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Abstract—Non-Terrestrial Network (NTN) communications,
using Low-Earth Orbit (LEO) satellites, are promising for mov-
ing vehicles due to their high-speed, high-capacity communication
and wide-area coverage. Meanwhile, in a mobile environment, the
rapid relative motion of both satellites and vehicles causes the
Line-of-Sight (LOS) to change dynamically, often leading to unex-
pected communication disruption. To maximize communication
opportunities for applications that require stable connectivity,
this study proposes an integrated framework that combines
vehicle-acquired position, image of sky field of view, satellite
orbit, and serving satellite estimation to predict communication
availability based on LOS. As an initial study, we verified the
relationship between predicting satellite LOS states (active/fad-
ing/appearing/hidden) and communication availability through
a field test. The experiment involved matching the sky area
captured by a 360-degree camera in a stationary environment
with Starlink communication. The results indicate that satellite
visibility alone cannot fully account for the availability, and by
integrating the serving satellite estimation technique, our method
can estimate availability with an accuracy of 58.6%.

Index Terms—LEQO, NTN, Satellites, Communication Availabil-
ity Prediction

I. BACKGROUND AND OBJECTIVES

With the widespread use of connected cars, automobiles
equipped with communication functions, the emergence of
various communication-dependent connected services is im-
minent [1], [2]. Beyond existing connected services, such
as operator assistance and remote air conditioning control,
advanced services, such as remote assistance for autonomous
vehicles, teleoperation of robotaxis, and telepresence from
cars, are anticipated in the future.

Advanced connected services require stable communication
while in motion. Current connected cars primarily use 4G/5G
cellular mobile services. While the further pervasion of 5G
and the market introduction of 6G [3] are promising, coverage
holes and weak signal areas are inevitable. To overcome
this challenge, communities have been making efforts to
use multipath/multi-connectivity communication technologies
across multiple cellular networks or to combine heterogeneous
wireless communication technologies [4]-[6].

One possible communication path is Non-Terrestrial Net-
works (NTN), formed by constellations of Low Earth Orbit
(LEO) satellites. NTN can provide supplemental communica-
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tion services to areas lacking sufficient numbers of cellular
base stations or the capacity to cover user terminals (UEs).
LEO-NTN offers low-latency communication due to the closer
proximity between the ground terminal and satellites, and
enables broadband communication by distributing the num-
ber of accommodated devices per satellite across large-scale
constellations. Currently, Starlink and OneWeb are deployed
as commercial services.

While LEO-NTN is promising for connected cars, the
mobility of both satellites and vehicles would disrupt stable
connectivity due to Line-of-Sight (LOS) loss. Trees, buildings,
terrain, and other vehicles, such as trucks, would obstruct LOS
between cars and satellites. Our hypothesis in this study is that
by predicting LOS loss and recovery, connected cars can fully
leverage the potential of LEO-NTN, switching proactively
between NTN and the cellular network.

Based on our earlier study [7], we propose a method for
predicting LEO-NTN communication availability in response
to dynamic changes in LOS. The ground terminal acquires the
sky field of view (FOV) image and integrates it with satellite
orbit information to determine communication availability.
By predicting future LOS for each satellite and the possible
accommodating satellite, our method predicts future commu-
nication outages and recoveries. Our implementation uses a
360-degree camera, estimates satellite positions from Two Line
Element (TLE) data, and classifies each satellite’s LOS into
several states. The method also introduces the serving-satellite
estimation technique proposed in the literature [8].

We evaluated our method in a static field environment. As
a result, the system can predict the number of LOS-available
satellites within the Starlink antenna’s 100-degree FOV with
a match rate of 97.45%. For the communication availability
prediction, employing only the LOS state estimation achieves
79.7% accuracy but 0.00% specificity, indicating it cannot
predict communication outage. In contrast, the serving-satellite
estimation technique, when integrated with LOS state estima-
tion, improves the specificity to 44.3%. The low specificity
of the former method is due to the finding that, even with
more than four satellites in the sky FOV, communication can
still experience outages. We assume that Starlink’s handover
mechanism does not account for the LOS state and may assign
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the ground terminal to a satellite that is non-LOS-available.
Key Takeaways and our contributions are as follows:

o Formulating a framework for predicting LEO-NTN com-
munication availability: presenting the overall picture that
integrates sky FOV, position information, and satellite
orbit estimation.

o Finding that the Starlink handover might not consider
LOS between the next satellite and the ground terminal.

o Limitations of the LOS states-only prediction: achieves
an accuracy of 79.7%; however, it fails to predict com-
munication outage, as there are consistently more than
several satellites in the sky region.

o Effectiveness of the serving-satellite estimation: the
method can achieve a prediction accuracy of 58.6%, a
precision of 80.7%, and a recall of 62.4%, although the
apparent accuracy value is lower than the LOS states only
method due to evaluation environment characteristics.

This paper is structured as follows. Section 2 describes re-
lated research. Section 3 presents an overview of the proposed
method. Section 4 evaluates the system that implements the
proposed method and discusses the evaluation results. Finally,
we conclude this paper and elaborate on future challenges.

II. RELATED WORK

Numerous studies have examined the communication char-
acteristics of the Starlink service, which our study also targets.

The literature [9] measures connectivity, RTT, throughput,
and network routes from Starlink antennas at four locations to
AWS regions around the globe, reports comparisons with ter-
restrial networks, and discusses the impact of terrain-induced
LOS loss. Additionally, the work discusses communication
quality in vehicle environments, based on RTT and throughput
measurements. Our study similarly assumes terrain as an
obstacle that vehicles may encounter. We propose predicting
changes in communication availability caused by obstructions,
such as buildings and large adjacent vehicles.

The literature [8] models the selection of handover destina-
tion satellites in Starlink with the help of machine-learning
techniques, from features such as satellite elevation angle,
direction of arrival, launch year, and presence of sunlight, and
evaluates the estimation accuracy of serving-satellites using
the top-k accuracy metric. Also, the literature reports a global
handover schedule for every 15 seconds. While the study uses
Starlink’s Obstruction Map, our method uses the camera view.
The Obstruction Map assumes operation in fixed environments
and requires about 1 hour to calculate LOS around the site. In
contrast, our method acquires visibility information immedi-
ately and is effective for mobility use cases. Our method draws
on the literature for estimating connected satellites to improve
the accuracy of communication availability prediction.

The literature [10] proposes a method to improve GPS
positioning accuracy by capturing the sky FOV using an
infrared camera and excluding multipath-affected signals from
non-LOS-available satellites. Our study focuses on communi-
cation satellites and predicts communication availability by
combining future satellite positions and the sky FOV. On the
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Fig. 1: Overview of the proposed method

other hand, the technique using infrared cameras improves the
accuracy of sky-region detection at night and is applicable to
our method as well.

The literature [11] proposes a sky-region detection method
from a single VGA (640x480) image, achieving high detec-
tion accuracy (95%) and short processing time (150ms). Our
method applies the technique to images from a 360-degree
camera of the sky FOV.

III. PROPOSED METHOD

This section describes the LEO-NTN communication avail-
ability prediction method, integrating vehicle position, the sky
FOV from mobility, and satellite orbit estimation. Figure 1
shows the overview of the proposed method.

The key idea of our method is that, for mobile objects like
vehicles where LOS conditions change rapidly, the availability
of LEO-NTN can be determined and predicted by inferring the
LOS state from the sky-region within the sky field and satellite
positions. The method consists of the following elements.

1) Vehicle Position Estimation: acquire and estimate cur-
rent and future vehicle position from a GPS device or a
navigation system

2) Sky-Region Detection: acquire the sky FOV image for
the current and future position from a 360-degree camera
and a 3D map, and detect the sky-region where no
obstruction is present.

3) Satellite Position Estimation: acquire TLE data from
the satellite information server and estimate current and
future position for each satellite.

4) LOS State Prediction: integrate vehicle position, satellite
position, and sky-region to estimate and predict LOS
state for each satellite.

5) Serving-Satellite Estimation: estimate candidates for
serving-satellite that the Starlink network has assigned
the ground terminal to.

6) Communication Availability Prediction: predict network
availability from the LOS states for the candidate
serving-satellites.

Our method assumes that vehicles communicating through
the Starlink network are also equipped with a GPS positioning
and navigation system, enabling acquisition of latitude, longi-
tude, altitude, direction, speed, and time. The vehicle position
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TABLE I: LOS State based on satellite position and inclusion in the
sky-region

Current position
is included

Current position
is not included

Future position
is included

Future position
is not included

active appearing

hidden

fading

estimation provides position and motion information for the
current and future time. For vehicles, route information from
the navigation system is available to predict future positions
for long-term prediction.

To obtain the satellite-visible sky-region, the vehicle uses
a camera to capture the sky FOV or relies on 3D maps
to estimate future sky visibility. Sky-region detection then
identifies unobstructed areas via image processing. The camera
can be a standard camera, such as a dashboard camera or
a 360-degree camera for full-surround capture. Additionally,
transportation digital twins can also provide 3D map data.

Our method defines a satellite information server as a
server that provides TLE or related satellite orbit data. For
example,CelesTrak! and SPACE-TRACK.ORG? publish TLE
data, including LEO satellites for Starlink, OneWeb, and
Kuiper. SpaceX also publishes ephemeris data for its satellites,
including minute-by-minute positions and velocities for the
next three days.

By integrating vehicle position, the sky-region, and satellite
position, our method estimates the current and future LOS
states for each satellite. First, the LOS state prediction converts
satellite positions to relative positions within the image of the
sky FOV. Secondly, satellite positions are checked to determine
whether they are in the sky-region and classified into four
states. Table I shows the four states: active, appearing, fading,
and hidden. In addition to the LOS state, our method similarly
determines whether each satellite is within the beam width
(100 degrees) or antenna FOV; active beam, appearing beam,
fading beam, and hidden beam.

The serving-satellite estimation narrows down the possible
connecting satellite from the LOS state predicted satellites.
By employing the rule-based estimation technique derived
from the literature [8], our method estimates the current and
next serving satellite candidate lists every 15 seconds during
Starlink’s global handover period. The estimated serving-
satellites list consists of up to five satellites, each assigned
a score representing the likelihood of being a serving-satellite
on a scale of 0 to 100.

Finally, based on the LOS states and the estimated serving-
satellite list, the communication availability prediction deter-
mines whether the high-score-likelihood serving-satellites are
in an active beam or fading beam state. Algorithm 1 shows
the algorithm for the prediction. If the score is 85 or higher,
the corresponding satellite is considered a serving-satellite. If

Thttps://celestrak.org/
Zhttps://www.space-track.org/

Algorithm 1 Prediction of communication availability based
on sky-region, TLE Data and serving-satellite estimation

Require: Set of TLE data £, current time 7', prediction target
time Tpreq, threshold 7 (e.g., 7 = 85)
Ensure: available: Boolean indicating predicted communica-
tion availability
: Tho < GETNEXTHANDOVERTIME(T)
: pos <— GETPOSITION(Tpred)
: img - GETSKYFOV (T}req)
: losStates <= ESTIMATELOSSTATE(L, Tjed, img, pos)
cands < ESTIMATESERVINGSATELLITES(L, Txo, pos)
sats < ()
: for sat € cands do
if sat.score > 7
and ISACTIVEORFADING (losStates, sat) then
sats < sats U {sat}
end if
: end for
: return ~ISEMPTY (sats)

— = ==
w2

TABLE II: Hardware configuration

Component Hardware
Communication Starlink Mini
GPS GR-8017 (USB, u-blox M8U)

360-degree camera RICOH THETA S
PC MacBookPro (M3 Pro)

one or more of these satellites are in a LOS state of active
beam or fading beam, communication is deemed available.

IV. IMPLEMENTATION

The section describes the system implementation of our
proposed method. At the time of writing, Starlink prohibits
its use in motion due to local regulations in Japan 3. Thus,
our system focuses on a static environment.

Our system uses a USB-GPS device for vehicle position, a
360-degree camera for the sky FOV image, and CelesTrak’s
website as the satellite information server. The hardware
configuration used for implementing the proposed method is
described in Table II. Our system assumes that the 360-degree
camera is installed facing the zenith from the GPS-indicated
position, capturing the sky FOV from the current position.

For sky-region detection, the system acquires images from
the THETA S with OpenCV. As shown in Figure 2, the image
from the HDMI output port of THETA S is a double-fisheye,
equidistant projection. Our implementation converts the image
into an equirectangular projection and then detects the sky
region. For the detection, our system uses the open-source
implementation* of the technique in the literature [11].

TLE data is acquired from CelesTrak’s NORAD GP Ele-
ment Sets Current Data °. Since TLE data is updated approx-

3https://starlink.com/support/article/50e933eb- 54f5- 1a77-cc85-c6c8325564cf
(accessed 2025/10/19)

“https://github.com/cftang0827/sky- detector

Shttps://celestrak.org/NORAD/elements/
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Fig. 2: Double fisheye image from RICOH THETA S

imately once per day, our system assumes that the data is
downloaded and cached in advance using satellite or cellular
mobile communication before processing. Our system employs
Python’s Skyfield library® for processing the TLE data. TLE
data for each satellite record is up to 160 bytes, totaling about
1 MB for all satellites. SpaceX publishes further accurate
ephemeris data’; however, the size for each satellite is about
2MB, which adds up to 16GB in total. Thus, for a resource-
limited vehicle environment, we choose to use TLE data.

V. EVALUATION

This section evaluates the implemented system based on the
following perspectives:

1) Accuracy of LOS states prediction: How accurately can

our system predict the future LOS state for the satellites?

2) Relation of LOS state and communication availability:
Is LOS state sufficient to predict communication outage
and recovery?

3) Effect of serving-satellites estimation technique: To what
extent can rule-based estimation of serving-satellites
help improve communication availability prediction?

In this paper, we predict communication availability based
on LOS state and estimates of serving-satellites. The error
between the predicted future LOS state of satellites at a
specific time point and the actual state generates prediction
errors. By verifying the prediction accuracy of LOS states, we
clarify the error contained in the system. By examining the
relationship and transition between satellite LOS states and
network reachability tests, we clarify the impact of LOS states
on communication availability. Finally, by analyzing the use of
the serving-satellite estimation technique in combination with
LOS state prediction, we determine whether the estimation
improves prediction.

A. Evaluation Environment

The evaluation setup is shown in Figure 3. We installed the
360-degree camera in a fixed direction so that the top of the
double fisheye image points east.

For the experiment, we select a location with obstructions;
the sky FOV from the location is shown in Figure 4. The
location is on the balcony of a mid-level floor of a building,
with the eastern sky obstructed by buildings. Approximately

Shttps://rhodesmill.org/skyfield/
"https://api.starlink.com/public-files/ephemerides/MANIFEST. txt

— ICMP Ping
— usB

Fig. 4: Sky FOV in evaluation environment

53% is a sky-region. We conduct the measurement between
6:00 and 7:00 PM under clear weather conditions.

We run the system to predict the LOS state at 2-second
intervals for the current and 10 seconds after, and, in parallel,
we use ICMP ping to measure communication availability and
RTT to the Internet via Starlink. For each cycle, the system
records the image obtained from the 360-degree camera, the
sky region detection result image, the position and state of
each satellite, the estimated serving-satellites list, and an image
plotting satellites color-coded by LOS state and their future
positions, on top of the sky region on the camera image.

B. Accuracy of satellite LOS state prediction

Figures 5 and 6 compare the predicted and actual transitions
of LOS-available satellites classified as active or fading, as
well as their antenna FOV counterparts (active beam, fading
beam). Figure 5 shows satellites whose future positions overlap
with the detected sky-region, while Figure 6 further restricts
the comparison inside the antenna FOV. Throughout the ex-
periment period, there are no events in which all satellites
disappeared entirely from the sky-region or antenna FOV. In
general, more than 30 satellites are visible in the sky, and more
than four are continuously present within antenna FOV.

Figure 7 shows an example of the current and predicted
LOS states during the experiment. In the plot, the red back-
ground indicates the sky-region detected from the 360-degree
camera image. Each circle represents a satellite, with its color
denoting the LOS state classification: green for active, blue for
appearing, red for fading, and black for hidden. The circle’s
border color further shows whether the satellite lies within
the antenna FOV, and orange arrows depict future satellite
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Fig. 6: Actual and predicted numbers of satellites with LOS and
within antenna FOV

positions. The plot also provides identification numbers and
azimuth/elevation labels for reference.

We evaluate LOS prediction accuracy using the match
rate, defined as the fraction of time the predicted and actual
numbers of LOS-available satellites match. The match rates
are 42.86% for all LOS-available satellites and 97.45% within
antenna FOV. The root mean square errors are 6.99 and 3.56,
and the mean absolute errors are 0.15 and 0.02, 9indicating
high accuracy when limited to the antenna FOV.

The primary error sources are inaccuracies in sky-region
detection and image distortion from the 360-degree fisheye
cameras. As shown in Figure 7, clouds and color gradients lead
to misdetection near sky-region boundaries. Using a machine-
learning-based sky segmentation method [12] could improve
detection accuracy. Furthermore, our satellite coordination
transformation assumes an equidistant projection, whereas
fisheye lenses can introduce nonlinear distortion. Applying a
correction technique [13] can reduce these geometric errors
and improve LOS state prediction.

C. Relation of LOS state and communication availability

Are LOS states sufficient to predict communication outage
and recovery in LEO-NTN? That is the key question in this
paper. To examine the question, we compare the occurrence of
ping-loss events with the transitions of LOS-active satellites.
A simple assumption is that if there are no LOS-available
satellites in the sky, communication is also unavailable, and
that the converse is also true.

Figure 8 and 9 show the transition of the number of LOS-
available satellites within the sky region and the antenna FOV
as a line chart, the ping loss event in a red bar, and the global
handover time of Starlink in the purple vertical line.

Fig. 7: Example plot of current and predicted LOS states

TABLE III: Metrics for prediction effectiveness

C.
A. B. LOS state D
LOS state LOS state within beam )
only within beam & serving-satellite Random
estimation
Accuracy[%] 79.7 79.7 58.6 49.4
Precision[%] 79.7 79.7 80.7 533
Recall[%] 100.0 100.0 62.4 49.6
F-measure 0.88 0.88 0.70 0.51
Specificity[%] 0.00 0.00 443 49.1
Balanced
Accuracy[%] 50.0 50.0 53.4 49.4
ROC-AUC 0.50 0.50 0.53 0.49

In both figures, ping loss occurs or persists even when
one or more LOS-available satellites are available, which are
considered capable of providing connectivity. Therefore, while
LOS is effective for detecting worst-case scenarios where
no satellites are present, it is not a sufficient condition for
predicting communication availability. The result suggests that
Starlink can allocate the ground terminal to the satellite in a
hidden or hidden beam state during every 15-second periodic
handover event. During the experiment period, we observed
40 transitions from ping OK to ping NG. Still, upon closer
inspection, we confirmed that no satellites became hidden or
fell outside the antenna FOV.

The other elements, such as network congestion within the
Starlink network, signal interference, multipath fading, and
errors in sky-region detection, might have contributed to the
communication outage. Further inspection and analysis of the
possible reason are required.

D. Effect of serving-satellites estimation technique

Table III summarizes the evaluation metrics for four pre-
diction methods: LOS state only prediction (A), LOS within
antenna FOV (B), LOS combined with serving-satellite es-
timation (C), and random prediction (D). The purpose of
the comparison is to validate the predictive capability of our
proposed method (C) against others. The metrics comparison
includes accuracy, precision, recall, F-measure, specificity,
balanced accuracy, and ROC-AUC.

Methods A and B achieved high accuracies of 79.7%; how-
ever, both exhibit 100.0% recall and 0.00% specificity, indi-
cating that both predicted communication as always available.
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Fig. 9: Transition of the number of LOS-available satellites within
antenna FOV and ping loss occurrence

The high values reflect the dataset imbalance in the experiment
environment, where communication is more available than
disrupted, and do not imply predictive capability.

Method D, a pure random predictor, achieved accuracy of
49.4%, precision of 53.3%, recall of 49.6%, specificity of
49.1%, and ROC-AUC of 0.49 for a 10-times average. The
result establishes the lower bound of prediction performance.

Our method, C, shows accuracy of 58.6%, precision of
80.7%, recall of 62.4%, and specificity of 44.3%, resulting in
balanced accuracy of 53.36% and ROC-AUC of 0.53. The re-
sult indicates a slight but statistically significant improvement
over random prediction, suggesting that integrating serving-
satellite estimation enhances predictive capability. Although
the performance remains limited, the result demonstrates that
rule-based serving-satellite estimation captures part of the
underlying pattern compared to the LOS states-only method.

Further evaluation is necessary due to the limited experi-
ment in this paper. The different sky FOV in various locations
may show different results. For example, different obstructions
might affect the estimation accuracy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we brought a hypothesis that LOS states of
each satellite within the vehicle’s sky FOV can predict LEO-
NTN communication availability. In the course of examining
this hypothesis, we proposed a framework for prediction
that integrates vehicle position, the sky FOV, and satellite
position. We focus on satellites of the Starlink network,
plotting their current and future positions in the sky from a
360-degree camera image and classifying their LOS states.
Our field evaluation confirmed that LOS states alone cannot
predict communication availability, and our hypothesis was

false. However, by employing the serving satellite estimation
technique, our system can achieve better prediction, achieving
accuracy for 58.6%, precision for 80.7%, recall for 62.4%, and
specificity for 44.3%.

Future work includes improving prediction accuracy by
incorporating a machine-learning-based serving satellite esti-
mation technique into our framework. Our current implemen-
tation only uses rule-based estimation, and further adaptation
of the technique in the literature [8] is promising. Additionally,
as our prediction evaluation is limited to static environment
results, further experiments in a moving environment and
improvement of the method are necessary. Last but not least,
we aim to explore practical integration with a multipath
scheduler, enabling our LOS-based availability prediction to
inform proactive path selection for multi-connectivity.
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