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Abstract—Cell-free massive MIMO (CF-mMIMO) emerges as
a promising architecture for next-generation wireless networks,
featuring geographically distributed access points (APs) that col-
lectively serve users without traditional cell boundaries. However,
it faces significant inter-AP interference in overlapping coverage
areas, which degrades performance and limits spectral efficiency.
Conventional solutions either employ computationally prohibitive
centralized cooperation schemes or operate APs independently
without cooperation, resulting in suboptimal interference miti-
gation. We introduce a novel framework utilizing multi-agent
deep reinforcement learning (MADRL) to enable intelligent AP
cooperation without requiring centralized control for interfer-
ence mitigation. The framework incorporates a threshold-based
cooperation mechanism that allows APs to autonomously identify
high-impact cooperation opportunities while avoiding unneces-
sary resource consumption. Each AP deploys an independent
Double Deep Q-Network (DDQN) agent that dynamically learns
optimal cooperation strategies through environmental interaction
and interference-aware reward mechanisms. Extensive simulation
validates the efficacy of this method, which achieves an average
SINR of 9.48 dB and a sum rate of 134.6 bps/Hz while
utilizing 61.2% fewer cooperation links compared to centralized
benchmarks. The intelligent cooperation strategy yields 2.73×
higher efficiency than exhaustive cooperation methods while
maintaining acceptable user fairness across the network. These
results establish MADRL as a practical and effective solution for
enabling intelligent interference mitigation in future generation
wireless networks.

Index Terms—massive MIMO, Cell Free, Interference Man-
agement, Multi Agent DRL, DDQN

I. INTRODUCTION

The relentless demand for ubiquitous high-speed connec-
tivity has driven the evolution of wireless network architec-
tures beyond traditional cellular boundaries. Cell-Free massive
Multiple-Input Multiple-Output (CF-mMIMO) has emerged
as a promising technology that achieves this by deploying a
distributed network of access points (APs) that cooperatively
serve users. This architectural shift provides seamless connec-
tivity and collectively enhances both spectral efficiency and
coverage uniformity across geographical regions [1], [2].

However, a critical challenge in CF-mMIMO systems is
managing the inherent inter-AP interference, which becomes
particularly severe in dense network deployments. A user
receives a desired signal from its serving APs while simulta-
neously experiencing interference from all other transmitting
APs. This is most problematic in regions where AP coverage

areas overlap, creating interference-limited zones that compro-
mise system performance and user experience.

To address this interference challenge, CF-mMIMO systems
require cooperation mechanisms that balance performance op-
timization with practical implementation constraints. Current
implementation strategies have evolved into two primary ap-
proaches: centralized architectures where a Central Processing
Unit (CPU) handles all cooperation decisions, and distributed
architectures where individual APs make local optimization
decisions independently. Each approach presents distinct trade-
offs between interference management effectiveness and sys-
tem scalability.

Centralized architectures employ a CPU to handle all signal
processing tasks, including user cluster formation, resource
allocation, and precoding computation, while APs function pri-
marily as relay nodes implementing CPU-generated decisions
[3], [4]. While this approach achieves superior interference
management through global network visibility, it suffers from
computational bottlenecks that scale poorly with network size,
fronthaul bandwidth constraints, and single points of failure
that compromise system resilience.

Conversely, distributed architectures shift processing re-
sponsibilities to individual APs, with the CPU handling only
data routing and high-level cooperation [5], [6]. This approach
addresses scalability concerns but introduces a critical cooper-
ation gap: each AP optimizes locally while remaining oblivi-
ous to its interference impact on neighboring APs. Traditional
precoding techniques, such as minimum mean square error
(MMSE), effectively mitigate intra-AP interference among co-
served users but leave inter-AP interference fundamentally
unaddressed [7]–[9].

The inter-AP interference challenge intensifies in dense CF-
mMIMO deployments where AP coverage areas frequently
overlap, as illustrated in Fig. 1. Without direct AP-AP cooper-
ation mechanisms, interfering transmissions from non-serving
APs can severely degrade user experience. This unmanaged
interference represents a critical performance bottleneck that
existing distributed architectures fail to address effectively.

Recent developments in machine learning, especially deep
reinforcement learning (DRL), demonstrate potential for adap-
tive network optimization. Nevertheless, current ML-based
methods generally address individual challenges like power
control, energy efficiency, or user association [10]–[12], cre-
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ating a research gap regarding intelligent AP cooperation.

Fig. 1. Cell Free Massive MIMO Setup

Current research on AP cooperation in CF-mMIMO systems
typically adopts an all-or-nothing approach: either full central-
ized control or complete AP independence. Although some
studies mention AP-to-AP cooperation, they do not provide a
practical framework for its implementation, instead assuming
it happens automatically. These non-selective strategies gener-
ate substantial overhead because interference levels are highly
variable and dynamic. Our core insight is that mitigating all
interference isn’t necessary. In many scenarios, interference is
naturally low, or the effort required to reduce it is greater than
the resulting performance benefit. Consequently, we introduce
a threshold-based selective AP cooperation method, enabling
APs to cooperate only when interference surpasses a specific
limit. This strategy significantly reduces system overhead
while focusing interference control precisely where it’s most
impactful.

We present a novel framework for selective AP collabo-
ration in distributed CF-mMIMO systems using multi-agent
deep reinforcement learning (MADRL). The proposed frame-
work enables direct, autonomous AP-to-AP cooperation, by-
passing CPU mediation and directly addressing the scalability-
performance trade-off that limits current architectures. Each
AP functions as an independent learning agent, continuously
monitoring its local interference environment to make intelli-
gent, adaptive cooperation decisions based on learned policies.
This approach, centered on a threshold-adaptive cooperation
protocol, offers several key contributions:

• Autonomous & Adaptive cooperation: Each AP inde-
pendently learns and dynamically adjusts its cooperation
strategy based on local observations, eliminating central-
ized bottlenecks.

• Interference-Aware Selectivity: Cooperation is initiated
solely when interference mitigation benefits outweigh
communication overheads, optimizing network resource
utilization.

• Scalable Distributed Architecture: Enables practical de-
ployment in large-scale networks via direct AP-AP com-
munication, preserving cooperation effectiveness without
reliance on centralized control.

The organization of this manuscript is outlined below: Section
II details the system model and problem setup. Section III
describes the proposed framework, while Section IV evaluates
performance. The study concludes in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a distributed CF-mMIMO system with M APs,
each equipped with L antennas, serving K single-antenna
users. The system operates using time-division duplex with
coherence block length τc = τp+τu+τd, allocating τp and τu
symbols for uplink pilot and data transmission and τd symbols
for downlink data communication.

A. Channel Modeling and User-Centric Clustering

Using the composite fading model, we define the complex
channel vector connecting AP m to user k as follows:

hm,k =
√
βm,kgm,k (1)

where βm,k captures large-scale propagation effects including
path loss and shadowing, while gm,k ∼ CN (0, IL) represents
small-scale fading between AP m and user k.

To maintain scalability, we employ user-centric clustering,
in which a subset of APs Mk with the strongest channel serve
each user k [5]. The serving AP set for user k is defined as:

Mk = {m : βm,k ≥ δ · max
m′=1,...,M

βm′,k} (2)

where δ ∈ (0, 1] is a threshold parameter controlling cluster
size. Correspondingly, the user set served by AP m serves user
subset Km = {k : m ∈ Mk}.

B. Channel Estimation

In the uplink training phase, each user k transmits pilot
symbols ϕk ∈ Cτp with power ρp. The received pilot signal
at AP m m from all users is:

Ym =
√
ρp

K∑
k=1

hm,kϕ
T
k +Nm (3)

where Nm ∈ CL×τp contains additive white gaussian noise
samples. The MMSE channel estimator at AP m yields [13]:

ĥm,k =

√
ρpτpβm,k

ρpτp
∑

j∈K βm,j |ϕH
j ϕk|2 + σ2

ym,k (4)

Based on ĥm,k, AP design precoding vector wm,k and
allocate power for downlink communication.

C. Downlink Signal Model and Interference Characterization

During downlink transmission, each AP m forms a com-
posite signal for its served users:

xm =
∑

k∈Km

√
ρm,kwm,ksk (5)

where ρm,k is transmit power, wm,k is the normalized precod-
ing vector, and sk represents the data symbol for user k with
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E[|sk|2] = 1. The received signal at user k is the superposition
of signals from multiple APs:

yk =
�

m∈Mk

√
ρm,kh

H
m,kwm,ksk

� �� �
desired signal

+
�

m∈Mk

�
j∈Km
j ̸=k

√
ρm,jh

H
m,kwm,jsj

� �� �
intra-AP interference

+
�

m/∈Mk

�
j∈Km

√
ρm,jh

H
m,kwm,jsj

� �� �
inter-AP interference

+nk (6)

where nk ∼ CN (0, σ2) represents additive noise.
A critical insight is that inter-AP interference originates

from neighboring APs not serving a particular user, k. To
quantify interference coupling between APs, we define the
average interference power that AP n causes to users served
by AP m as:

Im,n =
1

|Km|
�

k∈Km


 �

j∈Kn

ρn,j |hH
n,kwn,j |2


 (7)

This interference metric enables APs to assess the mutual
impact of their transmission strategies and forms the foun-
dation for intelligent cooperation decisions in our proposed
framework.

D. Problem Formulation

Driven by the need to manage interference in CF networks,
our objective is to develop an intelligent AP cooperation
framework that optimizes system performance and minimizes
coordination overhead. We formulate this as a multi-objective
optimization problem:

max
{πm}

E

�
K�

k=1

log2(1 + SINRk)

�
− λ

M�
m=1

�
n∈Nm

am,n (8)

where πm represents AP m’s cooperation policy, Nm denotes
neighboring APs with significant interference coupling, and
am,n is the binary cooperation indicator incurring cooperation
cost λ. The signal-to-interference-plus-noise ratio (SINR) for
user k is:

SINRk =
|
�

m∈Mk

√
ρm,kh

H
m,kwm,k|2�

j ̸=k |
�

m∈Mj

√
ρm,jhH

m,kwm,j |2 + σ2
(9)

III. PROPOSED MULTI-AGENT DEEP REINFORCEMENT
LEARNING FRAMEWORK

This section introduces the proposed MADRL methodology
designed to address inter-AP interference challenges through
multi-AP cooperation. The developed MADRL approach es-
tablishes a natural correspondence with the distributed CF-
mMIMO network topology, wherein individual APs operate
as independent intelligent agents. We first outline the agent

design fundamentals, including state representation, action
spaces, and reward mechanisms, followed by the MADRL-
Double Deep Q-Network (DDQN) learning framework imple-
mentation.

1) Agent Design and State Representation: Each AP m acts
as an independent agent. At each time step t, agent m observes
a local state vector sm:

sm = [βm, Im,Cm,Tm] (10)

where βm = {βm,k : k ∈ Km} represents the large-
scale fading coefficients between AP m and served users.
Im = {Im,n1

, Im,n2
, . . .} represents normalized interference

level vector, Cm represents current binary vector indicating
cooperation status with neighbors, and Tm represents histor-
ical cooperation effectiveness.

2) Action Space and Neighbor Selection: For computa-
tional tractability, each AP considers cooperation only with
high-interference neighbors:

Nm = {n : Im,n > γth} (11)

Agent m’s action am ∈ {0, 1}|Nm| is a binary vector, where
am,n = 1 signifies cooperation with AP n. The total number of
distinct actions is 2|Nm|, representing all possible cooperation
combinations within its neighbor set, from which the agent
selects one action per time step. The cooperation decisions
determine cluster formation where cooperating APs {m,n :
am,n = 1} jointly process their common users.

3) Reward Function: The reward function rm for AP m
balances performance improvement against cooperation over-
heads:

rm = α1

∑
k∈Km

R
coop
k −Rbaseline

k∑
k∈Km

Rbaseline
k

−α2

∑
n∈Nm

am,n−α3

∑
n∈Nm

Im,n·am,n

(12)
where Rcoop

k and Rbaseline
k are rates with and without coopera-

tion. The third term encourages the agent to prioritize forming
partnerships that tackle the most severe interference, maxi-
mizing the marginal utility of cooperation, and coefficients
α1, α2, α3 serve as tunable weights.

A. Double Deep Q-Network Implementation

Each AP implements an independent DDQN agent for learn-
ing cooperation policies. We selected DDQN to mitigate the
overestimation bias present in standard DQN, while leveraging
its dual-network structure for enhanced data efficiency and
stable exploration. The online Q-network (Qmain) handles ac-
tion selection, whereas the target Q-network (Qtarget) provides
stable value estimates. Our implementation employs three fully
connected layers (128-64-32 neurons) with ReLU activations
and dropout regularization. Experience replay buffers are uti-
lized to improve sample efficiency.

The DDQN target computation for bias reduction follows:

Yj = rj + γQtarget

�
sj+1, argmax

a′
Qmain(sj+1,a

′; θ), θtarget

�

(13)
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where Qmain selects actions while Qtarget evaluates their values,
effectively decoupling these operations to reduce overestima-
tion. We optimize the online network weights using MSE
loss with Adam optimizer against these computed targets. The
target network parameters are updated periodically to maintain
training stability.The DDQN architecture is shown in Fig. 2.

Fig. 2. DDQN Architecture

B. Cooperative Precoding

When APs decide to cooperate based on their learned
policies, they form dynamic clusters for joint interference
management. A cooperative cluster C consists of a set of
APs that have mutually agreed to cooperate. APs not in any
such cluster operate independently. For a cooperative cluster C,
the member APs perform joint regularized zero-forcing (RZF)
precoding to suppress inter-cluster interference for the set of
all users they serve, KC =

⋃
m∈C Km.

First, for each user k ∈ KC , the joint channel vector from
the cluster is constructed by vertically stacking the individual
AP-user channel vectors:

hC
k = [hT

m1,k,h
T
m2,k, . . . ,h

T
m|C|,k

]T ∈ C|C|L×1 (14)

where {m1, . . . ,m|C|} is the set of APs in C. The composite
channel matrix for the entire cluster, HC , is then formed by
horizontally concatenating the joint channel vectors of all users
in KC :

HC = [hC
k1
,hC

k2
, . . . ,hC

k|KC|
] ∈ C|C|L×|KC| (15)

The joint RZF precoding matrix for the cluster is then
computed as:

WC = HH
C (HCH

H
C + αI)−1 (16)

where α > 0 is the regularization parameter. The j-th column
of WC , denoted wC

kj
, represents the joint precoding vector for

user kj .
To find the individual precoding vector wm,k for user k at

a specific AP m ∈ C, we extract the relevant L-dimensional
segment from the joint vector wC

k . To do this robustly, we
define idx(m, C) as the 1-indexed position of AP m within a
predetermined, ordered list of the APs in C. The block of rows

corresponding to AP m can then be identified and extracted.
The final normalized precoding vector is:

wm,k =
[wC

k ]L(idx(m,C)−1)+1:L·idx(m,C)

∥[wC
k ]L(idx(m,C)−1)+1:L·idx(m,C)∥

(17)

For non-cooperating APs (i.e., those in a cluster of size
one), standard maximum ratio transmission (MRT) precoding
is employed as a baseline:

wm,k =
ĥm,k

∥ĥm,k∥
(18)

IV. PERFORMANCE EVALUATION

A. Simulation Setup

We evaluate the proposed MADRL framework through
extensive MATLAB simulations. Table I summarizes the key
system parameters, which are selected to represent realistic
CF-mMIMO scenarios.

TABLE I
SYSTEM SIMULATION PARAMETERS

Parameter Value
Number of APs (M ) 100
Number of users (K) 40
Antennas per AP (L) 4
Coverage area 1000 m × 1000 m
Maximum serving APs per user 5
Maximum neighbors per AP 4
Interference threshold (γth) 0.05 × max(IAP )
Coherence block length (τc) 200 symbols
Pilot training duration (τp) 10 symbols
AP transmit power 1000 mW
Noise figure 7 dB

B. Multi-Agent DRL Implementation

Each agent employs DDQN with architecture: input layer
(state dimension), hidden layers (128→64→32 neurons with
ReLU), and output layer (Q-values for all actions). Training
employs an ϵ-greedy exploration strategy with adaptive decay,
while target networks are updated every 10 episodes for
learning stability. A summary of the associated configuration
parameters is provided in Table II.

TABLE II
MULTI-AGENT DRL CONFIGURATION

DRL Parameter Value/Setting
Agent Type Double Deep Q-Network (DDQN)
Network Architecture 128-64-32 neurons
Activation Function ReLU
Regularization Dropout (0.1)
Experience Buffer Size 1000 transitions
Mini-batch Size 32
Target Update Frequency 10 episodes
Learning Rate 0.001
Discount Factor (γ) 0.95
Initial Exploration (ϵ) 0.8
Final Exploration (ϵmin) 0.01
Exploration Decay 0.005
Training Episodes 200
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C. Benchmark Methods

We compare our proposed MADRL-based cooperation with
two benchmarks: No cooperation, which involves traditional
distributed processing without any direct AP-AP cooperation,
and Centralized CPU-based full cooperation, where the CPU
manages complete cooperation with global CSI for all APs.

D. Results and Discussion

Fig. 3. DRL Training Convergence Analysis

Fig. 3 illustrates the evolution of cooperation rates through-
out the 200-episode training process. The learning curve
exhibits three distinct phases. An initial exploration phase
(episodes 1–70) shows the rate fluctuating between 65–75% as
agents explore various strategies. In the subsequent transition
phase (episodes 71–100), the rate decreases to 50–60%. Fi-
nally, the convergence phase (episodes 101–200) demonstrates
a stabilization of the cooperation rate at 55–58%. This pattern

Fig. 4. SINR Performance Comparison

shows that agents learn to selectively cooperate, which yields
better long-term rewards than indiscriminate cooperation.

Fig. 4 presents average SINR performance across three
methods. No-cooperation achieves 8.48 dB baseline, central-
ized cooperation improves to 9.43 dB (0.95 dB gain), while
DRL achieves 9.48 dB, slightly outperforming centralized
methods by 0.05 dB in fully distributed operation. This
demonstrates that intelligent cooperation can match centralized
performance, with DRL’s edge indicating learned policies may
avoid interference-inducing decisions challenging for central-
ized controllers in dynamic environments.

Fig. 5. Sum Rate Comparison

Fig. 5 examines sum rate performance for system spec-
tral efficiency. No-cooperation yields 122.0 bps/Hz, central-
ized cooperation achieves 133.7 bps/Hz, while DRL attains
134.6 bps/Hz, representing 10.3% improvement over baseline.
Centralized cooperation requires 500 links (efficiency: 0.023
bps/Hz/link) while DRL achieves superior performance with
only 194 links (efficiency: 0.065 bps/Hz/link). This 2.8× effi-
ciency advantage shows DRL learns high-impact cooperation
opportunities while avoiding redundant links.

Fig. 6. Cooperation Overhead vs Efficiency Trade-off
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Fig. 6 highlights the trade-off between cooperation overhead
and system efficiency. The grouped bar chart illustrates the
differences in resource utilization between centralized and
DRL approaches. Centralized cooperation establishes 500 co-
operation links with an efficiency of 19.06 scaled units, while
DRL achieves 51.95 scaled units with only 194 links. This
visualization demonstrates the core advantage of the proposed
approach: DRL learns to achieve superior performance through
intelligent selectivity rather than exhaustive cooperation. The
61.2% reduction in cooperation links translates directly to
reduced fronthaul bandwidth requirements, lower computa-
tional complexity at central processing units, and improved
system scalability. The DRL approach essentially discovers
that strategic, targeted cooperation can outperform brute-force
cooperation strategies.

Fig. 7. User Fairness and Distribution Analysis

Fig. 7 presents user SINR cumulative distribution, re-
vealing fairness characteristics across cooperation strategies.
No cooperation (dashed black) shows dispersed distribution
with significant low-SINR users, while centralized cooperation
(solid blue) improves fairness by shifting toward higher values.
DRL (dashed red) closely matches centralized performance,
particularly in the critical 8-12 dB range where most users
operate, maintaining satisfactory service quality without de-
grading worst-case performance. This comprehensive evalua-
tion validates the proposed MADRL approach effectiveness.

V. CONCLUSION

We proposed a multi-agent deep reinforcement learning
approach for AP cooperation in cell-free massive MIMO
networks. Our method utilizes distributed DDQN agents to
make selective cooperation decisions, effectively managing
inter-AP interference without centralized control. Simulation
results show significant performance gains, achieving a 9.48
dB average SINR and a 134.6 bps/Hz sum rate with 61.2%
fewer cooperation links than centralized schemes. This trans-
lates to 2.73× better efficiency, demonstrating that intelligent

cooperation selection outperforms both non-cooperative op-
eration and comprehensive centralized coordination. The key
insight is that not all cooperation is beneficial - our DDQN
agents learn to identify high-impact cooperation opportunities
while avoiding redundant links. Future work will investigate
continuous cooperation strategies using advanced DRL algo-
rithms with a continuous action space for even finer-grained
interference control in dense networks.
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