO satellites and applying a regression func-
tion to RSSI data [8]. Furthermore, we have explored the
enhancement of estimation accuracy through the integration
of machine learning [9]. The proposed system relies solely
on RSSI measurements, offering the following advantages:

• It avoids privacy-related concerns, as it does not require
access to personally identifiable information.

• It operates independently of smartphone models or the
mobile carriers with which users are subscribed.

In this paper, we propose a method for estimating the
scale of mobile terminal density in a target area using ma-
chine learning. The effectiveness of the proposed method
was evaluated through simulations conducted in MATLAB.
Additionally, we performed verification using multiple ma-
chine learning algorithms to investigate whether the estimation
results vary depending on the algorithm employed and what
effects arise from combining multiple algorithms. The results
suggest the potential of the proposed system to estimate the
scale of UE density and indicate that the introduction of ma-
chine learning algorithms is effective for estimation, enabling
highly accurate scale estimation. Furthermore, to evaluate
whether the proposed system should include smartphones
located indoors as part of its target, we also conducted an
investigation into the signal attenuation characteristics of radio
wave propagation from indoor smartphones to aerial platforms
such as Unmanned Aerial Vehicles (UAV).

The remainder of this paper is organized as follows. Section
II describes the architecture of the proposed system, the
system model used for simulation, and the assumed use cases.
Section III presents the details of the MATLAB based simu-
lation conducted to validate the proposed estimation method,
including the simulation scenarios, the introduction of a 3D
city model, the implementation of an ideal antenna model,
parameters and the definition of evaluation metrics. Addition-
ally, this section includes an investigation into the propagation
characteristics of radio waves emitted from smartphones lo-
cated indoors. Section IV presents the results obtained from
the simulations and provides a comprehensive discussion.
Finally, Section V summarizes the paper and discusses future
directions.

II. SYSTEM OVERVIEW AND USE CASES

This section presents an overview of the proposed system
architecture, the system model used for simulation, and the as-
sumed use cases for the proposed terminal density estimation
system.

A. Architecture

Figure 1 illustrates the overview of the proposed terminal
density estimation system. In this system, a LEO satellite
continuously performs radio scanning while orbiting the Earth.
During this process, it observes radio signals emitted by
smartphones (hereinafter referred to as user equipment, or UE)
located on the ground and collects RSSI data.

When terrestrial communication infrastructure such as base
stations is operational, the number of UEs communicating
with base stations, along with GNSS and other positional data,
are used to associate the observed RSSI values with the actual
number of UEs present in a given target area. These data are
used as training samples for machine learning models. Once
trained, the system can estimate the number of UEs in a target
area using only RSSI data from LEO satellites, even when the
ground infrastructure is inoperative, such as during large-scale
natural disasters.

B. System Model

The system model used in the simulation consists of the
following components: a receiver simulating the LEO satellite,
transmitters simulating UEs, a 3D urban environment model,
and an ideal antenna model. UEs are randomly distributed in
outdoor locations within the 3D city model and emit radio
signals at random time intervals. These signals are observed
by a highly directional antenna mounted on a LEO satellite
orbiting at an altitude of 400 km.

Further details regarding the parameters, assumptions, and
configurations of each component are provided in Section III.

C. Use Cases

A primary use case of the proposed system is estimating the
number of disaster victims in affected areas during emergency
situations. When communication infrastructure becomes inop-
erable, it becomes difficult to assess how many people are in
need of rescue, which is critical for planning effective relief
operations. In such cases, the proposed system can offer a
valuable solution, as it leverages LEO satellites that remain
unaffected by ground-level damage caused by disasters such
as earthquakes.

Moreover, the smartphone penetration rate in Japan exceeds
90% [10], making it feasible to use the number of smartphones
in an area as a proxy for the number of individuals. The
proposed system can help identify regions requiring further
detailed investigation and enable coordination with other sys-
tems such as UAV-based surveys.

In addition to disaster response scenarios, the proposed
system can be utilized in peacetime situations. For instance,
when localized outages in communication infrastructure occur,
estimating the number of people in affected areas can assist in
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Fig. 2: 3D urban environment model(around Shibuya Station) in
MATLAB.

planning the deployment of mobile base stations. This high-
lights the versatility and broad applicability of the proposed
approach.

III. SYSTEM MODEL COMPONENTS AND SIMULATION
OVERVIEW

This section describes the simulation overview based on
the system model outlined in Section II, detailing the model
components, simulation scenario, parameter settings, and an
evaluation related to indoor terminals.

A. System Model Components

1) 3D Urban Environment Model: To reproduce a realistic
outdoor environment, a 3D building model was constructed
in MATLAB by importing OpenStreetMap (OSM) data. The
simulation targeted a 1 km2 urban area around Shibuya
Station in Tokyo, assuming it as a disaster-affected region.
The coordinates of the target area range from 35.65387° N to
35.66250° N in latitude and from 139.69364° E to 139.70608°
E in longitude. Figure 2 shows the corresponding 3D urban
model implemented in MATLAB. The constructed model
accurately reproduces the actual building environment and
includes elevation information, enabling precise calculation
of the propagation distance from UE to the LEO satellite and
evaluation of the corresponding path loss.

2) Antenna Model: Due to the large propagation distance
between the LEO satellite and the user equipment UE, signif-
icant path loss occurs. Therefore, the antenna mounted on the
LEO satellite must exhibit high gain to compensate for this
loss. Additionally, to achieve high spatial resolution within the
target area, the antenna is required to have high directivity.

In this study, we adopt an ideal directional antenna model
whose gain is defined by the following equation [11]:

G = α

∣∣∣∣∣
sin

(
k π

2ϕrad

)
k π

2ϕrad

∣∣∣∣∣− β [dBi] (1)

ϕrad =
180(ϕdeg − 90)

π
[rad] (2)

Fig. 3: Antenna pattern for simulation.

In this model, α determines the maximum antenna gain,
k controls the sharpness of the peak (i.e., beamwidth), and β
represents a gain offset. Figure 3 illustrates the antenna pattern
defined by this model.

For the simulation, we set the constants to α = 60, k = 240,
and β = 15 such that the antenna’s half-power beamwidth
corresponds approximately to the coverage of a 1 km2 target
area [12].

The formulation in (2) shows that the antenna gain is
maximized when the UE is located directly beneath the LEO
satellite.

3) LEO and UE Configuration: The LEO satellite is
modeled as a receiver equipped with the directional antenna
described in Section III-A.2 and is positioned at an altitude
of 400 km directly above the area defined in Section III-A.1.

UE is modeled as a transmitter equipped with an omnidi-
rectional antenna, assuming an antenna gain of 0 dBi. UEs
are placed exclusively in outdoor locations within the target
area. The rationale for restricting UEs to outdoor settings is
discussed later in Section III-C.

The transmission frequency used by the UEs is set to the
5.6 GHz band, which is legally permitted Wi-Fi band for
outdoor use in Japan [13].

B. Simulation Overview

The simulation conducted in this study is based on the
following scenario:

1) Between 1 and 500 UEs are randomly distributed in
the target area, each emitting a signal with a power
of 10 dBm at 5.6 GHz, at randomly assigned time
instances.

2) A LEO satellite orbits at an altitude of 400 km and
observes the radio signals as it passes over the target
area.

3) Each UE transmits at least once during the observation
window of the LEO satellite.

4) The LEO satellite is capable of performing beamform-
ing toward the target area.
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Fig. 4: Flowchart of dataset generation.

5) The LEO satellite conducts repeated observations re-
gardless of whether the ground communication infras-
tructure is functional. During normal operation, the
system collects both RSSI values and the number of
connected UEs (via base stations and GNSS), and stores
them as training data. In failure scenarios (e.g., post-
disaster), only RSSI is available, and the stored training
data is used to estimate the number of terminals in the
area.

To simplify the simulation, the following assumptions are
made:

• The receiving antenna is assumed to be circularly polar-
ized, allowing reception of both horizontally and verti-
cally polarized signals.

• Only free-space path loss calculated by Friis propagation
formula [14] and a 3 dB attenuation due to polarization
mismatch are considered as losses.

• The observation time is assumed to be the instant when
the LEO satellite is directly above the center of the target
area.

The estimation accuracy for terminal density is defined as
follows:

• The number of UEs is categorized into three groups:
small-scale (1–150 devices), medium-scale (151–350 de-
vices), and large-scale (351–500 devices).

• If the predicted group matches the actual group, the esti-
mation is considered successful. The ratio of successful
estimations over the total number of trials is used as the
performance metric.

Figure 4 shows the flowchart representing the process for
generating the simulation dataset.

C. Indoor Terminal Evaluation

To examine whether the proposed system can also cover
indoor terminals, we investigated the attenuation character-
istics of radio wave propagation from indoor to outdoor

Fig. 5: Indoor to outdoor propagation loss model.

Fig. 6: Indoor-to-Outdoor Total Path Loss vs Frequency (1–10 GHz).

environments. The loss model constructed for this study is
illustrated in Fig. 5.

The total loss model consists of the following three com-
ponents:

1) Indoor Diffusion and Distance Loss: [15]
According to ITU-R Recommendation P.1238, signal at-

tenuation in indoor environments across frequencies from
900 MHz to 100 GHz is primarily caused by signal diffusion
and distance-dependent loss. For transmissions from non-top
floors, additional floor penetration loss is also considered. The
indoor propagation loss L is given by:

L = 20 log10 f +N log10 d+ Lf (n)− 28 [dB] (3)

where f is the frequency [MHz], N is the distance power
loss coefficient, d is the propagation distance [m], Lf (n) is
the floor penetration loss [dB], n is the number of floors
penetrated, and 28 is an offset such that L = 0 when
f = 1 MHz and d = 1 m.

2) Wall Penetration Loss: [16]
When radio waves exit a building, additional attenuation

occurs as the signal penetrates the wall. ITU-R Recommen-
dation P.2109-2 provides a method to compute this building
entry loss (BEL), which is expressed as:

LBEL(P ) = 10 log10

(
100.1A(P ) + 100.1B(P ) + 100.1C

)
[dB]
(4)
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Here, f is the frequency [GHz], P is the probability that
the actual loss does not exceed the calculated value, and C is
a correction constant. A(P ) and B(P ) depend on the building
material and require complex intermediate calculations, which
are omitted in this paper. For full details, refer to ITU-R
P.2109-2 [16].

3) Free-Space and Atmospheric Loss: [14]
Outdoor propagation loss includes free-space path loss and

atmospheric attenuation. In this study, free-space path loss
is computed using Friis’ transmission formula. Atmospheric
attenuation is negligible below 10 GHz and thus is not
considered in our evaluation [17].

4) Numerical Evaluation of Indoor-to-Outdoor Loss:
Based on the models in Sections III-C.1 to C.3, we performed
numerical evaluations to estimate the total loss incurred when
signals propagate from indoor terminals to the outdoor envi-
ronment. The evaluation results are presented in Fig. 6.

The simulation conditions are as follows:
• Frequency range: 1–10 GHz
• Building is single-story or the transmitter is located on

the top floor (no floor penetration loss)
• Signal exits through a typical glass window
• Incidence angle on the window is 60 degrees
• Probability P that actual loss does not exceed the calcu-

lated value is set to 0.5
• Indoor propagation distance: 5 m; Outdoor distance: 50 m
The total path loss curve shown in Fig. 6 is generally mono-

tonically increasing; however, a slight inflection is observed
around the 5 GHz. This anomaly arises from the discrete
switching of the coefficient N used in the indoor distance
loss model, defined in equation (3), for each frequency band,
as adopted in Section III.C.1.

As shown in Fig. 6, signal propagation from indoor to
outdoor environments in the 1–10 GHz frequency range incurs
significant attenuation, exceeding 140 dB. Since the proposed
system utilizes LEO satellites, the additional free-space path
loss further increases the overall attenuation when compared
to terrestrial receivers.

Given these findings, it is reasonable to limit the scope of
the current study to outdoor terminals only. In practical use
cases, it would be effective to utilize the proposed system
to obtain a coarse estimate of terminal distribution, and then
perform more detailed assessments using systems capable of
closer-range observations, such as UAV-based platforms.

IV. SIMULATION RESULTS AND DISCUSSION

Using average RSSI data, we performed terminal density
group classification through multiple machine learning meth-
ods. The classification results are shown in Figs. 7 and 8.

All machine learning models employed in this study were
implemented using built-in MATLAB commands. The param-
eters for each model are listed below. Some parameter tuning
was supported by OpenAI’s GPT-5.1 model.

1) Decision Tree Regression (Tree)
• Uses all training data

• Maximum of 100 splits (nodes)
2) Random Forest (RF)

• Uses all training data
• 100 trees with random sampling
• Maximum of 8 splits per tree

3) Gradient Boosting (GB)
• Uses all training data
• 250 boosting stages
• Learning rate: 0.05
• Maximum of 8 splits per tree

4) Support Vector Machine (SVM)
• Uses 5000 training data
• Radial Basis Function (Gaussian) kernel

5) XGBoost (XGB)
• Uses all training data, with target variable p trans-

formed to log(1 + p)
• 350 boosting stages
• Learning rate: 0.03
• Maximum of 12 splits per tree

6) Multilayer Perceptron (MLP)
• Uses all training data
• One hidden layer with 50 nodes
• 50 training iterations

The mixed model(Mix) applies a weighted stacking of the
six models mentioned above (Tree, RF, GB, SVM, MLP,
XGB) with weights w = [0.06, 0.06, 0.25, 0.18, 0.15, 0.30].
The weights were optimized using nonlinear least squares on
the training dataset.

Figure 7 shows the accuracy of group classification for
small-scale (1–150 UEs), mid-scale (151–350 UEs), and
large-scale (351–500 UEs) when each model is applied. All
six machine learning algorithms and the mixed model(Mix)
achieved classification accuracy of 85% or higher, with most
reaching approximately 90%. This result suggests that the
proposed system has strong potential to estimate terminal
density within target areas from LEO satellite observations
with high accuracy. However, two main challenges were also
identified. First is the method for selecting machine learning
models. As shown in Fig. 7, while RF demonstrates superior
results compared to other models in the mid-scale range
(151–350 UEs), it shows the lowest accuracy in the large-scale
range (351–500 UEs). Although there are differences among
models, the largest difference is approximately 5%, indicating
that the six machine learning algorithms and the Mix model
yield nearly identical estimation results. In other words, while
high-accuracy results can be expected regardless of which
model is used, further validation is necessary to select the
best model for all cases. The second challenge is improving
estimation accuracy near group boundaries. Figure 8 shows
the relationship between the true number of UEs and group
classification success rate, revealing a significant drop in
success rate near 150 and 350 units where groups transition.
This is clearly the cause of degraded classification accuracy
and requires countermeasures in the future.
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Fig. 7: Classification accuracy.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a system for estimating the
density of ground-based mobile terminals by leveraging LEO
satellite observations and machine learning. Although the
simulation included several simplifying assumptions, the six
machine learning models and the mixed model evaluated in
this study achieved scale classification accuracy ranging from
a minimum of 85% to a maximum of 95%, suggesting the
feasibility and effectiveness of the proposed system.

However, the current study is limited in that the num-
ber of UEs was capped at 500 due to computational con-
straints. Further evaluation is necessary for scenarios involving
larger numbers of terminals. Additionally, future work will
address several remaining challenges, including the consid-
eration of interference from terminals located outside the
target area, development of an estimation model capable of
handling any scenario, improvement of estimation accuracy
near group boundaries, and the integration of complementary
systems—such as UAV-based short-range observation plat-
forms—for real-world deployments.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 24K00940. The authors would also like to express their
sincere gratitude to the Satomi Scholarship Foundation.

REFERENCES

[1] I. Shayea, A. A. El-Saleh, M. Ergen, B. Saoud, R. Hartani, D. Turan, and
A. Kabbani, “Integration of 5G, 6G and IoT with Low Earth Orbit (LEO)
networks: Opportunity, challenges and future trends,” Results in Engi-
neering, vol. 23, p. 102409, 2024, doi: 10.1016/j.rineng.2024.102409.

[2] A. Castro-Carrera, “A systematic review of LEO satellite services for
IoT,” Multidisciplinary Reviews, vol. 8, no. 3, p. 2025083, 2024, doi:
10.31893/multirev.2025083.

[3] A. K. Dwivedi, S. Chaudhari, N. Varshney, and P. K. Varshney, “Per-
formance analysis of LEO satellite-based IoT networks in the presence
of interference,” IEEE Internet of Things Journal, vol. 11, no. 5, pp.
8783–8799, Mar. 2024, doi: 10.1109/JIOT.2023.3321574.

Fig. 8: Classification success rate vs Number of UE.

[4] C. Zhang, H. Peng, Y. Ji, T. Hong, and G. Zhang, “Adaptive re-
source optimization for LoRa-enabled LEO satellite IoT system in high-
dynamic environments,” Sensors, vol. 25, no. 11, p. 3318, 2025, doi:
10.3390/s25113318.

[5] R. Janssens, E. Mannens, R. Berkvens, and S. Denis, “Device-free crowd
size estimation using wireless sensing on subway platforms,” Applied
Sciences, vol. 14, no. 20, p. 9386, 2024, doi: 10.3390/app14209386.

[6] H. M. Zaidan, E. A. Mohammed, and D. H. Alhelal, “Estimation of the
number of people in an indoor environment based on WiFi received signal
strength indicator,” Bulletin of Electrical Engineering and Informatics,
vol. 10, no. 3, pp. 1473–1481, Jun. 2021, doi: 10.11591/eei.v10i3.3038.

[7] S. Depatla and Y. Mostofi, “Crowd counting through walls using WiFi,”
Proc. IEEE Int. Conf. Pervasive Comput. Commun. (PerCom), Athens,
Greece, pp. 1–10, 2018, doi: 10.1109/PERCOM.2018.8444589.

[8] F. Noda and G. K. Tran, ”Proposal of LEO Based Popula-
tion Estimation System Using Smartphone Emitted WLAN signals,”
2024 IEEE 21st Consumer Communications & Networking Confer-
ence (CCNC), Las Vegas, NV, USA, 2024, pp. 1080-1081, doi:
10.1109/CCNC51664.2024.10454793.

[9] F. Noda and G. K. Tran, ”Study on Estimation Method of the Number
of Smartphones on the Ground Assuming Observation from Low Earth
Orbit Satellites,” IEICE Technical Report, SR2025-7, vol. 125, no. 52,
pp.21-22, Jun. 2025.

[10] Ministry of Internal Affairs and Communications (in Japan), ”In-
formation and Communication White Paper, 2023 Edition,” pp.137,
accessed 30.Jul.2025. [Online]. Available: https://www.soumu.go.jp/
johotsusintokei/whitepaper/ja/r05/pdf/00zentai.pdf

[11] C.Balanis, ”Antenna Theory: Analysis and Design,” John Wiley & Sons,
pp.575-602, 2016.

[12] E. Kang, Y. Park, J. Kim, and H. Choo, ”Downlink Analysis of a
Low-Earth Orbit Satellite Considering an Airborne Interference Source
Moving on Various Trajectory,” Remote Sensing, vol. 16, no. 2, p. 321,
Jan. 2024, doi: 10.3390/rs16020321.

[13] Ministry of Internal Affairs and Communications (in Japan), Radio Use
Portal, ”Outdoor/aerial use of wireless LAN,” accessed 30.Jul.2025. [On-
line]. Available: https://www.tele.soumu.go.jp/j/sys/others/wlan outdoor/

[14] H. T. Friis, ”A Note on a Simple Transmission Formula,” in Proceedings
of the IRE, vol. 34, no. 5, pp. 254-256, May 1946, doi: 10.1109/JR-
PROC.1946.234568.

[15] International Telecommunication Union, ”Propagation data and predic-
tion methods for the planning of indoor radiocommunication systems and
radio local area networks in the frequency range 900 MHz to 100 GHz,”
Recommendation ITU-R P.1238-7, Feb. 2012.

[16] International Telecommunication Union, ”Prediction of building entry
loss,” Recommendation ITU-R P.2109-2, Aug. 2023.

[17] L. Luini and C. G. Riva, ”A Simplified Model to Predict Oxygen
Attenuation on Earth-Space Links,” in IEEE Transactions on Antennas
and Propagation, vol. 65, no. 12, pp. 7217-7223, Dec. 2017, doi:
10.1109/TAP.2017.2765541.

314


