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Abstract—With the rapid expansion of legal and illegal activi-
ties using unmanned aerial vehicles (UAVs), the UAV incidents in
the unarmed population are gradually increasing. To prevent the
damage from such UAV incidents for the public facility, jamming
over the communication between UAVs and their remote control
is a cost-effective solution. However, modern UAVs are enabled
to inherently reduce susceptibility to interference. Specifically,
they are installed with frequency hopping signals that make a
huge challenge for efficient jamming owing to the narrowband
transmissions and rapid frequency changes. Therefore, it is
necessary to develop an agile model that precisely and rapidly
predicts parameters of frequency hopping signals to improve the
jamming efficiency. This study presents a deep reinforcement
learning framework capable of predicting future time-frequency
locations of the signals. In particular, a deep deterministic policy
gradient (DDPG) algorithm is developed and trained on empirical
signal data collected from drone DJI Mavic 3 Pro. A novel reward
function is introduced that evaluates prediction accuracy by
combining the results of time and frequency predictions. Training
results indicate a high fidelity of signal forecasting, achieving
an excellent mean score that significantly converges with low
standard deviation.

Index Terms—Frequency hopping, reinforcement learning, un-
manned aerial vehicles.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have become a dominant
category of unmanned systems, with numerous applications
in various areas such as search and rescue, logistics, and
environmental monitoring [1]–[3]. Unforunately, the increas-
ing of UAV incidents in public areas motivates jamming
solutions. While UAVs are typically and remotely operated,
they depend on a wireless link with command and control
(C2) signals that are also known as frequency hopping signals,
most commonly within the 400MHz, 900MHz, 1.2-1.3GHz,
2.4GHz, or 5.8GHz bands, for real-time communication with
ground control stations [4]. Targeted radio frequency (RF)
jamming can disrupt the UAVs C2 link, potentially forcing
them into a fail-safe mode such as hovering, returning to

home, or landing. In particular, jamming efficiency depends
on accurate detection and prediction of C2 frequency hopping
signals.

Modern UAVs increasingly incorporate adaptive communi-
cation strategies to evade detection and maintain link robust-
ness. Specifically, UAVs vary their hopping signals or adapt
their modulation in response to environmental interference
or jamming attempts, present a complex and evolving target.
Therefore, efficient jamming requires the development of an
agile model capable of identifying frequency hopping signals
in real-time, even in the presence of dynamic and unpre-
dictable hopping behavior. These algorithms must not only
detect the presence of the signals but also infer or predict
their future behavior to enable precise and timely jamming.

While a substantial body of research exists on the detection
of radio-controlled UAVs [5], [6], relatively little attention has
been devoted to the predictive models of UAVs frequency
hopping signals. This gap is particularly significant in the con-
text of UAV RF jamming, where the ability to anticipate and
disrupt UAV C2 links is critical. Existing approaches to signal
identification typically rely on extended observation periods,
requiring prolonged signal monitoring before any predictive
inference can be made. Although several recent work has
demonstrated the feasibility of recognizing the signals within
several hopping interval [7], [8], these methods still suffer from
latency that may limit their operational applicability in real-
time jamming scenarios.

This study proposes a novel and efficient framework for pre-
dicting the near-future evolution of frequency hopping signals
using only a short and fixed observation window. Our approach
leverages deep reinforcement learning (DRL) to learn time-
frequency evolution and forecast the subsequent behavior of
the signals. The proposed framework not only enables accurate
prediction of the signal’s spectral trajectory but also offers tac-
tical flexibility: jamming systems either avoid interfering with
legitimate signals or, conversely, selectively specific target
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signals for disruption. This predictive capability enhances the
precision and responsiveness of jamming strategies, supporting
real-time decision-making in rapidly evolving electromagnetic
environments. To achieve our goal, we proceed as follows.
First, we construct the dataset as the RF signals of drone DJI
Mavic 3 Pro and conduct data preprocessing, as shown in
section II. Second, we design the training algorithm in section
III. Finally, we evaluate the trained model in section IV, the
model performance on the test dataset. The major contribution
of this work can be summarized as follows:

• We introduced a state representation of frequency hop-
ping signals, which was utilized in training a DRL model
designed to predict the near future evolution of the
signals, only based on a small observation window.

• We developed a DRL model for training the frequency
hopping prediction based on Deep Deterministic Pol-
icy Gradient (DDPG) algorithm. In particular, a reward
function was designed that combines the accuracy when
predicting time and frequency. This reward plays as a
metric to assess the prediction accuracy.

• We conducted simulations to demonstrate the prediction
results considering frequency hopping signals of the
drone DJI Mavic 3 Pro.

II. DATASET CONSTRUCTION

A. Data Collection

The RF signal data used in this study is collected from a
drone DJI Mavic 3 Pro, which employs frequency hopping
for its C2 communication link. Signal measurements are con-
ducted across multiple experimental runs to ensure consistency
and reproducibility. Each measurement session is captured
in approximately 5 seconds of RF data using a software-
defined radio (SDR) testbed in a controlled laboratory environ-
ment. The SDR system was configured with a measurement
bandwidth of 200MHz, centered at 2.4GHz, corresponding
to the ISM band where the C2 link operates. To capture
the temporal dynamics of the transmissions, RF snapshots
are recorded at a repetition interval of 100 µs, with 1024
complex I/Q samples acquired per snapshot. These settings
are selected to balance temporal resolution with signal fidelity,
enabling accurate reconstruction of the hopping behavior. It is
noted that the laboratory environment introduces occasional
background noise, which is both expected and considered
beneficial for the study. The presence of such noise contributes
to the realism of the dataset and supports the evaluation of
the proposed predictive model under non-ideal, interference-
prone conditions, as typically encountered in real-world UAV
jamming scenarios.

Drone DJI Mavic 3 Pro is evaluated under multiple op-
erating modes across five independent measurement runs.
Each run is conducted to assess potential variability in the
emitted frequency hopping signal with respect to the drone’s
operational state. However, analysis of the captured data
revealed no discernible differences in the signal characteristics
across different modes. Consequently, no differentiation is

TABLE I
BLOCK DESCRIPTOR WORDS (BDWS)

No Data
field

Data
size

Unit Note

1 bid 1x1 N/A Block ID
2 sid 1x1 N/A Antenna ID
3 toa 1x1 ns Time of arrival
4 tod 1x1 ns Time of departure
5 fs 1x1 Hz Sampling frequency in wide band
6 fb 1x1 Hz Sampling frequency in narrow

band
7 fd 1x1 Hz Sampling frequency for PC
8 fc 1x1 Hz Center frequency
9 bw 1x1 Hz Bandwidth
10 amp 2x1 N/A Amplitude
11 nxx 1x1 N/A Estimated noise background
12 xiq 3x1 N/A IQ signal (bounding and phase)
13 rsv 1x1 N/A Buffer

made between individual measurement runs or operational
configurations in subsequent analysis. All measurement runs
are performed that considers ambient RF activity. These back-
ground signals are intentionally retained in the dataset and
incorporated into both the training and test datasets for two
key reasons: (i) to enable the model to learn to discriminate
between true signal presence and background noise, thereby
reducing the risk of false-positive predictions during inference;
and (ii) to provide a realistic performance baseline, reflecting
the model’s ability to operate under conditions that approx-
imate real-world spectral environments. This methodology
promotes generalization beyond idealized signal conditions,
thereby enhancing the robustness and reliability of UAV signal
detection and prediction models under realistic and variable
electromagnetic environments.

B. Data Preprocessing

First, the collected raw I/Q data is preprocessed to estimate
basic information of the signal, which is called Block Descrip-
tor Words (BDWs), as described in Table I. We assume BDWs
are estimated at low layer and available for further processing.
The original BDWs are reloaded using the python SciPy
library, wherein the information is structured as key-value
pairs. The keys are string identifiers that represent various
data attributes, including: ’fc’, ’bw’, ’amp’, ’snr’, ’fs’, ’fd’,
’nxx’, and ’dp’. The corresponding values for each attribute
are reloaded and subsequently normalized according to the
principles outlined below:

• The BDW data is reloaded and concatenated in the
appropriate temporal sequence as originally collected.
The BDW sequence is segmented at data points where
a change in center frequency or bandwidth is detected,
indicating a frequency hopping event. Each segment, re-
ferred to as a sub-BDW sequence, represents a continuous
signal state defined by a fixed pair of center frequency
and bandwidth values.

• The center frequency is characterized using two normal-
ized descriptors: (i) Frequency Band Index, for instance,
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in the context of UAV signal analysis, four primary op-
erating bands are considered such as 400MHz, 900MHz,
2.4GHz, and 5.8GHz, assigned indices of 0, 0.25, 0.5, and
1.0, respectively; and (ii) Normalized Center Frequency,
within each band, the center frequency value is scaled
to a [0, 1] range relative to the minimum and maximum
values of the respective frequency band.

• The signal bandwidth is normalized to the [0, 1] range
based on the maximum observed channel bandwidth. For
example, in the case of drone DJI Mavic 3 Pro, the
maximum bandwidth is identified as 40MHz.

• For each of the remaining features (’amp’, ’snr’, ’fs’,
’fd’, ’nxx’, ’dp’), the normalized representation includes
two statistics: (i) the mean value, normalized to the
[0, 1] range using the maximum value observed within
the current sub-BDW sequence; and (ii) the standard
deviation, calculated within the same sub-BDW context.

• To capture the temporal dynamics of each sub-BDW
sequence, three additional attributes are included: (i) ’ts’:
the time of arrival (toa) of the first BDW in the sequence;
(ii) ’te’: the time of departure (tod) of the last BDW in
the sequence; and (iii) ’nb’: the total number of BDWs
within the sub-sequence.

This data preprocessing procedure effectively constructs a
temporal profile of signal state transitions, capturing variations
in center frequency, channel bandwidth, and associated signal
characteristics.

III. TRAINING ALGORITHM

A. Frequency Hopping System Modeling

The frequency hopping system model is developed using the
python Gym library, a framework that facilitates the construc-
tion of simulation environments for RL. This library provides
extensive support for rapid information transformation and in-
cludes modules for object visualization, making it well-suited
for modeling dynamic systems. In this model, signal behavior
is constructed based on the collected BDWs. The training
process continuously evaluates the effectiveness of predicting
frequency hopping parameters using a reward function, which
quantifies prediction accuracy by measuring the deviation
between predicted parameters and actual observations. This
reward function guides the adjustment of weights within the
deep neural networks to maximize the prediction accuracy.

The design of the frequency hopping model incorporates the
following key considerations:

• Accurate signal state transitions: To ensure realism, the
model must fully replicate the signal state changes ob-
served in the BDW dataset. This requires that all signal-
related attributes accurately reflect the recorded data,
including the historical transitions of each signal state
feature.

• Incorporation of noise to address data limitation: Since
the available dataset may not encompass all possible
variations in signal states, a controlled level of noise is
introduced to improve generalization. Based on prior-art

research on data augmentation for training enhancement,
the model applies white noise compensation at 5% rate.

• Implementation of constraint mechanisms: To prevent
unrealistic state transitions, the model enforces a set
of constraints representing the necessary and sufficient
conditions for signal state changes. For instance, pa-
rameters such as center frequency, channel bandwidth,
power level, and signal-to-noise ratio are constrained
within predefined ranges derived from domain-specific
knowledge and empirical data.

• Design of the reward function: The reward function is
designed to evaluate the accuracy of predicted signal
parameters relative to ground truth data. Specifically, it
non-linearly incorporates three key metrics: deviations in
predicted center frequency, bandwidth, and noise dura-
tion. This function operates at each time step and reflects
both the state characteristics and temporal prediction
errors, thereby incentivizing accurate, real-time signal
state estimation.

B. Algorithm Design

This section presents the detailed design of the training algo-
rithm, which is developed based on the DDPG algorithm. The
proposed algorithm comprises the following key components:

• RL agent is responsible for controlling and executing the
training process.

• Primary and Target Actor Networks: Two deep neural
networks, the Primary Actor Network and Target Actor
Network, are employed to directly output signal pa-
rameters predicted from the current signal state. These
networks are associated with weight parameters denoted
as θµ and θµ′ , respectively.

• Primary and Target Critic Networks: Two additional deep
neural networks, the Primary Critic Network and Target
Critic Network, are used to evaluate the Q-value asso-
ciated with each state-action (i.e., signal state–predicted
signal parameters) pair. Their corresponding weights are
represented by θQ and θQ′ , respectively.

• Experience Replay Buffer: A memory that stores training
data in the form of past experiences, enabling the RL
agent to sample mini-batches of data for training and
thereby improving stability and efficiency.

The architecture of the Primary Actor Network and Primary
Critic Network are illustrated in Figure 1. These networks are
enhanced with residual connections and spectral regularization
techniques to improve training stability during the weight
update process. Residual connections help mitigate issues
related to vanishing gradients in deep networks, while spectral
regularization constrains the spectral norm of the network
layers to promote robustness and generalization.

The operational flow of the proposed algorithm is illustrated
in Figure 2, which comprises two main processes:

• Data collection process: This stage is responsible for
generating the dataset required for training. It involves
repeated interactions between the RL agent and the signal
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Fig. 1. The architecture of actor and critic neural networks.

dynamics environment. At each time step t, the RL
agent observes a current environmental state, denoted
as S(t), which captures key characteristics of the signal
environment. Based on this state, the RL agent utilizes
current weights of the actor network to process a set
of signal parameters, encapsulated in an action vector
a(t). This vector typically includes the predicted cen-
tral frequency, channel bandwidth, and signaling time
for the next time step. Following this, the RL agent
computes the reward r(t) by comparing the predicted
parameters with the actual values. Concurrently, the new
environmental state S(t + 1) is observed using actual
collected signal data. Each interaction results in a tu-
ple <S(t), a(t), r(t), S(t + 1)>, which is stored in the
Experience Replay Buffer. This data process iteratively
saves experience data into the memory buffer. Since it
has limited capacity, the oldest data entries are replaced
when the buffer reaches its maximum size. It is important
to note that this data collection phase operates offline,
utilizing pre-collected data from the entire BDWS dataset
to construct a comprehensive experience buffer.

• Training process for frequency hopping prediction: In
this stage, the RL agent is trained to optimize its signal
prediction capability. The training of the neural networks
is initiated once a sufficient number of training samples
have been accumulated in the Experience Replay Buffer.

– Actor network training: The training begins by sam-
pling the state S(t) from the dataset. The Primary
Actor Network uses this state input to output the
predicted action a(t). This output is then passed
to the Primary Critic Network, which evaluates it
and computes a corresponding Q-value. A policy
loss function, denoted as L(θµ)), is formulated to
quantify the discrepancy between expected and ac-
tual Q-value performance. The Adam optimizer is
employed to update the weights of the Primary Actor
Network accordingly. The weights of the Target
Actor Network is copied from the Primary one after
each G steps.

– Critic network training: Training of the Critic Net-
work begins by sampling both state-action pairs
<S(t), a(t)>. The Primary Critic Network computes
the Q-value Q(S(t), a(t); θQ) for each sample. In
parallel, the next state S(t+1) is processed through
the Target Actor and Target Critic Networks to pro-
duce a predicted Q-value Q(S(t+1), a(t+1); θQ′).
These values are used to calculate the Bellman loss
function L(θQ), which is minimized using the Adam
optimizer to update the Critic Network’s weights.
The weights of the Target Critic Network is copied
from the Primary one after each G steps.

IV. EVALUATION

A. Parameter Settings

The signal environment is simulated using data collected
from the frequency hopping signals of a drone DJI Mavic
3 Pro. The drone operates in a pre-configured frequency
hopping mode based on the Ocusync 3 protocol, alternating
frequency in the 2.4GHz bands. During data acquisition, the
drone is positioned at a fixed distance of 50 meters from the
receiver, with the receiving antenna oriented directly toward
the drone to optimize signal capture. The collected data
consists of estimated BDWS values, which are processed by
an FPGA module from the raw I/Q signal data. The specific
configuration parameters used for the training algorithm are
summarized as: number of episodes is 30000, batch size is
32, discounting factor is 0.9, and learning rate is 0.001.

Reward function is designed as follows. The reward func-
tion is designed to quantify the accuracy of the predicted
signal parameters, including the central frequency fc, channel
bandwidth bw, and signal transmission time. Specifically, a
frequency range is defined by combining the central frequency
and bandwidth values. The predicted frequency range and
signaling time are then compared to the corresponding actual
values to compute both an accuracy metric and a penalty for
deviation. The accuracy metric, denoted as A, reflects the
proportion of overlapped area between the predicted and actual
frequency ranges. It is a normalized value within the interval
[0,1], where A = 1 indicates perfect alignment between
the predicted and actual ranges, and A = 0 indicates no
overlap. Similarly, the penalty metric, denoted as B, measures
the cost associated with prediction error. It also ranges from
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Fig. 2. Deep Reinforcement Learning for predictive modeling of frequency hopping signals.

[0,1], where B = 0 corresponds to perfect prediction (or no
prediction made), and B = 1 reflects complete mismatch. Let
M and N be the respective weights assigned to the accuracy
and penalty terms. The intermediate reward function, denoted
as fr, is defined as: fr = M · A − N · B. The maximum
value of fr is M , achieved when A = 1 and B = 0, i.e.,
the predicted parameters perfectly match the actual values.
Conversely, the minimum value is –N , which occurs when
A = 0 and B = 1, indicating a complete mismatch. Separate
rewards are computed for the frequency range prediction,
fr(F ) and the signaling time prediction, fr(T ). These are
combined into the total reward function R, formulated as:
R = a · fr(F ) + b · fr(T ), where a and b are the weights
assigned to the frequency and time prediction sub-rewards,
respectively, and satisfy the constraint a+ b = 1. As a result,
the total reward value R lies within the interval –[N,M ].
Training objective is to maximize the value of the total reward
function R. In the initial configuration, the parameters are set
as follows: M = 0.9, N = 0.1, a = 0.7, and b = 0.3.

B. Numerical Results

This sub-section presents numerical results for evaluating
the performance of the proposed framework. The extent to
which the reward function converges during the training pro-
cess is analyzed, as it reflects the model’s ability to learn
optimal actions over time. The reward evolves to converge
after approximately 5000 episodes. At the convergence, the
reward is achieved at almost 97.4% of its maximum theoretical

value, indicating the model has achieved a reasonably high
level of predictive accuracy.

V. CONCLUSION

This study presented a novel approach with DRL to accu-
rately predict the UAV frequency hopping signals for efficient
UAV jamming. Specifically, the proposed framework is de-
veloped based on an enhanced DDPG algorithm, maximizing
a reward function that reflects the accuracy of predicting the
frequency-hopping parameters, i.e., central frequency, trans-
mission channel bandwidth, and signal transmission time. A
frequency hopping model is constructed using pre-collected
signal data that practically verify the feasibility, enabling
greater flexibility in model customization and facilitating the
evaluation of various training configurations. The convergence
behavior observed during training indicates that the proposed
framework is capable of predicting multiple signal param-
eters with reasonable accuracy. The final reward function
value achieved during training reached almost 97.4% of its
theoretical maximum value, representing the optimal case in
which predicted parameters perfectly match the actual signal
environment.
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