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Abstract—Technological developments are becoming important
for efficient city security measures as metropolitan areas rapidly
expand. Area without standard street cameras, this paper sug
gests using YOLO v10 models mounted on dashboard cameras
to improve city security. Real-time car dash cam data analysis is
used, to identify and count different objects, including walkers,
cars, motorcycles, and people. A server gets data and unique
automobile IDs regularly. The information is kept on the server
in a coordinate-indexed time series database. Cities that use dash
cams to get a complete, real-time picture of their surroundings
can increase security and promote proactive decision-making.
In addition to enhancing the current surveillance infrastructure,
this strategy provides an affordable way to increase municipal
security coverage in areas where more conventional approaches
are insufficient. This strategy will provide an affordable way
to increase municipal security coverage in areas where more
conventional approaches are inefficient.

Index Terms—YOLOv10, Artificial Intelligence, Smart Cities,
surveillance systems

I. INTRODUCTION

Expanding cities requires strong surveillance systems. It
is essential for effectively managing the increasing traffic
volume and preserving public safety. Nevertheless, finan-
cial limitations prevent many communities from setting all-
encompassing surveillance systems. For this reason, prioritiz-
ing traffic monitoring on roadways is essential to reduce traffic,
guarantee effective mobility, and improve urban management
in general. Every year, road accidents claim millions of lives,
so it is critical to have an effective and proactive accident
detection system. There are several issues with the conven-
tional accident detection system, including low scalability,
connectivity, power consumption, and sensor reliability. [1].

A smart city is created by integrating various, intercon-
nected, and automated elements of a city into a single, net-
worked system. A smart city is made up of several intelligent
objects that are positioned around the city, collect data at

certain locations, and then process data to help decision-
makers. Smart cities have an impact on every aspect of
daily life, including smart grids, parking, industry, transit, and
employment and health care facilities. Central database man-
agement systems, client server architectures, cloud computing,
and other cutting-edge Wireless Sensor Networks (WSNs)
technologies are used in smart city models. Modern computing
demands smart cities in order to make the environment digital,
responsive, efficient, dependable, and automated. Researchers
are interested in a few problems and obstacles related to smart
cities, despite their many advantages. Although academics
have concentrated on offering numerous solutions for smart
cities, there are still several challenges that need to be ad-
dressed. There aren’t many research methodologies that don’t
handle intelligent traffic monitoring and guidance systems. [2].

Consistent urbanization is causing significant obstacles in
our day-to-day existence. Compared to rural areas, 50% of
the world’s population lived in cities as of 2007. According
to UN Population Fund estimates, by 2030 nearly 60% of
the world’s population is expected to live in urban areas [3].
Cities may expand as resource management functions like
transportation, energy consumption, and goods distribution
become more efficient. However, it may also result in gridlock,
problems with waste management, pollution, noise, traffic, and
security. Reaching greater efficiency and safety will depend on
properly collecting, analysing, and displaying data. [4].Based
on the requirements, each country defines a smart city differ-
ently based on its geographical location, specific needs, and
economic conditions [5].

Profound machine learning technologies have opened new
avenues for enhancing urban surveillance and monitoring
systems. By incorporating a YOLOv10 model into dash-cam
data processing systems, we can achieve a more cost-effective
method of monitoring the road environment. The paper aims to
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TABLE I
COMPARISON OF APPROACHES IN SMART CITY TECHNOLOGIES

Aspect Shan et al. (2024) Rajkumar (2024) Xiao et al. (2024)
Technologies Leveraged Big data, IoT Quantum computing, AI,

IoT, advanced optics
Multi-Objective Optimiza-
tion (MOO), real-time data

Application Focus Smart city situational
awareness

Optical IoT for real-time ur-
ban data collection

Public transportation route
optimization

Key Strengths High localization precision,
extensive coverage, real-
time, high-resolution data
acquisition

Dynamic optimization
based on real-time data

Real-time, dynamic data
sources

Challenges Addressed Urban management
efficiency

Delayed decision-making
due to data lag

Traffic patterns, cost, envi-
ronmental impact

Future Prospects 5G, 6G integration for en-
hanced capabilities

Quantum-enhanced sensors
for precision measurement

Continued adaptation
to evolving urban
environments

show how machine learning models with vehicle dash-cam can
act as, an affordable alternative to traditional street cameras
and to explore the viability of integrating them into automotive
systems for urban surveillance. We aim to demonstrate the
benefits of this approach, such as lower costs, scalability, and
adaptability.

The study’s key conclusions reveal a great deal of promise
for improving urban surveillance with the suggested strategy.
This is achieved by assisting with the monitoring of the road
environment in real-time, quickly identifying and categorizing
a wide range of objects on the road, and ultimately improving
public safety. Using a YOLOv10 model in-vehicle system is
also beneficial since it reduces overall costs and maintenance
requirements by removing the demand for expensive, station-
ary street cameras.

II. RELATED WORKS

Recent research focuses on developing technologies that
can help us gain an overall awareness of smart cities. The
Chinese government plans to integrate IoT and big data into
smart cities for better management, as outlined in their five-
year plan. This will use GPS data to achieve wide coverage
and better localization accuracy. Massive mobile data for spa-
tiotemporal modeling and cybersecurity insurance are shown
as major technologies. [6].To develop situational awareness,
these technologies have shown that they are feasible and,
therefore, are being used in Chinese mega-cities. With the
advancement of 5G and 6G technologies, these technologies
can be validated in more real-time applications. By integrating
massive mobile data and artificial intelligence, we can gain
analytical capabilities for proactive smart city management.

Along with artificial intelligence, quantum computing can
also play an important role. In optical IoT, sensors gather real-
time data from urban areas. [3]. These sensors can include
LIDAR, high-resolution cameras, and others. Many conven-
tional technologies exist, but they rely heavily on non-real-
time data, which reduces the efficiency and accuracy of the
current system. This problem is addressed by this study, which
suggests an advanced smart city architecture that will collect
data from all sensors in real-time. This data will be analyzed
by AI, and quantum-enhanced sensors will help in making

better decisions. With this strategy, we can manage our cities
more effectively.

Xiao et al. support MOO techniques, which will enhance
route planning in smart cities [7].These techniques will con-
sider factors such as traffic, cost, environmental effects, and
others, helping to better understand urban mobility. Many
complex algorithms already exist that use route planning
with the help of real-time traffic data from GPS. This study
enhances the overall concept of a smart city monitoring system
by adding route planning features, providing a more holistic
solution.

Sunagawa et al. presented a system to monitor drowsiness
using a camera in front of drivers in semi-autonomous driving
vehicles. Their research showcases that with high-resolution
data, we can detect when the driver is engaged in tasks
not related to driving [8]. Simoncini et al. classify unsafe
maneuvers in driving by using camera feed, GPS, and IMU
sensor data. They employ a deep learning-based two-stream
neural architecture. Their study showcases the efficiency of
combining these two data sources [9]. Rocky et al. review
different learning approaches for autonomous driving and
discuss their strengths and weaknesses. They also mention
various ways to detect accidents using audio-video, segment-
based methods, and more [10].

For managing vehicle networks, the idea of using
blockchain is also proposed. Cloud servers are mostly used in
current technologies, but they are vulnerable to data forgery
and privacy concerns. With blockchain, data integrity can
be maintained, but the authentication of data before entry
remains a problem. Park et al provide a solution to solve
this issue and present an overall architecture to address it
[11]. To detect traffic anomalies from dashcam videos, a study
proposed an architecture consisting of accident localization
and accident classification [12]. This research was tested and
showed promising results; however, challenges such as data
imbalance and the size of the dataset affected the accuracy of
classification.

Maruyama and Ohashi propose a AI model to predict
accidents. Their model primarily uses the divergence of visual
attention and the focus of expansion [5].Jhala et al. focus on
diverse weather and traffic conditions during object detection
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and classification in autonomous vehicles [13]. A reinforce-
ment learning-based approach is also introduced to detect
traffic accidents using dashcam videos and the DARC-based
model showed good accuracy [14].

TABLE II
COMPARISON OF APPROACHES FOR SMART CITY SURVEILLANCE

Existing Research Proposed Approach
Utilizes big data, IoT, and AI for
situational awareness

Uses dash-cams with YOLOv10
for real-time surveillance

Relies on mobile data, GPS, and
traffic reports

Utilizes dash-cams from cars,
sending data in real-time

Focuses on dynamic data for
smart city management

Integrates real-time detection and
response via dash-cams

Uses complex algorithms for
anomaly detection

Detects anomalies using
YOLOv10, requests images
as needed

Addresses cost-efficiency in route
planning

Offers cost-effective surveillance
with existing dash-cams

Considers environmental foot-
prints in route optimization

Supports municipal surveillance
without additional devices

Uses AI for predictive analytics
and decision support

Enables predictive analytics with
YOLOv10 and time series

Emphasizes integration of diverse
technologies

Simplifies integration using exist-
ing dashcam infrastructure

Requires large-scale deployment
for validation

Scalable solution using existing
vehicle infrastructure

Enhances resource allocation
through data-driven decisions

Efficiently monitors areas with
limited municipal budgets

III. GENERAL METHODOLOGY

A. Introduction to Deep Learning

Deep Learning is an important subfield of machine learning
and has revolutionized several sectors by enabling computers
to learn from vast amounts of data andmake decisions with
little ongoing human intervention. Unlike conventional ma-
chine learning methods that rely on feature engineering and
shallow structures, deep learning approaches such as CNNs (
Convolutional Neural Networks ) and RNNs (Recurrent Neural
Networks ) comprehend hierarchical representations of data
through multiple levels ofabstraction. Their approach allows
them to recognize intricate relationships and connections from
raw data, making them particularly valuable for applications
such as speechand image recognition, natural language pro-
cessing, and autonomous systems.

B. Introduction to Convolutional Neural Network (CNN)

Convolutionalneural networks, or CNNs, supply a body
for processing as well as examining aesthetic input. Typi-
cally there are nine layers inCNN architectures: Input Layer,
Convolutional Layer, Activation Layer, Pooling Layer, Batch
Normalization Layer, Dropout Layer, Flatten Layer, Fully
Connected (Dense) Layer and Output Layer. The convolutional
layers apply filters to the input data to extract important
featureslike edges and textures from it. Activation functions
substitue non-linearly allows us to learnexactly the nonlin-
ear function we wanna learn. Activation functionslike ReLU
and other non-linear functions introduce non-linearity in the
model, permitting it to copy more complex structures. Afterthe
convolutional and pooling layers retrieve high-level features,

fully connected layers produce the last outputs like class labels
or continuous values. They can learn from thedata and build
hierarchical representations of input CNNs.

Input Layer: The input to a CNN is typically a multi-
channel image. For instance, an RGB image with dimensions
Height×Width×3.

Convolutional Layer: Convolutional layers apply convolu-
tion operations on the input using a set of learnable filters,
or kernels. Each filter convolved moves across the input to
produce a feature map.

Convolution Operation:

O(i, j) =
∑
x

∑
y

I(i+ x, j + y) ·K(x, y) (1)

where: I (input image), K (kernel), coordinates of the out-
put are represented by i, j, and x, y are the spatial coordinates
of the kernel. Feature maps, also known as activation maps,
are the results of the convolution procedure.

Convolution Layer Output Size Formula:

Wout =
W − F + 2P

S
+ 1 (2)

Here, W represents the input size (both width and height),
F denotes the filter or kernel size, P refers to the amount
of padding applied and S stands for the stride length. The
resulting output size, Wout, corresponds to the width and
height of the output after the convolution operation.

Activation Function (ReLU): To add non-linearity, an acti-
vation function is applied element-by-element following con-
volution. ReLU, or Rectified Linear Unit, is a function defined
as the maximum of zero and the input value x. Essentially, it
outputs x if x is positive, and zero otherwise. This activation
function replaces all negative values with zero.

Pooling Layer: By lowering the spatial dimensions of the
feature maps, pooling layers improve computing efficiency and
offer a type of spatial invariance. Max Pooling extracts the
highest value from every feature map sub-region

P (i, j) = max
x,y∈R(i,j)

O(x, y) (3)

Pooling Layer Output Size Formula:

Wout =
W − F

S
+ 1 (4)

Here, W represents the input size, both in terms of width
and height. F refers to the size of the pooling filter, while
S stands for the stride. The resulting output size, denoted as
Wout, corresponds to the width and height of the output after
the pooling operation.

Flattening: To feed into a fully connected layer, the feature
maps from the final convolutional or pooling layer are flattened
into a one-dimensional vector.

Fully Connected Layer: A fully linked (dense) layer con-
nects each neuron in the current layer to every other neuron
in the layer below.
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Output Layer with Softmax: The last layer frequently con-
verts into probabilities using a softmax activation function for
multi-class categorization.

Softmax Function:

σ(z)i =
ezi∑K

k=1 e
zk

(5)

where: σ(z)i is the probability of the i-th class, zi is the raw
score for the i-th class, and K is the total number of classes.

Training Process: Gradient descent and backpropagation
are used to train the CNN. The key steps include:

Forward Pass Propagate data through each layer to deter-
mine the network’s output for a specific input.

Loss Calculation Cross-Entropy Loss (for classification):

L = −
N∑
i=1

ti log(pi) (6)

where ti is the true label, pi is the predicted probability for
class i, and N is the number of classes.

Backward Pass (Compute Gradients) For a fully con-
nected layer, the gradients are computed as:

∂L

∂W
= δ · xT (7)

Here,

δ =
∂L

∂z
(8)

and x is the input to the layer.
For the ReLU activation function:

f ′(x) =

{
1, if x > 0

0, otherwise
(9)

For the softmax function:

∂σi

∂zj
= σi(δij − σj) (10)

δij =

{
1, if i = j

0, if i ̸= j
(11)

where δij is the Kronecker delta.
Weight Update: Momentum: Gradient vectors are acceler-

ated in the proper directions by momentum, which speeds up
convergence.

vt = γvt−1 + η∇Lt (12)

Wt = Wt−1 − vt (13)

where γ is the momentum factor (typically between 0.8 and
0.9).

AdaGrad: Based on historical gradient information, it
adapts the learning rate of each parameter.

Gt = Gt−1 + (∇Lt)
2 (14)

Wt = Wt−1 −
η√

Gt + ϵ
∇Lt (15)

where Gt represents the cumulative sum of squared gra-
dients up to time step t, and ϵ is a small constant added to
prevent division by zero.

RMSprop: AdaGrad is modified by RMSprop; it uses a
moving average of squared gradients and improves perfor-
mance in non-convex environments.

E[g2]t = βE[g2]t−1 + (1− β)(∇Lt)
2 (16)

Wt = Wt−1 −
η√

E[g2]t + ϵ
∇Lt (17)

Adam (Adaptive Moment Estimation): Adam combines
the ideas of momentum and RMSprop.

mt = β1mt−1 + (1− β1)∇Lt (18)

Wt = Wt−1 −
ηmt√
vt + ϵ

(19)

vt = β2vt−1 + (1− β2)(∇Lt)
2 (20)

m̂t =
mt

1− βt
1

(21)

v̂t =
vt

1− βt
2

(22)

where: β1 and β2 are hyperparameters for the moving
averages (typically β1 = 0.9 and β2 = 0.999).

For several epochs, repeat the forward and backward passes
until the model converges or performs well enough. In con-
clusion, CNNs are very useful for a variety of computer
vision problems because they use a hierarchical, multi-layered
technique to adaptively and learn spatial hierarchies of char-
acteristics from the given input images.

C. Introduction to YOLO

You Only Look Once (YOLO) is a state-of-the-art object
detection system designed for real-time object detection. As
opposed to conventional methods that employ classifiers at
several scales and locations, YOLOv10 increases speed and ef-
ficiency by formulating object detection as a single regression
problem. It estimate bounding boxes and class probabilities
from the entire image in a single assessment.

YOLO use SxS grid to divide the input image. A confidence
score p, on the basis of coordinates (x, y, w, h), indicates object
presence and probable class. Each grid cell predicts multiple
bounding boxes.
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IV. PROPOSED METHODOLOGY

A. Car Dash-cam Surveillance Operations

The concept is to turn dash cams, which are already present
in cars, into security cameras. These dash cams continuously
capture images of the surroundings while the car is moving.
In order to identify various items on the road, such as
vehicles, pedestrians, traffic signs, and other relevant objects,
the system analyses this video feed in real-time using the rapid
object detection method YOLOv10. Owing to its remarkable
quickness in identifying and classifying objects, YOLOv10 is
highly appropriate for dynamic scenarios such as city streets.

Fig. 1. Overall Architecture Diagram

B. Data Management and Extraction for Monitoring

YOLOv10 records the kind, count, and timestamped coor-
dinates of objects of interest, which include anomalies and
specific incidents (such accidents or suspicious behaviour), in
addition to their coordinates. Only this metadata is regularly
delivered to a central server in JSON format, not the whole
video stream. The server issues a retrieval request back to
the car with its registration number if more investigation is
required, say to obtain a picture or a video of a certain location
at a specific time. The dashcam-equipped vehicle uploads the
necessary media data to the server upon request, allowing
for thorough surveillance without requiring continuous high
bandwidth data transfer.

By providing only metadata until more research is needed,
this method guarantees the effective use of network resources,
allays privacy concerns, and streamlines real-time monitoring
and incident response in urban settings.

Fig. 2. Results of Car Dash-cam Algorithm Detection

The following pseudo code describes the algorithm used for
real-time detection with the YOLOv10 and Server Processing
for Dash-cam Data

Algorithm 1 Car Dash-cam Surveillance Algorithm
1: Initialization:
2: Start dashcam and system modules
3: Load pre-trained YOLOv10 model
4: while car is operational do
5: frame ← CaptureVideoFrame()
6: if frame = NULL then
7: Continue to next iteration {Skip if frame capture

failed}
8: end if
9: preprocessed frame ← PreprocessFrame(frame)

10: detected objects ← YOLOv10 Detect(preprocessed frame)
11: metadata ← [ ]
12: if detected objects = ∅ then
13: Continue to next iteration {No detections in this

frame}
14: end if
15: for each object in detected objects do
16: object type ← ClassifyObject(object)
17: timestamp ← GetCurrentTimestamp()
18: coordinates ← GetObjectCoordinates(object)
19: if IsAnomaly(object) then
20: anomaly flag ← TRUE
21: else
22: anomaly flag ← FALSE
23: end if
24: metadata item ← CreateMetadataItem(object type,

timestamp, coordinates, anomaly flag)
25: metadata.append(metadata item)
26: end for
27: formatted metadata ← FormatToJSON(metadata)
28: if NetworkAvailable() then
29: SendToServer(formatted metadata)
30: else
31: CacheLocally(formatted metadata) {Store if no con-

nection}
32: end if
33: if ServerRequestReceived() then
34: request details ← GetServerRequestDetails()
35: requested media ← RetrieveMedia(request details)
36: if requested media ̸= NULL then
37: UploadToServer(requested media)
38: else
39: LogWarning(”Requested media not found or cor-

rupted”)
40: end if
41: end if
42: end while

266



Algorithm 2 Server Processing for Dashcam Data
1: Initialization:
2: Start central server and database services
3: Establish connections with all active vehicles
4: while server is operational do
5: received metadata ← ReceiveFromVehicles()
6: if received metadata = ∅ then
7: Wait(DelayInterval) {No incoming data; pause

briefly}
8: Continue
9: end if

10: for each metadata item in received metadata do
11: analyzed event ← AnalyzeMetadata(metadata item)
12: if IsSignificantEvent(analyzed event) then
13: LogEvent(analyzed event)
14: TriggerAlert(analyzed event)
15: SendMediaRetrievalRequest(analyzed event)
16: end if
17: end for
18: if MediaDataReceived() then
19: media data ← ReceiveMediaData()
20: if ValidateMediaData(media data) then
21: AssociateWithEvent(media data)
22: else
23: LogWarning(”Received media data invalid or in-

complete”)
24: end if
25: end if
26: GenerateReports()
27: UpdateRealTimeMonitoringDashboard()
28: end while

V. PROPOSED USE CASES

A. Case Study: Accident Prevention and Traffic Management

This study aims to show how dash cams on cars will help
us in real-time traffic monitoring and spot accidents or other
possible dangers on the road. Dash cams are mounted in
automobiles and continuously record and transmit data to a
central server, enabling prompt replies and proactive measures
to lessen traffic and enhance road safety.

Benefits: Traffic flow can be significantly improved in
cities by incorporating dashcam data into traffic management
systems. With the help of real-time detection of anomalies like
accidents or increased vehicle overflow, traffic problems can
be solved quickly.

B. Case Study: Public Safety and Law Enforcement

Sensitive locations and high-crime areas can also be moni-
tored using real-time data, which can be helpful for authorities
to take necessary action.

Benefits: With enhanced real-time data, quicker responses
can be made during emergencies or criminal activities. This
will help in enhancing road safety and security. Dashcam
technology will eliminate the overhead of camera installation
and monitoring.

VI. CONCLUSION

In order to emphasize road safety, privacy, and efficiency
while adhering to regulations and building public confidence,
more secure and effective intelligent traffic management sys-
tems may be created with help of this technology. To improve
real-time data fusion capabilities, future research should con-
centrate on integrating various data sources, such as traffic
management systems, IoT sensors, and dash board cameras. In
dynamic traffic settings, this integration will facilitate thorough
situational awareness and well-informed decision-making.
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