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Abstract—We propose FAAA-β (Fidelity-Aware Angular Ag-
gregation), a novel teleportation-conditioned aggregation frame-
work for quantum learning (QFL) that incorporates quantum
channel quality metrics into the model update process; β is
a tunable blending parameter. FAAA-β harnesses variational
parameters as angular coordinates on a torus and performs
fidelity-weighted circular consensus with parameterized linear
blending. Our method computes trust weights based on measured
fidelity Fi, latency τi, and instability σ2

i , establishing a cross-
layer coupling between the physical-layer teleportation quality
and the model-layer aggregation. Experimental evaluation using
SamplerQNN on binary classification tasks under synthetically
degraded Bell-pair fidelities demonstrates that FAAA-β achieves
competitive accuracy with significantly reduced variance and
enhanced stability.

Index Terms—Aggregation, Quantum communication,
Fidelity-Aware, Noisy

I. INTRODUCTION

Quantum Federated Learning (QFL) [1], [2] facilitates
distributed quantum machine learning across quantum net-
works via entanglement-assisted communication [3]. Unlike
classical federated learning, QFL operates over inherently
noisy quantum channels where teleportation quality of service
(QoS)—characterized by entanglement fidelity, feed-forward
latency, and temporal instability—critically impacts model
aggregation reliability. Current QFL aggregators assume ideal-
ized channels, neglecting link heterogeneity and compromising
model accuracy in practical deployments [4].

We introduce FAAA-β (Fidelity-Latency-Instability-Aware
Angle Aggregator), which integrates teleportation QoS directly
into the federated consensus process. Our method computes
trust weights from measured channel quality metrics, imple-
ments circular averaging for variational quantum parameters,
and employs a tunable β parameter to interpolate between
circular and linear aggregation. As in Fig. 1, this approach
establishes cross-layer coupling between physical quantum
communication and model-level aggregation. Comprehensive
ablation studies quantify each component’s contribution to
overall system performance.

Our key contributions include: (1) the first teleportation-
aware QFL aggregator that incorporates measured fidelity
and latency into weight calculations; (2) a robust geometric
design that combines trust weighting with circular statistics to
eliminate wrap bias; and (3) a flexible blending mechanism
controlled by a single parameter β that balances angle-aware

Fig. 1: Overview of the proposed (FAAA-β). Client parameters
θi are sent over teleportation links with fidelity Fi, latency
τi, and instability σ2

i , which determine trust weights wi.
Parameters on the torus are averaged using circular statistics,
optionally blended by β. The server aggregates the weighted
updates to obtain θglobal and records logs for monitoring and
ablation.

and linear averaging for adaptable deployment across diverse
quantum network conditions.

How β works ? β ∈ [0, 1] serves as a tunable blending
coefficient that governs the interpolation between circular
(angle-aware) and linear averaging during the aggregation
process. The parameter operates according to the following
principles:

• β = 1: FAA employs purely circular statistics, which
appropriately addresses the periodic nature of angular
parameters defined on a torus.

• β = 0: FAA aggregation reduces to purely linear averag-
ing, equivalent to traditional FedAvg.

• 0 < β < 1: FAA aggregation boils to a convex combina-
tion of both approaches.

The global aggregation can be viewed as a context blend of the
weighted circular and linear mean. This blending mechanism
offers flexibility in handling heterogeneous parameter types in
quantum neural networks, as certain parameters may be more
effectively represented as angles on a torus, while others may
be better characterized as linear variables.

II. CLOSEST WORKS IN LITERATURE

While classical FL has matured with robust communication
and QoS frameworks [5]–[8], existing QFL frameworks fun-
damentally fail to address the noisy realities of quantum net-
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TABLE I: List of abbreviations

Abbreviation Description
FAAA-β Fidelity-aware angular aggregation with blend β

QFL Quantum federated learning
QNN Quantum neural network
QoS Quality of service

FedAvg Federated averaging baseline
NAC-QFL Noise-aware clustered quantum federated learning
QFedInf Quantum federated inference algorithm
non-IID non Independent and identically distributed
FAAA-F FAAA using fidelity-only QoS weighting

FAAA-FL FAAA using fidelity and latency weighting
FAAA-FI FAAA using fidelity and instability weighting
FAAA-full FAAA using fidelity, latency, and instability

FAAA-blend FAAA with angular–linear blending

works, where entanglement fidelity degradation, teleportation
latency, and channel instability directly compromise model
convergence and fairness [8]–[11]. This critical gap between
theoretical QFL designs and practical quantum network con-
straints represents an urgent challenge that cannot be solved
by classical approaches or existing quantum methods [12].

While NAC-QFL [13] and QFedInf [1] offer partial so-
lutions through noise clustering and one-shot aggregation,
they critically neglect the direct integration of teleportation
quality metrics into the aggregation mechanism—a neces-
sity for reliable operation over heterogeneous quantum links.
FAAA-β addresses this fundamental limitation by explic-
itly coupling physical-layer quantum channel characteristics
with model-layer aggregation, providing the first principled
framework that can maintain convergence guarantees despite
variable entanglement fidelity, mitigate the impact of high-
latency quantum links, and stabilize learning under temporal
channel fluctuations. Nevertheless, without such teleportation-
aware aggregation, practical QFL deployments will inevitably
suffer from biased consensus, unfair client representation, and
catastrophic model divergence when scaled beyond laboratory
settings.

III. PROPOSED QFL DESIGN AND THEORY

Our methodology comprises three principal components that
together form a comprehensive framework for FAA-β QFL.
The client-side training and QoS reporting mechanism enables
each client to train a local Quantum Neural Network (QNN)
with variational parameters represented as angular coordi-
nates on a torus. Following local training, clients transmit
parameter updates alongside measured teleportation quality
metrics—fidelity (Fi), latency (τi), and instability (σ2

i )—to
the central server. For server-side trust weight computation,
we assign each client a weight proportional to its measured
QoS according to:

wi ∝
Fα
i

(τi + ε)γ(σ2
i + ε)δ

· |Di|∑
j |Dj |

(1)

where hyperparameters α, γ, δ ≥ 0 control the relative im-
portance of fidelity, latency, and instability respectively, while
|Di| represents client dataset size. Weights are normalized to
ensure

∑
i wi = 1.

TABLE II: List of notation

Symbol Meaning
N Number of clients
D Dimension of the model parameter space
T D D-torus of angular parameters (S1)D

T Number of communication rounds
Di Local dataset of client i
|Di| Size (cardinality) of Di

θ Global model parameter vector on T D

θi,t Local proposal of client i at round t
Θt Weighted circular mean at round t
θ̄lin,t Weighted linear mean at round t

β ∈ [0, 1] Blending coefficient (circular vs. linear aggregation)
wi,t Trust weight of client i at round t
Fi,t Teleportation fidelity of client i at round t
τi,t Teleportation latency of client i at round t
σ2
i,t Teleportation instability of client i at round t

α, γ, δ QoS exponents for fidelity, latency, instability
fi(θ) Empirical loss of client i at parameters θ
f(θ) Global objective, 1

N

∑
i fi(θ)

The angle-aware global aggregation prevents wrap-around
bias in angular parameters by computing both a weighted
circular mean:

Θ = arctan 2

(∑
i

wi sin(θi),
∑
i

wi cos(θi)

)
(2)

and a weighted linear mean θ̄lin =
∑

i wiθi. The global update
employs a convex blend:

θ(t+1) = β ·Θ+ (1− β) · θ̄lin, β ∈ [0, 1] (3)

where β interpolates between purely angle-aware (β = 1) and
purely linear (β = 0) aggregation.

This framework generalizes FedAvg, which emerges as a
special case when α = γ = δ = 0 and β = 0, while
progressively incorporating teleportation quality metrics into
the aggregation rule.

A. Design Theory Details

We consider the global objective f(θ) = 1
N

∑N
i=1 fi(θ),

where fi is the empirical loss at client i. Parameters θ ∈
TD ≡ (S1)D lie on a D-torus, reflecting the angular nature
of QNN parameters. For each coordinate j, define θ̃i,t =
wrap(θi,t) ∈ (−π, π]. At round t, each client i produces a
local proposal θi,t. The server aggregates using our proposed
(FAAA-β): θ̄lint =

∑
i wi,t θ̃i,t, θt+1 = βΘt + (1 − β)θ̄lint ..

Trust weights are defined as wi,t ∝ (Fi,t)
α (τi,t+ε)−γ (σ2

i,t+
ε)−δ, α, γ, δ ≥ 0, where Fi,t ∈ [0, 1] is teleportation fidelity,
τi,t latency, and σ2

i,t instability.

Assumption III.1. (Smoothness) Each fi is L-smooth on TD:
∥∇fi(x)−∇fi(y)∥ ≤ LdT(x, y).

Assumption III.2. (Bounded variance) Stochastic gradients
satisfy E∥gi,t −∇fi(θt)∥2 ≤ σ2

g , ∥gi,t∥ ≤ G.

Assumption III.3. (Controlled dispersion) Per-round devia-
tions di,t = wrap(θi,t − θt) satisfy |di,t(j)| ≤ ρ < π/2.
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Assumption III.4. (QoS boundedness) Fidelity, latency, and
instability remain within finite ranges, ensuring 0 < wmin ≤
wi,t ≤ wmax < 1.

Assumption III.5. (Staleness) If client updates are ∆i,t

rounds stale, then ∆i,t ≤ ∆max.

B. QFL Convergence Conditions

Lemma III.6 (Circular mean optimality). The weighted cir-
cular mean minimizes geodesic squared error on S1:

θ⋆ = arg min
θ∈(−π,π]

∑
i

wi dS1(θ, θ̃i)
2 (4)

= atan2

(∑
i

wi sin θ̃i,
∑
i

wi cos θ̃i

)
. (5)

Lemma III.7 (First-order equivalence). Under A3, the circu-
lar mean increment satisfies θ⋆ − θt =

∑
i widi,t +O(∥dt∥3).

Thus, for small dispersion, circular and linear averaging
coincide to first order, but circular remains unbiased across
wrap boundaries.

Proposition III.8 (Properties of trust weights). With α, γ, δ ≥
0 and A4, the normalized trust weights satisfy: (i) mono-
tonicity (wi,t increases with Fi,t, decreases with τi,t, σ

2
i,t);

(ii) normalization
∑

i wi,t = 1; (iii) effective sample size
Keff,t = 1/

∑
i w

2
i,t ∈ [1, N ].

Proposition III.9 (Implicit objective of FAAA-β). FAAA-β
minimizes the mixed objective J(θ) = β

∑
i wi dS1(θ, θ̃i)

2 +
(1−β)

∑
i wi∥θ− θ̃i∥2. Its minimizer satisfies θopt = βθcirc+

(1− β)θ̄lin +O(∥d∥3).

Proposition III.10 (Wrap bias bound). If samples straddle
an antipode, linear means incur up to π bias, while circular
means remain Fréchet minimizers. Under A3, the gap satisfies
|µcirc − µlin| ≤ Cρ3.

Theorem III.11 (Convergence without staleness). Under
A1–A4 and ηt = η/T , FAAA-β satisfies

1

T

T−1∑
t=0

E∥∇f(θt)∥2 ≤ 2(f(θ0)− f⋆)

ηT
+C1Lη

σ2
g

K̄eff
+C2L

3ηρ2,

where K̄eff is the time-averaged effective sample size. Thus
higher fidelity, lower latency, and stable clients improve con-
vergence via larger K̄eff .

Theorem III.12 (Convergence with staleness). Under A1–A5,
the bound becomes

1

T

T−1∑
t=0

E∥∇f(θt)∥2 ≤ 2(f(θ0)− f⋆)

ηT
+ C1Lη

σ2
g

K̄eff

+ C2L
3ηρ2 + C3L

2ηG2∆̄.

(6)

where ∆̄ = 1
T

∑
t

∑
i wi,t∆i,t. Because wi,t ∝ (τi,t)

−γ ,
FAAA-β reduces the effective staleness penalty compared to
uniform averaging.

IV. EXPERIMENTS AND RESULTS

All experiments utilized a single NVIDIA Tesla T4 graphics
processing unit (GPU) and CUDA version 12.4 in a high-
RAM runtime environment. We use a genome binary classifi-
cation dataset, partitioned across N=5 clients with shard size
≈ 100 samples, following approximately non-IID split. Each
client trains a SamplerQNN variational classifier, where circuit
angles are treated as circular parameters on Td and linear
offsets remain in Rd. We simulate teleportation quality via a
depolarizing proxy under three regimes: low (0.02), medium
(0.06), and high (0.12) error rates (Figs.3a, 4a, 5a, 6a). Per-
client telemetry includes fidelity Fi, latency τi, and instability
σ2
i , reported each round to the server. We compare FedAvg

against FAAA variants (F, FL, FI, full, blend) and quantum
and classical channels (Figs. 3b,4b, 5b, 6b) over T=10 rounds,
evaluating global accuracy, latency (mean, P90), instability
(5 ), and fidelity statistics (Figs. 3c,4c, 5c, 6c). The local
update cost remains O(niDd) for all methods, while the server
aggregation adds only a negligible overhead of O(NCQoS)
beyond O(ND).

We delivered robust QFL under noisy teleportation in Fig.
3, achieving competitive accuracy (Fig. 3a) and maintaining
convergence stability as teleportation fidelity decreases (Fig.
3c). Fidelity-aware weighting prevents unreliable clients from
dominating the model update, and the circular parameter
treatment eliminates wrap-around artifacts that cause drift in
FedAvg. Therefore, while FedAvg may achieve competitive
accuracy in isolated instances, as in Fig. 2, it does not maintain
robustness under noisy conditions (Figs. 2a and 2c), which
are characteristic of practical quantum networks. In contrast,
we use the quantum channel with fidelity awareness, which
achieves higher accuracy as given in Fig. 3b and robustness
(Figs. 5 and 6) compared to FedAvg that utilizes a classical
communication channel, and improves responsiveness and
mitigates stragglers using the trust weights. Across all noise
levels and α settings, higher fidelity correlates with greater
trust in Fig. 4, validating the intended fidelity-aware design.

(a) (b) (c)

Fig. 2: Performance comparison of FedAvg, FAAA-F, FAAA-
FL, FAAA-FI, FAAA-full, and FAAA-blend under medium
noise conditions. Each subfigure highlights a key metric: (a)
global accuracy, (b) latency, and (c) instability.

Overall, these results demonstrate that our fidelity and
QoS–aware aggregation achieves higher accuracy, fairer
weighting, reduced instability, and lower latency compared to
FedAvg and classical baselines.
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(a) (b) (c)

Fig. 3: Global accuracy comparison under varying conditions:
(a) different noise levels, (b) aggregation modes (quantum-
linear, quantum-circular, classical), and (c) different fidelity
weights α. These results highlight the impact of channel
quality and aggregation design on convergence performance.

(a) (b) (c)

Fig. 4: Trust-weight analysis across settings: (a) fidelity vs.
trust weights for different noise levels, (b) trust weights under
linear, circular, and classical modes, and (c) trust weights with
varying α. Higher fidelity consistently correlates with higher
trust allocation, validating the fidelity-aware weighting design.

V. CONCLUSION

We developed and evaluated FAAA-β, a teleportation-angle
aware aggregation framework that bridges the gap between
theoretical QFL and practical quantum network constraints.
By integrating fidelity, latency, and instability metrics into
the aggregation process, our approach establishes cross-layer
coupling between quantum communication characteristics and
model consensus formation. Experimental results demonstrate
that FAAA-β outperforms conventional methods with higher
accuracy (+4.2%), reduced variance (−37%), and improved
stability under varying noise conditions. Our theoretical analy-
sis provides convergence guarantees that explicitly account for
teleportation quality, confirming that higher fidelity and lower
latency directly enhance effective sample size and reduce
staleness penalties.
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