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Abstract—In recent years, the rising air temperature associated
with climate change is increasing the demand for accurate and ef-
ficient methods to predict indoor thermal conditions in buildings.
Conventional computational fluid dynamics (CFD) simulations
provide high accuracy in analyzing indoor temperature distribu-
tions. However, they require substantial computational resources
and processing time, which limits their applicability in real-time
operations. To address this issue, this study proposes a recur-
rent surrogate model that employs a convolutional long short-
term memory (ConvLSTM) architecture trained with unsteady
CFD results to predict future indoor temperature distributions,
thereby achieving a balance between accuracy and computational
efficiency. The proposed model takes temperature distribution
maps generated from measured environmental sensor data as
input, and sequentially predicts future distributions of environ-
mental indicators based on historical time-series data. Experi-
mental environment is conducted in an actual university campus
environment to demonstrate that the proposed approach achieves
a significant reduction in computational time while maintaining
high prediction accuracy compared to CFD simulations. The
results highlight the potential of integrating measured sensor
data with machine learning techniques to establish a practical
alternative to traditional CFD-based analysis, with promising
applications in heating, ventilation, and air conditioning (HVAC)
control optimization and building environmental design support.

Index Terms—Surrogate model, CFD, ConvLSTM, indoor
environment prediction, RBF interpolation

I. INTRODUCTION

Climate change–induced temperature rising the risk of
adverse health effects and strengthens the importance of
automated control of indoor thermal environments [1]. The
building sector accounts for a large portion of energy con-
sumption, and HVAC systems are the major energy consumers,
representing approximately 30–50% of the total energy use in
residential and non-residential buildings [2]. Accordingly, real-
time prediction of environmental indicators inside buildings is
essential for the proper operation of the HVAC systems.

For the prediction of environmental indicators in the as-
sumed environment, simulation results from CFD are widely
employed. The CFD numerically solves physical equations to
analyze and predict the state of the target space. However,

high-accuracy CFD simulations demand enormous computa-
tional costs [3].

To address this issue, surrogate models based on machine
learning are recently attracting attention as an alternative
to CFD simulations. In existing studies on the surrogate
models for CFD, machine learning–based surrogate models
are proposed to reproduce CFD results for indoor airflow
distributions [4] [5]. These models achieve fast and accu-
rate estimation of airflow distributions compared with CFD
simulations. Nevertheless, the target spaces are restricted to
simple cuboid structures, which do not reflect realistic living
environments. Moreover, their prediction targets are limited
to steady-state conditions and cannot accommodate unsteady
variations caused by HVAC operations.

Therefore, this study proposes a surrogate model-based
system for predicting indoor temperature distributions in actual
building spaces. By employing results from unsteady CFD
simulations as training data and adopting ConvLSTM, which
is effective for predicting spatiotemporal phenomena, the
proposed system enables prediction of time-series of indoor
temperature distributions.

II. RELATED WORKS AND OBJECTIVES OF OUR STUDY

A. Research on Surrogate Models for Indoor Environment
Prediction

Zhang et al. propose a surrogate model based on an artificial
neural network (ANN), trained on CFD simulation results,
to rapidly predict indoor air velocity vector distributions [4].
In this approach, multiple CFD simulations are conducted by
changing the boundary with the external environment such as
inlet location, size, and fluid velocity. These results are then
used to train the ANN, which generates images of steady-
state velocity distributions. This method significantly reduces
computational time compared with CFD while efficiently
reproducing airflow patterns throughout indoor spaces.

Similarly, Zhou et al. investigate the prediction of indoor air-
flow under isothermal conditions by comparing multiple ANN
architectures [5]. Their study employs a building model with
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multiple inlets, demonstrating applicability to more realistic
indoor geometries.

However, both of these existing studies restrict the target
spaces to simple cuboid structures, which cannot sufficiently
represent the complex geometries observed in actual living
environments. Furthermore, their predictions are limited to
steady-state conditions and cannot capture unsteady variations
induced by HVAC operation, occupant movement, or outdoor
air changes.

B. Research on Next Frame Prediction of Color Maps Using
ConvLSTM

Lu et al. employ a ConvLSTM model to predict the future
spatial distribution of radar echo intensity observed by weather
radars [6]. The proposed model takes past radar image se-
quences as input, and by simultaneously learning spatial and
temporal patterns through ConvLSTM, it accurately captures
the movement of precipitation regions.

The ConvLSTM integrates convolutional neural networks
(CNNs) for extracting spatial features with long short-term
memory (LSTM) networks for modeling temporal depen-
dencies, thereby preserving spatial locality while learning
temporal dynamics. This property is particularly effective for
predicting phenomena with spatiotemporal continuity.

The usefulness of ConvLSTM is also demonstrated in other
fields. For example, Wang et al. apply ConvLSTM to the
prediction of the El Niño–Southern Oscillation (ENSO), using
time-series images of sea surface temperature and wind speed
to capture spatiotemporal variations in ocean phenomena and
improve prediction accuracy [7]. Similarly, Pan et al. utilize
ConvLSTM for global sea surface temperature prediction [8].

These studies collectively highlight that ConvLSTM is ef-
fective for prediction tasks involving spatiotemporal variations
and is applied in diverse domains. ConvLSTM is increasingly
positioned as a general and powerful method for spatiotempo-
ral prediction.

C. Objective Our Research
High-accuracy simulation results of indoor environments

obtained through CFD are effective for air conditioning control
and design, but they involve significant computational cost and
time constraints. As a solution, surrogate models trained on
CFD simulation results are proposed. However, they do not
address predictions for complex geometries found in actual
buildings or unsteady environments with temporal variations.
In contrast, ConvLSTM, a spatiotemporal sequence prediction
model, can simultaneously learn spatial structures and tempo-
ral dependencies, making it suitable for predicting dynamically
varying two-dimensional distributions.

Therefore, this study proposes a system that integrates a
surrogate model based on ConvLSTM to predict temporal vari-
ations in temperature distributions. The system uses unsteady
CFD simulation results of indoor temperature distributions in
real building spaces as training data. With this approach, future
temperature fields influenced by HVAC operations and external
condition changes can be rapidly and efficiently estimated in
realistic architectural environments.
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Fig. 1: Overview of the Proposed System.

III. PROPOSED ENVIRONMENTAL PREDICTION SYSTEM
USING SURROGATE MODEL

Figure 1 illustrates the overall configuration of the system
proposed in this study. The system consists of multiple sensor
nodes, a gateway, and a server. The sensor nodes are deployed
on various places to monitor the three-dimensional environ-
mental distribution, including room temperature, within the
target space. To ensure the convenience of the occupants, the
nodes are installed near walls, ceilings, or floors, avoiding the
central area of the space. A single gateway is placed near the
center of the target space.

Each sensor node transmits the measurements obtained from
environmental sensors installed at multiple heights, along with
identifiers for each sensor, to the gateway via BLE (Bluetooth
Low Energy) communication. The gateway collects the mea-
surements from the sensor nodes and periodically aggregates
the observed environmental data, such as room temperature,
from multiple nodes and transmits them to the server via the
Internet. Figure 2 shows an example of the sensor nodes and
the gateway, as well as the details of the equipment used.

The surrogate model on the server predicts the environmen-
tal conditions on a two-dimensional plane at a floor height of
approximately 1.25 meter using the measured environmental
data. It is known that human thermal perception and comfort
vary depending on the body region, with the facial area being
particularly sensitive to temperature changes and an important
indicator in indoor environment evaluation [9]. Therefore, the
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Fig. 2: Details of the Observation Equipment.
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Fig. 3: Configuration of the Surrogate Model.

model targets the prediction of environmental conditions on a
two-dimensional plane corresponding to the facial area of a
seated occupant at a floor height of approximately 1.25 meter.

IV. CONSTRUCTION OF A SURROGATE MODEL USING
CONVLSTM

A. Structure of the Surrogate Model

The surrogate model constructed in this study receives
spatial distribution of temperature at multiple consecutive time
steps as input and outputs the temperature field at the next
time step [10]. Its configuration is shown in Fig. 3. The
model used in this study consists of a single ConvLSTM
layer followed by a Batch Normalization layer and a two-
dimensional convolutional layer (Conv2D). The ConvLSTM
layer employs a kernel size of 5 × 5, 32 output channels,
and the hyperbolic tangent (tanh) activation function, enabling
the simultaneous learning of spatial features and temporal
dependencies. The Conv2D layer uses a kernel size of 3×3, a
single output channel, and the sigmoid activation function to
produce a normalized temperature output. The model is trained
using the Adam optimizer with the mean squared error (MSE)
as the loss function.

B. Input Environmental Data to the Surrogate Model

The input to the surrogate model in the proposed system
is the spatial distribution of the measured environmental data
on a two-dimensional plane at a floor height of 1.25 meter.
To this end, data obtained from environmental sensors within
the target space are interpolated in three dimensions on the
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Fig. 4: Example of Interpolated Real-World Data Using RBF.

server using Radial Basis Function (RBF) interpolation [11].
RBF interpolation is a method capable of smoothly estimating
data at scattered observation points and can handle nonlinear
and multidimensional spatial distributions, making it suitable
for reproducing continuous environmental fields from a limited
sensor deployment. This approach enables the filling of spatial
gaps between sensors. Moreover, the grid points corresponding
to the sensor installation positions retain values identical to
the measured data after interpolation. An example of applying
RBF interpolation to the measured data is shown in Fig.
4. Multiple datasets are generated at 10-second intervals,
including nine consecutive time steps provided as input to the
surrogate model.

C. Recursive Prediction

For the prediction of temperature distribution using the sur-
rogate model explained in Section IV-A, a recursive prediction
approach is applied. In this approach, the model is provided
with temperature distributions over multiple time steps, and
its outputs are sequentially used as inputs for subsequent
steps, enabling continuous prediction of temperature changes
at arbitrary future times.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

The space under analysis is a classroom within the univer-
sity campus. The dimensions of the space are approximately
14.4 meter in width, 15.33 meter in depth, and 2.7 meter in
height, including projections to the outdoors and a raised floor
structure. Additionally, four air conditioners and three total
heat exchangers are installed as HVAC equipment, and desks,
chairs, and other equipment are permanently installed. This
study defines a dimensional grid by dividing the space into 16
cells in the X direction, 17 cells in the Y direction, and 3 cells
in the Z direction at 0.9 meter intervals as shown in Fig. 5.
The temperature at each cell is taken as the value at the cell’s
center coordinates.

The ConvLSTM-based surrogate model predicts a two-
dimensional plane at a floor height of 1.25 meter, specifically
the region within 12 cells in the X-direction and 15 cells in the
Y-direction that does not contact walls or the outdoors. Fig. 2
shows an outline of the target area. Grid lines are shown in
red, and the area predicted by the surrogate model is outlined
in blue.
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Fig. 5: Surrogate Model Prediction Target Area and Temper-
ature Sensor Installation Location.

The 3D model of the space is created using AutoCAD based
on multiple types of design drawings and reflects the actual
environment, including furniture and equipment.

The positions of the temperature sensors are shown in
Fig. 5. The sensors are installed at three horizontal planes
corresponding to floor heights of 0.35 meter, 1.25 meter, and
2.15 meter, with six sensors on each plane, totaling 18 units,
such that they correspond to the center coordinates of the
pseudo-cells. On each plane, one sensor is placed at each of
the four corners of the space, while two sensors are positioned
near the center: one between two air conditioners and the other
at a location away from the air conditioners. The two sensors
located near the center at a floor height of 1.25 meter are
not used in the proposed method but are installed obtaining
reference data for experimental validation.

CFD simulations are conducted using FlowDesigner (2024
Update3), and an orthogonal structured mesh is applied to the
constructed three-dimensional model to divide the space into
multiple rectangular cells [12].

The mesh resolution was investigated with three total mesh
counts of 499,800, 598,752, and 696,464. Considering the
trade-off between computational cost and accuracy, a mesh
of 598,752 cells is adopted.

The surrogate model in this study is executed on a Windows
OS (64-bit) environment equipped with a 12th-generation Intel
Core i9-12900K CPU (3.19 GHz), an NVIDIA RTX 3060 Ti
GPU, and 32 GB of RAM.

B. Training Data Used for Model Learning

For training data generation, unsteady CFD simulations of
three-dimensional indoor temperature and airflow distributions
are performed for one hour after the start of air-conditioning.
The time step is 10 seconds, with four initial indoor tempera-
tures (27◦C, 30◦C, 33◦C, 36◦C) and two outdoor temperature
settings (equal or +2◦C), resulting in eight cases. The setpoint
of the air-conditioning units is fixed at 25◦C. Fig. 6 shows the
time-series variation of the average temperature in the target
region obtained from CFD.

From the beginning of each time-series data, consecutive 10-
step segments are extracted as individual datasets. The dataset
is continuously extracted by shifting the start point each time.
As a result, 2,672 datasets are prepared, and the first nine
steps are served as input and the late step is the target data.
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Fig. 6: Time-series Temperature Changes in Training Data
Created Via CFD.

These datasets are randomly divided into training (1,864 sets,
70%), validation (392 sets, 15%), and testing (416 sets, 15%).
The testing data are further divided into initial (0–20 minutes,
136 sets), middle (20–40 minutes, 136 sets), and late (40–
60 minutes, 144 sets) periods to evaluate temporal variations.

C. Actual Measurement Data Used for Verification

Measured data are acquired every 10 seconds from the 18
sensors shown in Section V-A. Observations are conducted
from the start of HVAC operation until a predetermined
elapsed time. The set temperature of the air conditioners is
fixed at 25◦C in all cases. Fig. 7 shows the temperature
variations on the middle layer plane for three trials. From
the beginning of each time-series data, consecutive 10-step
segments are extracted as individual datasets. The dataset is
continuously extracted by shifting the start point each time.
As a result, nine steps are served as input and the following
18 steps are the test data.

D. Evaluation of the Surrogate Model Accuracy for Simula-
tion Results

The prediction accuracy of the surrogate model constructed
in this study is evaluated using the dataset for testing. The
model takes the temperature distributions of the past nine time
steps as input and sequentially predicts the next 18 time steps
recursively, which inherently leads to error accumulation as
the number of prediction steps increases.

The evaluation metrics are the root mean square error
(RMSE) and mean absolute error (MAE) for average value
across all locations and all times. The analysis is conducted
by dividing the elapsed time after HVAC operation into three
intervals: initial (0–20 minutes), middle (20–40 minutes), and
late (40–60 minutes). The RMSE and MAE at each time step
are presented in Fig. 8.

The results indicate that the initial interval exhibits slightly
higher RMSE and MAE due to large temperature fluctuations.
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Fig. 7: Experimental Data.

However, the errors remain sufficiently small, maintaining
high overall prediction accuracy. During the middle and late
intervals, errors decrease further due to smaller changes in
room temperature. Although errors tend to gradually increase
with the number of prediction time steps in all intervals,
the rate of increase is limited, and accuracy degradation is
effectively suppressed even for long-term predictions.

E. Evaluation of the Surrogate Model Accuracy for Actual
Measurement Data

Using the proposed surrogate model, temperature distribu-
tion predictions are performed based on measured data, and
their accuracy is evaluated. The measured data are obtained
from 16 temperature sensors installed in the target space and
processed as two-dimensional temperature distributions using
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Fig. 8: Evaluation Using the Evaluation Dataset.
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Fig. 9: Evaluation Based on Actual Measurement Data.

the RBF interpolation described in Section IV-B, which differs
from the CFD-generated training data. The model takes the
past nine time steps of measured data as input and recursively
predicts the temperature for the next 18 time steps. Prediction
errors are evaluated using RMSE and MAE at each time step.
Fig. 9 shows the time series of RMSE and MAE for three
measured data samples explained in Section V-D.

Examining the differences among samples, Sample 3, in
which the temperature decreases over a certain period and
then remains relatively stable, exhibits the highest prediction
accuracy. In contrast, Sample 1, which shows little overall
temperature decrease or increase across all locations, and
Sample 2, which includes a period of temperature rise, show
slightly lower prediction accuracy. Nonetheless, the surrogate
model maintains high predictive performance overall even for
measured data.

In addition, the observed data at the points of R08 and
R11 are not incorporated into the two-dimensional temperature
distribution maps used as inputs to the surrogate model. In this
validation, the prediction errors of the surrogate model are
compared with the measured values at these locations. Fig. 10
and 11 illustrate the variations in RMSE between the measured
and predicted data at R08 and R11 for Sample 2, with respect
to elapsed time and the number of prediction steps. R08 is
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Fig. 11: RMSE Relative to Measured Data with Sample 2 at
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located between two air-conditioning units, making it suscep-
tible to rapid temperature fluctuations and airflow disturbances.
Consequently, the RBF-interpolated values at R08 tend to
include larger errors, leading to reduced input accuracy for
the surrogate model. This tendency is reflected in the relatively
large prediction error observed from the initial time step t1. In
contrast, R11 is located away from all air-conditioning units
and is less affected by sudden operational changes. Although
error accumulation is observed as the prediction proceeds over
time steps, the overall error at R11 remains relatively small.

These results suggest that variations in prediction accuracy
arise from both the precision of the RBF-based input maps
and the influence of the air-conditioning environment at the
observation locations.

F. Comparison of Execution Time Between Surrogate Model
and CFD

Using measured data, three-dimensional indoor temperature
distributions are generated with the RBF interpolation method
described in Section IV-B, and, for only processing CFD
simulation, the observed outdoor temperature at the Osaka
Meteorological Observatory is also set as the initial condition
for the corresponding time. Based on this initial condition, fu-
ture indoor temperature distributions are recursively predicted

over multiple steps using both CFD and the proposed surro-
gate model, and the required computation times for the two
methods are compared. The results show that CFD requires
an average of 0.792 seconds each per prediction step, whereas
the surrogate model completes the same step in an average
of 0.057 seconds, demonstrating a substantial acceleration in
environmental prediction.

VI. CONCLUSION AND FUTURE WORK

In this study, a recursive surrogate model based on ConvL-
STM is developed using unsteady CFD-derived temperature
distributions. The model inputs two-dimensional temperature
maps generated by RBF interpolation from sensor data and
recursively predicts future conditions. The model achieves
high accuracy with mitigating error growth, while markedly
reducing computation time compared to conventional CFD.

Future work includes to predict for the more distant future,
improving generalization through expanded training data and
fine tuning, and incorporating human-related factors to enable
practical applications in HVAC control and thermal comfort
assessment.
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