979-8-3315-7896-1/26/$31.00 ©2026 IEEE

ORBIT - Optimized Resource Balanced Intelligent
Task Scheduling in Cloud Datacentres leveraging
Weighted A3C Deep Reinforcement Learning

Dhruv Mishra
Department of Computer Science and Engineering
Shiv Nadar Institution of Eminence
Delhi-NCR, India
dm409 @snu.edu.in

Abstract—Cloud data centres demand adaptive, efficient, and
fair resource allocation techniques for heterogeneous scientific
workflows with complex task dependencies. However, existing
approaches struggle with dynamic workflow patterns and inter-
task dependencies, resulting in suboptimal fairness, increased
makespan, and higher energy consumption. We propose ORBIT
(Optimized Resource Balanced Intelligent Task scheduling), a
novel framework that leverages Weighted Actor-Critic Deep Re-
inforcement Learning to learn from the environment continuously
and incorporates a multi-objective reward structure balancing
Quality of Service (QoS), fairness, priority, deadline compliance,
and energy consumption while respecting task dependencies.
ORBIT introduces a priority-aware advantage estimator that
captures task urgency within workflow dependency chains and
implements a deadline penalty mechanism where tasks exceeding
twice their estimated makespan receive penalties. The algorithm
ensures fair resource distribution while prioritizing high-priority
tasks and maintaining QoS guarantees. The lightweight and scal-
able architecture ensures feasibility in large-scale deployments.
Extensive experiments using real-world scientific workflow traces
(Cybershake, Epigenomics, Montage) demonstrate that ORBIT
consistently outperforms traditional and reinforcement learning-
based baselines across different workflow sizes and complexity
levels, highlighting its potential for real-world deployment in
scientific computing cloud systems.

Index Terms—Cloud computing, Resource Allocation, Fairness,
Priority Scheduling, Deadline Compliance, Deep Reinforcement
Learning

I. INTRODUCTION

Cloud data centres are an important part of modern sci-
entific computing infrastructure, supporting diverse scientific
workflows ranging from time-sensitive real-time tasks, such
as earthquake simulation and gravitational wave detection, to
delay-tolerant batch operations like genomics analysis and
astronomical data processing. This workflow heterogeneity,
combined with complex task dependencies, data transfer re-
quirements, and increasing demands for energy efficiency,
low makespan, and cost-effectiveness, presents major chal-
lenges for resource management in scientific computing en-
vironments. Critical challenges include ensuring fair resource
allocation among competing workflows while respecting task
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priorities, meeting deadline constraints, and maintaining qual-
ity of service (QoS) guarantees.

Traditional approaches for scientific workflow scheduling,
such as heuristic-based policies [1], [2] and static resource
provisioning models [3], have provided lightweight solutions
but often fail to adapt to dynamic and heterogeneous scientific
workflows with complex dependency patterns [4]. Early ma-
chine learning techniques, including supervised learning mod-
els for workflow execution time prediction [5], [6] and queuing
theory-based models [7], introduced adaptive decision-making
but lacked real-time learning capabilities for handling dynamic
workflow patterns. Reinforcement learning methods, such as
Q-learning-based resource allocators [8], demonstrated more
promising results by enabling agents to learn directly from
interactions with scientific workflow environments. Beyond
these, foundational Directed Acyclic Graph (DAG) scheduling
and cloud workflow systems e.g., Heterogeneous Earliest Fin-
ish Time (HEFT) [9], Pegasus Workflow Management System
(WMS) [10], CloudSim for reproducible evaluations [11], and
multi-objective/cloud cost—deadline formulations [12], [13],
established strong baselines yet still face limitations under
non-stationary, multi-tenant workloads.

More recently, Deep Reinforcement Learning (DRL) meth-
ods have gained attention for scientific workflow resource
management [14], [15]. Mnih et al. [16] proposed Asyn-
chronous Advantage Actor-Critic (A3C), which used multi-
ple DRL agents for interacting with the environment with
reduced latency and enhanced resource utilisation for scientific
computing applications. Chen et al. [17] proposed an A3C-
based adaptive resource allocation strategy that significantly
outperformed traditional and earlier RL techniques, demon-
strating improved scientific workflow scheduling efficiency
and energy savings. In broader cluster scheduling, learning-
based schedulers such as Decima [18] and Google-scale or-
chestration insights from Borg [19] further motivate RL-driven,
workload-aware policies. However, existing DRL models often
treat all workflow tasks equally, neglecting task-specific pri-
orities within dependency chains and fairness considerations
among competing scientific workflows, which are critical in
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real-world multi-tenant cloud environments supporting diverse
research applications.

Therefore, in this work, we propose Optimized Resource
Balanced Intelligent Task scheduling (ORBIT), a novel frame-
work that leverages a Weighted Asynchronous Advantage
Actor—Critic formulation within a multi-agent reinforcement
learning (MARL) paradigm for scientific workflow resource
allocation. ORBIT extends the traditional A3C approach by
embedding the RL model’s dynamic reward function, which
simultaneously integrates four key metrics: QoS compliance,
fairness, task priority levels, and deadline adherence. To ad-
dress latency-sensitive workloads, the framework incorporates
a deadline-penalty mechanism whereby tasks exceeding twice
their estimated makespan incur proportional penalties, thereby
encouraging timely completion.

The MARL formulation enables distributed actor—critic
agents to collaboratively optimize scheduling decisions across
heterogeneous resources, reducing contention and enhancing
scalability. By adaptively adjusting the reward structure ac-
cording to workflow characteristics and dependency patterns,
ORBIT ensures that high-priority tasks on critical paths re-
ceive timely allocations while preserving a fair distribution of
computational capacity across competing workflows. Through
extensive experimentation on real-world scientific workflow
datasets, we demonstrate that the proposed ORBIT framework
significantly outperforms baseline schedulers, standard DRL
methods, and single-agent formulations in terms of efficiency,
fairness, priority handling, and QoS compliance, positioning
it as a principled foundation for multi-objective workflow
scheduling in scientific computing environments.

The remainder of the manuscript is organised as follows.
Section II describes the architecture and details of the proposed
ORBIT framework and its underlying weighted A3C model.
The environmental setup, the description of the scientific
workflow datasets, the results, and the in-depth analysis are
presented in Section III. Finally, Section IV concludes the
paper and outlines the future direction.

II. PROPOSED APPROACH

In this work, we propose Optimized Resource Balanced
Intelligent Task scheduling, a novel framework that leverages
Weighted Asynchronous Advantage Actor-Critic for scien-
tific workflow resource allocation. The framework extends
the traditional A3C architecture by integrating four critical
metrics: QoS compliance, fairness, task priority, and deadline
adherence. These enhancements ensure that the scheduling
policy prioritizes urgent tasks while preventing starvation
of lower-priority workflows and enforcing equitable resource
distribution.

A. System Model

The scientific workflow scheduling problem is formulated
as a Markov Decision Process (MDP) defined by the tuple
(S, A, R, P,v), where the agent learns to optimize long-term
performance using the proposed ORBIT framework.
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o State Space (S): Each state s; € S represents the

workflow job snapshot at time ¢ for job j:
se = {ID;, Py, S;, M;, T}, D}

where 1D; is the job identifier, P; represents the job pri-
ority, S; denotes the job computational size, M; indicates
the job memory requirement, 77 is the job submission
time, and D] represents the job deadline.

Action Space (A): The agent selects job j from queue
(Q; using priority-weighted softmax:

7(als) ~ softmax(Q(s,j) + 8- P;)

Reward Function (R): Multi-objective reward balancing
four metrics:

R, = wi RS + woRY + w3RY + wyRP

where w1 = 0.3, wy = 0.3, w3 = 0.25,wy = 0.15 are
the weight parameters. The weight distribution priori-
tizes QoS compliance and fairness as primary objectives
(w1 = wy = 0.3), reflecting the critical importance of
maintaining service quality and equitable resource distri-
bution in multi-tenant cloud environments. Task priority
receives moderate emphasis (ws = 0.25) to ensure high-
priority scientific workflows receive appropriate attention
without compromising system-wide fairness. Deadline
compliance is assigned the lowest weight (ws = 0.15)
as it serves as a constraint mechanism rather than a
primary optimization objective, with the penalty structure
providing sufficient incentive for timely task completion.
The process of selecting specific numerical values for
wi—w,4 requires deeper justification. In this work, the
chosen weights are derived from empirical tuning and
lightweight grid-search exploration, which is consistent
with established practices ireinforcement-learning—based
cloud scheduling [8]. Furthermore, several studies high-
light the benefits of adaptive weighting mechanisms that
adjust reward weights dynamically based on system state,
workload profile, or performance drift, suggesting an
important direction for future extension of the WA3C
framework. All the rewards components are formulated
as follows:

— QoS Reward (RtQOS )

RQos_l_ Pj . SJ’
20 = I

7DIl’laX SHI&X
where Ppax 1S the maximum priority value, and
Smax 18 the maximum job size.

— Fairness Reward (R})

(D

Rf = -axo*({Dj -1}

J € active jobs})
- @
where D/ and T} represent the deadline and submis-
sion time of job j, respectively, and the parameter A
is the regularization factor that penalizes unfairness
in terms of disparity in job slack durations.



— Priority Reward (R])

M,
Rf:PtxM] (3)

max

— Deadline Penalty (RP)
RP = —u x I(T? > 2 x DY) “)

where 1 is an indicator function penalizing jobs when
submission time exceeds twice the job deadline.
« Discount Factor (v): Fixed at v = 0.95 for long-term
optimization.

B. ORBIT Algorithm

Algorithm 1 ORBIT: Optimized Resource Balanced Intelli-
gent Task Scheduling

1: Initialize: Global actor Ay and critic C networks

2: Initialize: Learning rates g, o, sync interval u

3: for each training epoch n =0,1,2,..., N do

4 Receive initial state sy < env.observe ()

5: for t =0,1,2,...,7 do

6 Select action a; using priority-weighted softmax
7 Execute a;, observe reward R; and next state s;41
8 Compute reward: R; = 3+, w; R!

9 Compute advantage: A(s;, a;) = Ri+yVy(s141)—

Vo (s¢)
10: Update critic: ¢ <— ¢ + a0,V Vi (st)
11: Update actor: 6 <— 0 4+ «p Vo J(0)
12: Update state: sy < sS¢+1
13: if t mod v = 0 then
14: Synchronize with global network
15: end if
16: end for
17: end for

The ORBIT algorithm implements a multi agent dis-
tributed reinforcement learning approach for scientific work-
flow scheduling. The detailed steps are provided in Algorithm
1. The algorithm begins by initializing the global actor and
critic networks with random parameters, along with learning
rates and synchronization interval. During each training epoch,
the agent interacts with the cloud environment by observing
the current system state and selecting scheduling actions
using a priority-weighted softmax policy that considers both
estimated action values and job priorities. Upon executing the
selected action, the agent receives a multi-objective reward
that combines QoS compliance, fairness, priority satisfaction,
and deadline adherence. The advantage function is computed
to estimate the relative value of the selected action compared
to the baseline value function, enabling more stable policy up-
dates. The critic network is updated using temporal difference
learning to improve value estimation, while the actor network
is updated using policy gradient methods weighted by the
computed advantage. Periodic synchronization with the global
network (every u steps) ensures that multiple worker agents
can share learned experiences and maintain consistent policy

Dependency @ @

Critic (6,)

value Loss (1]

‘Weighted TD Error (6,)

Fig. 1: Workflow Diagram of ORBIT

Weighted Policy =

Policy Loss (L,)

‘Weighted Fair Reward (R;)

parameters across the distributed training environment. This
asynchronous update mechanism enables scalable training
while preserving the stability and convergence properties of
the actor-critic framework.

C. Model Architecture

The ORBIT framework realizes a principled architecture for
multi-objective scientific workflow scheduling, as illustrated in
Fig. 1. The architecture is designed to address the inherent
trade-offs between competing system objectives, while en-
abling adaptive policy learning through reinforcement signals.
It consists of the following key components.

Environment Layer: ORBIT models the scheduling sce-
nario as a dynamic environment comprising heterogeneous
workflows and computational resources. The state represen-
tation s; captures job queue lengths, inter-task dependencies,
and instantaneous resource utilization, thereby encoding the
operational context necessary for informed decision-making.
This abstraction formalizes workflow scheduling as a Markov
Decision Process, enabling the application of advanced rein-
forcement learning methods.

Reward Formulation: A distinguishing feature of ORBIT
lies in its structured reward design. Rather than optimizing
a single objective, the framework explicitly quantifies four
research-relevant dimensions: QoS compliance, priority sat-
isfaction, fairness preservation, and deadline adherence. Each
metric contributes to the overall system utility with tunable
weights (e.g., 0.3, 0.3, 0.25, 0.15). This weighted aggregation
produces a composite reward signal R, that not only balances
heterogeneous objectives but also permits sensitivity analysis
across different weighting schemes, facilitating comparative
research studies.

Policy Learning: The policy 7(als,w) is conditioned on
both the observed state s; and the reward formulation R;.
This design ensures that policy optimization remains directly
aligned with the multi-objective reward space. The policy
generates scheduling actions a;, such as mapping tasks to
resources, which are subsequently enacted within the envi-
ronment. The placement of the policy module, adjacent to the
reward computation, underscores the tight coupling between
objective-driven evaluation and action generation.
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Fig. 2: Asynchronous MARL with push—pull updates: workers
push gradients to the global network and pull updated param-
eters.

Optimization and Network Update: The right-hand side
of the architecture captures the learning dynamics. ORBIT
adopts a weighted temporal-difference (7D) error, which de-
composes into policy and value loss components. The Actor
network (6,) is optimized to refine the scheduling policy, while
the Critic network (#,,) improves value estimation. This dual-
network configuration leverages the actor—critic paradigm,
ensuring both stable convergence and adaptability to dynamic
workloads. By integrating weighted objectives directly into
the TD error signal, ORBIT extends classical reinforcement
learning formulations to a multi-objective scheduling context.

Figure 2 illustrates the asynchronous multi-agent reinforce-
ment learning (MARL) setup used in our scheduler. A shared
global network holds the actor and critic parameters (6, ¢).
Multiple workers (agents) interact with their local copies of the
environment in parallel, collecting trajectories and computing
local policy/value gradients. Each worker periodically pushes
its gradients to the global network, which applies updates to
(0,¢), and then pulls the latest parameters to synchronize
its local policy and value functions. This push—pull cycle
enables scalable exploration (many workers learning concur-
rently), faster convergence (frequent parameter refresh), and
more stable learning (implicit averaging across diverse experi-
ences). In workflow scheduling, each worker observes current
queue/load, selects actions (e.g., accept/defer/reject), receives
rewards shaped by QoS, priority, fairness, and deadlines, and
feeds back gradients so that the shared policy continually
improves under heterogeneous, time-varying workloads.

III. RESULTS AND ANALYSIS

This section provides the visual analysis and comparative
results with the existing approaches along with experimental
setup, including the environment, dataset, and performance
metrics used to evaluate the proposed model.

A. Experimental Setup and Dataset

The experiments were conducted with a 2-socket Intel Xeon
CPU E5-2690 v4 machine, equipped with 32 cores per socket,
running Ubuntu 20.04 LTS. We train and evaluate agents in
a custom environment (CloudJobSchedulingEnv) that
models online job admission with a 3-action space (reject,

accept, defer) and a 6-dimensional observation vector cap-
turing normalized queue size, resource usage, job priority,
job size, system load, and memory usage. Episodes are
capped at max_steps = 1000. For comparability across
methods, reward shaping follows the equal-weight path for
A3C-compatible trainers and varied weights for the weighted
A3C path otherwise. All experiments are run with fixed seeds
(NumPy/PyTorch: 42). By default, each algorithm is trained
for num_epochs = 1000 episodes.

Our primary dataset comprises workflow traces span-
ning three domains: Cybershake, Epigenomics, and Mon-
tage, each provided at multiple scales (e.g., 25, 30, 50,
60, 100, 1000+ tasks). Each trace file is parsed line-by-
line into jobs with fields {id, priority, size, memory,
submission_time, deadline}. We group workflows by
size using filename-derived task counts into three buckets:
Small (0-100 tasks; 14 files), Medium (101-999 tasks; 3 files),
and Large (1000+ tasks; 3 files).

Dataset Description: We considered three datasets from di-
verse domains to analyze the performance of Orbit framework.
Cybershake is a seismic hazard analysis workflow that simu-
lates earthquake ground motions across Southern California.
The workflow exhibits relatively uniform task structures with
predictable computational patterns, making it representative of
scientific simulations with regular data dependencies. Epige-
nomics is a bioinformatics workflow for genome-wide analysis
of DNA methylation patterns. This workflow demonstrates
moderate complexity with heterogeneous task types including
data preprocessing, statistical analysis, and visualization com-
ponents. The workflow exhibits variable task dependencies and
mixed computational requirements, representing typical bioin-
formatics pipelines with diverse processing stages. Montage
is an astronomical image mosaic workflow that creates large-
scale sky surveys by combining multiple telescope images.
This workflow represents the most complex scheduling sce-
nario with intricate data flow patterns, variable task sizes, and
sophisticated inter-task dependencies.

B. Performance Metrics

To rigorously evaluate the efficacy of the ORBIT frame-
work, we employ three complementary performance metrics
that capture both aggregate learning efficiency and workload-
specific behavior.

o Episode Reward: The primary metric is the cumula-
tive reward per training episode, averaged using a 20-
episode moving window to mitigate stochastic variability
and highlight long-term learning trends. This measure
reflects the stability and convergence characteristics of
the learned policy over extended training horizons.

o Convergence Efficiency: We measure the number of
training episodes required for each algorithm to achieve
stable performance, defined as consistent reward values
within 5% variance over a 50-episode window. This met-
ric quantifies learning efficiency and practical deployment
readiness.
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Fig. 12: Workflow Reward Comparison across Different Dataset Sizes and Workflow Types

o Workflow-Type and Size-Stratified Analysis: To inves-
tigate both scalability and domain-specific performance,
we analyze performance across three representative work-
flow domains and three size categories: Small, Medium,
and Large. This dual stratification provides insight into
how ORBIT generalizes to varying computational de-
mands and workflow structures.

C. Comparison with DRL Baselines

We benchmark ORBIT against four canonical deep rein-
forcement learning algorithms: A3C, PPO, DON, and PG. All
methods are trained under identical experimental conditions
with fixed environment horizons, uniform workload traces, and
consistent random seeds to ensure fair comparison and isolate
the contribution of ORBIT’s architectural design.

The empirical results (cf. Figures 3—-11) demonstrate that
ORBIT consistently outperforms all baseline algorithms across
workflow domains and size categories. ORBIT achieves higher
asymptotic reward values, reduced variance, and improved
stability of the learned policy across diverse workload charac-
teristics. Analysis reveals distinct performance characteristics
across workflow types: Cybershake workflows show consistent
high rewards across all size categories due to uniform task
structures, Epigenomics workflows exhibit moderate perfor-
mance with higher variance due to heterogeneous task de-
pendencies, and Montage workflows demonstrate the great-

est performance differentiation between ORBIT and baseline
methods.

Convergence Analysis: Figures 13a—13c present a detailed
convergence analysis, highlighting the superior learning effi-
ciency of ORBIT across all experimental conditions. The OR-
BIT framework consistently achieves the fastest convergence
for every workload type and application. Specifically, it con-
verges in fewer than 260 episodes for small workloads, within
450 episodes for medium workloads, and within 500 episodes
for large workloads. In contrast, DON requires the highest
number of episodes across all applications and task sizes. The
convergence order of the algorithms is ORBIT < A3C <
PPO < PG < DQ@N. For the Epigenomics and Montage
applications under large workloads, PG converges faster than
PPO. Considering different applications, the overall conver-
gence order is C'ybershake < Montage < Epigenomics,
consistent across all workload types.

These performance improvements can be attributed to three
key architectural innovations: (i) a workload-aware state rep-
resentation that enables faster pattern recognition in work-
flow characteristics, (ii) a balanced multi-objective reward
formulation that provides clearer learning signals for complex
scheduling decisions, and (iii) a policy design that efficiently
explores the action space for dynamic workflow scheduling
under heterogeneous workloads. In contrast to standard DRL
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Fig. 13: Convergence Analysis: Episodes required for stable performance across workflow types and size categories.

baselines that require extensive exploration in task-agnostic
environments, ORBIT leverages domain-specific knowledge to
accelerate learning convergence. The consistent convergence
advantages demonstrate ORBIT’s practical viability for de-
ployment in dynamic cloud environments where rapid adapta-
tion to changing workloads is essential.

IV. CONCLUSION AND FUTURE SCOPE

This proposed ORBIT framework extends the actor—critic
paradigm through a workload-aware state representation and
a balanced, multi-objective reward design that jointly encodes
QoS, job priority, fairness, and delay. ORBIT achieves ac-
celerated convergence, higher asymptotic performance, and
improved stability in heterogeneous workflow workloads. The
workflow size is categorized into three types of tasks: Small,
Medium, and Large. The results demonstrate that ORBIT
consistently outperforms standard DRL baselines (A3C, PPO,
DQN, PG) in both episode-level reward trajectories and size-
specific convergence behavior. Performance gains are most
pronounced for large workflows, where ORBIT sustains higher
reward levels with reduced variance, evidencing its ability
to manage complex task-graph dependencies and intensified
resource contention. These findings establish ORBIT as a
scalable, principled foundation for multi-objective workflow
scheduling in dynamic and resource-constrained cloud set-
tings.

Future research will extend ORBIT along several promis-
ing directions by incorporating meta-learning and enhance
adaptability under non-stationary workloads. We can also
include automated reward-weight tuning via multi-objective
optimization to facilitate cross-domain deployment.
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