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Abstract—Recently, autonomous driving systems have been
discussed to provide safer and more efficient driving experiences.
In this work, we design an autonomous driving decision-making
method for vehicles that relies on camera sensors on vehicles.
The proposed method leverages YOLO object detection to derive
relative information from the environment and then utilizes
a deep Q-network (DQN) reinforcement learning model to
learn from this environmental information for making efficient
autonomous driving decisions. This proposed method relies
only on multiple cameras and vehicle speed data to determine
appropriate speed and make lane-changing decisions. We imple-
ment training and experiments on the CARLA platform. Our
experimental results demonstrate that the proposed method can
facilitate autonomous vehicle control while maintaining safety.

Index Terms—autonomous driving, reinforcement learning,
decision-making, deep Q-learning network.

I. INTRODUCTION

Autonomous driving is widely regarded as a transformative
technology for future transportation systems. An autonomous
driving system can perceive obstacles or risks continuously
without lapses in attention based on sensors onboard vehi-
cles (e.g., LIDAR, stereo cameras, and ultrasonic radar). In
recent years, major automobile manufacturers have actively
accelerated the development of autonomous vehicles, most
of which rely on a combination of high-end sensors and
powerful computing platforms to ensure safety and reliability.
However, the widespread adoption of autonomous driving that
are not only accurate and robust, but also cost-efficient and
lightweight. Thus, developing a safe and efficient system for
vehicles equipped only with common sensors is a critical
challenge.

Many economical vehicles are now equipped with mul-
tiple monocular cameras. These cameras offer a promising
alternative that can provide essential visual data at relatively
low cost. However, the development of effective vehicle
perception using limited camera sensor inputs is constrained
by two main factors: (1) the sparsity and lower fidelity of
environmental data compared to high-end sensor suites, and
(2) the restricted computing capacity of affordable embedded
GPUs.
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To overcome these limitations, we propose a lightweight
autonomous driving system, which balances computational
efficiency and perception accuracy. To achieve our goal, we
propose a reinforcement learning (RL) based method, which
relies on camera sensors available on vehicles. In more detail,
the approach integrates the you-only-look-once (YOLO) sys-
tem [1] and a deep Q network (DQN) model to analyze the
environment, and then makes vehicle control decisions (such
as acceleration, deceleration, or lane change). We train our
model and conduct experiments on the CARLA simulator [2].
The experiment results validate that the proposed approach
can effectively make control decisions to enhance the average
speed with a low collision rate. The key contributions of this
work are twofold.

1) We propose an RL-based method with a complete data
extraction pipeline that integrates YOLO and DQN for
efficient autonomous driving.

We designed a method to convert images into relative
information, thereby reducing both the state space and
the required computational overhead.

The proposed method relies solely on raw data collected
by cameras, learning to infer essential parameters for
effective training and execution.

2)

3)

In this work, we also provide an analysis on failure cases and
discuss potential directions for future improvement.

The remainder of this paper is organized as follows. Sec-
tion II introduces concepts of YOLO and DQN and presents
some related works. Section III describes the proposed system
flow and the details of the designed model. Section IV
presents our experiments and the training process. Finally,
Section V concludes the paper.

II. PRELIMINARIES
A. YOLO and DON

YOLO is an object detection technology based on super-
vised learning that is known for its balance of accuracy and
speed [3]. This technology divides an input image into multi-
ple grids and utilizes convolutional neural networks to extract
features and evaluate the likelihood of each grid containing
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an object of a certain class. Grids with a high likelihood for
a specific class are combined to form a bounding box for the
object, and the model then outputs the coordinates and size of
this box. For each image frame, YOLO can detect multiple
objects and output their classification labels along with the
corresponding bounding box coordinates.

DQN is an RL technique derived from Q-learning. The
key component of Q-learning is the Q-function, denoted as
Q(s,a). It takes a state s and an action a as inputs. An agent
(e.g., the vehicle) uses sensors to perceive its environment as
a numerical state and then executes an action to alter that
environment. The Q-function evaluates the value (Q-value)
of each action for a given state s € S. The agent selects the
action a with the highest Q-value in the current state s:

arg max Q(s, a)

After the agent performs the action a, the environmental
state transitions to s’. This transition results in a reward,
which is used to update the Q-values. Conventional Q-
learning algorithms use a Q-table to represent the Q-function,
which records the Q-value for each state-action pair. DQN
replaces this table with a Deep Neural Network (DNN) that
approximates the Q-function, enabling it to solve problems
with continuous and high-dimensional state spaces.

B. Related Works

In the literature, autonomous driving systems can be
broadly categorized into rule-based and RL-based approaches.
Rule-based schemes provide trackable expressions for au-
tonomous driving systems [4], [S], [6], [7], [8]. References
[4] and [5] investigate autonomous driving based on model
predictive control (MPC) for highway scenarios. The work
[4] proposes an approach to determine a lane change plan
for maintaining a target velocity. Reference [5] designs an
interaction-aware MPC that considers benefits for the overall
traffic flow to make lane change decisions. However, these
works [4], [5] are only designed for specific scenarios. The
research [6] proposes an integrated behavior planning and
motion control scheme to support various urban driving
scenarios and operations. The work [7] utilizes probabilistic
trajectory predictions of surrounding vehicles within a 3D grid
to construct a spatio-temporal probability map. Based on this
map, the authors propose a spatio-temporal trajectory search
method to enable risk-aware continuous decision-making.
Reference [8] proposes an autonomous driving framework
designed to enhance on-road safety and rule adherence. This
framework integrates decision-making and motion control
into a single optimal control problem that considers dy-
namic interactions with surrounding vehicles, pedestrians,
road lanes, and traffic signals. However, these works [6], [7],
[8] cannot directly extract essential data from camera images.

Reinforcement learning is a promising technology for im-
plementing autonomous driving systems in diverse scenarios
without dedicated feature design [9], [10], [11], [12], [13].
The work [9] utilizes an Actor-Critic approach and a DQN
model to improve the safety of autonomous lane change
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maneuvers in static environments. The work [10] proposes a
deep reinforcement learning decision-making method based
on driving risk fields to address continuous lane-changing
and overtaking decision-making problems. The work [11]
proposes a Dynamic Option Policy enabled Hierarchical Deep
Reinforcement Learning (DOP-HDRL) approach that can
break down overtaking maneuvers into several sub-maneuvers
and uses a single policy to train and perform them. However,
these schemes [9], [10], [11] rely on pre-processed data.
On the other hand, some schemes focus on implementing
autonomous driving with vision-based systems [13], [14]. The
work [14] designs an actor-critic network with an auxiliary
network that can leverage real-time measurement informa-
tion to understand the environment without guidance from
demonstrators. The work [13] utilizes YOLO and a DQN to
implement car-following control and energy management for
a hybrid electric vehicle. However, these works [14], [13] do
not consider the task of overtaking.

III. THE PROPOSED METHOD

Fig. 1 indicates the flow of the proposed method, which
operates on a single vehicle, say v. The proposed system
consists of an environment construction module and a DON
module. The vehicle v continuously collects data from its
onboard cameras and speedometer. The images captured by
the cameras serve as inputs to the environment construction
module, which is composed of a YOLO model and a relative
relationship inference layer. After processing inputs, this
module extracts the relationships of surrounding objects and
structures this information as outputs. In the system, the
DQN module has two input sources. The first is from the
environment construction module, and the second is the speed
measured by the speedometer. Based on these two inputs,
the DQN module perceives the environment, learns effective
behaviors, and determines vehicle control actions. In the
following, we describe these two modules in more detail.

A. Environment Construction Module

In this work, we assume that the vehicle v has three
cameras on its front, left, and right sides. In the system,
the vehicle v continuously captures images from its cameras
to train the YOLO models. Considering that neighboring
vehicles captured by the side cameras may exhibit barrel
distortion, the vehicle v prepares two YOLO models: one
for the front camera and another for the side cameras. In
this module, the relative relationship inferring layer infers (i)
the relative distance and (ii) position of neighboring vehicles.
First, to infer relative distance to surrounding vehicles, given
the camera’s focal length f, the vehicle v’s width Wy, and
the pixel width of a neighboring vehicle’s bounding box (from
the YOLO model) Wyixe1(n), the distance Deg(n) between the
vehicle v and a neighboring vehicle n can be estimated as:

.f X ”actual
Deg(n) = ——r—+
est('n) W pixel(n)
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Fig. 1. The proposed system flow.

The actual width of a neighboring vehicle is assigned based
on its YOLO classification, which itself is trained on a dataset
annotated with the physical widths of different vehicle types.

Second, to infer position, the vehicle v distinguishes
positions of surrounding vehicles in different lanes. More
specifically, the vehicle v labels lanes sequentially from left
to right with an ascending index starting from 1. Then,
using the coordinates provided by YOLO and the cameras’
mounting locations, the vehicle v can determine the lane of
each detected vehicle and map neighboring vehicles into one
of five relative position slots. These five slots correspond to
the front-left, front-center, front-right, left-rear, and right-rear
positions. The final data structure is illustrated as the relative
information data structure in Fig. 1. In this work, the vehicle
v will identify all neighbors. However, vehicle v will further
record five vehicles, denoted as 741, 49, .., Ng5, in those five
relative position slots that are closest to v.

B. DON Module

In the proposed scheme, the DQN module receives the
current state of the environment from the environment con-
struction module and the speedometer. Specifically, we define
the state s includes five elements:

e I1ane: the lane index where the vehicle is located.

V: the vehicle v’s speed.

[Dest(7151)y Dest(fs2), ., Dest(fis5)]: the relative distance
to the neighbor vehicle 7; in the relative position slot 3.
[Sblind (72s1), Sbiind (7052 -+, Shiind (72s5)]: five flags to indi-
cate whether the neighbor vehicle 7; may be hidden in
a blind spot.

[Dhe(7es1), Die(fis2), .., Dne(7is5)]: the coordinates of
bounding boxes of the neighbor vehicle n;.

Note that Spjinda(72s1), - - -, Solind(72s3) are always set to O.
However, the flags Shjind(72s4) and Spjina(72s5 ), corresponding
to the closest vehicles in relative position slots 4 and 5,
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may take values of either O or 1. Specifically, these flags
indicate whether the closest vehicles in the left-rear and right-
rear positions fall within the blind spot regions of vehicle v.
Each flag is determined by comparing the real-time bounding
boxes generated by YOLO with a set of predefined spatial
boundaries, which are calibrated in advance according to the
fixed field of view of each camera. This mechanism enables
rapid identification of whether an adjacent lane is occupied,
even in cases where vehicles are not visually detected due to
blind spot occlusion. If a blind spot is considered occupied,
the corresponding flag is set to 1. Also note that for vehicles
located entirely within blind spot regions, their bounding
boxes cannot be reliably detected.

Based on the current state, the DQN module selects an
action a € A that it estimates to be optimal. In our design, the
action space A includes five actions: 1) acceleration (ACC),
2) deceleration (DEC), 3) change to the left lane (LFT),
4) change to the right lane (RIT), 5) and keep current lane
and speed (KEP). In practice, the ACC and DEC actions are
performed while maintaining the current lane.

After the action is decided, the vehicle v performs the
control command. Then, the environment will transition to
a new state s’ and return a reward r. In this work, the vehicle
v’s speed cannot exceed the speed limit Vi, of the highway.
But, a positive reward can be higher if the speed of vehicle is
higher. Given a speed reward constant Kgyeeq, We define the
speed reward as

7
Reff — K( Vmax )

speed 1

(1)
On the other hand, to ensure safety, a negative reward is de-
signed for risky behaviors. First, to maintain a safe following
distance Dyg,p., we define a penalty P.s when the distance to
the front vehicle (i.e., the vehicle n49) is shorter than Dg,ge.



TABLE I
DQN HYPERPARAMETER CONFIGURATION.

Parameters Values
Hyperparameters
Discount Factor () 0.99
Optimizer Adam
Learning Rate () 0.0001
Target Update Frequency 2000
Initial Epsilon (€;pnitial) 1.0
Final Epsilon (€ fina1) 0.1
Epsilon Decay Period 20000
DQN Model

Input layer 128
Hidden layer 128 x 2
Output layer 128

The definition of Fjs is expressed as:

exp(b X Degi(Trs2)) — exp(b X Dgyge)
exp(b X Dgge) — 14 0.001

Py = ernally X (2)
In Eq. (2), Kpenaity is a constant value, and b is the distance
reduction rate. This distance reduction rate b is derived
from the previous relative distance D.,(7252) and the current
relative distance Deg(752):

Df/:sl(ﬁ’SQ) - Dest(
Dést(ﬁé@)

Moreover, to encourage deceleration in this scenario, the
reward is defined by:

Ns2

b= ) w01 3)

Reffv
_Pcl57

Dest(ﬂSQ) Z Dsafm

Rs = o
P Dest(ns2) < Dgate

4)
Moreover, when the vehicle reaches the destination, the
system will obtain a completion reward Rgyish. If the vehicle
suffers a collision, there will be a collision penalty P.
Consequently, the reward function is defined as

Ry, + Rfnish, if destination is reached
Riotal = § — P, if a collision occurs 5
Ry, otherwise

This reward function balances the objectives of efficiency
and safety, guiding the DQN agent to make reasonable lane-
changing and speed adjustments. Note that the reward mecha-
nism is only active during training phase. When operation, the
vehicle v relies on the trained model to determine its actions.

IV. EXPERIMENTS

We adopt the open-source CARLA simulator [2] as our
training and evaluation platform. The CARLA environment
features surrounding vehicles distributed across different
lanes, at varying distances, and traveling at different speeds.
To evaluate the performance of the proposed DQN-based
decision-making model, we design and implement four base-
line strategies for comparison:
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Fig. 2. Total reward curve during the DQN model’s training process.

Pure Lane-Following: In this baseline strategy, the ve-
hicle strictly follows its current lane without performing
any lateral lane changes.

Rule-Based Lane Changing: This strategy enables the
vehicle to perform basic lane changes. It will change to
the right lane only if the left lane is unavailable and the
right lane is viable. If neither adjacent lane offers safe
conditions, the vehicle remains in its current lane and
follows the leading vehicle.

CARLA Autopilot: This strategy utilizes the built-in
autopilot feature provided by the CARLA simulator,
whose behavior is pre-designed and calibrated by the
CARLA development team.

Literature-Based: To situate our research within the cur-
rent academic context, we referenced, adapted, and re-
implemented the integrated decision-making and control
method proposed in [6].

A. Model Training

To train our model, we generate a 400-meter-long, one-way,
three-lane highway environment in CARLA. At the beginning
of each training episode, the vehicle’s initial speed is set to 80
km/h, and its initial lane is randomly selected from the left,
middle, or right lane. This ensures that the agent begins learn-
ing from varied lateral positions and avoids developing a bias
toward any specific lane. For the surrounding vehicles, their
speeds are randomly selected from a predefined set of values:
60, 65, or 70 km/h, and maintained consistently throughout
the episode. To create overtaking opportunities, these vehicles
are randomly generated ahead of the vehicle and distributed
across different lanes. The number of surrounding vehicles is
randomly set between one and three to simulate varying traffic
densities. In this configuration, the vehicle travels faster than
the surrounding vehicles, allowing them to be regarded as
slow-moving obstacles that reduce travel efficiency. This setup
provides the necessary conditions for the vehicle to practice
overtaking decisions in order to gain greater reward. The
hyperparameters of the training process and the configuration
of the DQN model are presented in Table I. The learning
progression of our DQN model is illustrated in Fig. 2, which
demonstrates that the total reward gradually converges to a
relatively high level during training.



TABLE II
OVERALL PERFORMANCE COMPARISON OF ALL STRATEGIES UNDER DIFFERENT TRAFFIC DENSITIES.

Strategy

One-Vehicle

Two-Vehicle

Collision Rate

Avg. Speed (km/h)

Collision Rate ~ Avg. Speed (km/h)

Pure Lane-Following 0% 91.92 0% 83.80
Rule-Based Lane Changing 0% 99.56 0% 88.46
CARLA Autopilot 0% 104.01 0% 87.79
Literature-Based 17.6% 109.38 34.78% 108.63
Proposed DQN Model 0% 95.95 0.89% 90.62

Three-Vehicle

Overall Average

Strategy Collision Rate _ Avg. Speed (km/h) | Collision Rate  Avg. Speed (km/h)
Pure Lane-Following 0% 75.49 0% 83.34
Rule-Based Lane Changing 1.82% 80.65 0.61% 89.51
CARLA Autopilot 0% 75.31 0% 89.15
Literature-Based 64.39% 107.24 38.9% 108.7
Proposed DQN Model 9.8% 85.14 3.32% 90.98

B. Results

Table II presents the experimental results. These results
demonstrate that the proposed scheme improves traveling
efficiency while sustaining a lower collision rate. As indicated
by the overall data, a common trade-off exists between
efficiency and safety across different autonomous driving
decision strategies. The pure lane-following strategy and the
CARLA autopilot mode ensure driving safety with a 0%
collision rate, but at the cost of significantly reduced traffic
efficiency as density increases. The literature-based optimiza-
tion strategy represents the opposite extreme. It prioritizes
high-speed travel, resulting in excellent efficiency, but also
leads to an overall collision rate of 38.9%.

When the number of surrounding vehicles increase from
one to three, the average speed achieved by the CARLA
autopilot method decreased by approximately 27.6%, whereas
our proposed approach experienced a reduction of only about
11.3%. In both two- and three-vehicle scenarios, the average
speed of our proposed approach remained higher than those
of other safety-focused baseline strategies. This indicates that,
compared to rule-based or conservative logic, the proposed
scheme can learn a more flexible decision-making policy,
dynamically assess the environment, and identify and utilize
gaps to maintain traffic efficiency. However, this improvement
in efficiency comes at the cost of a slight reduction in safety.
Our proposed model exhibits an overall collision rate of
3.32%, with the rate rising to 9.8% in the three-vehicle
scenario, revealing certain instabilities in its decision-making
under high-risk conditions. To further enhance safety, in the
following article, we analyze the failure cases of our approach
to identify areas for future improvement.

C. Analysis

We conducted an in-depth analysis of the collision in-
cidents. Our examination revealed several key contributing
factors. The most significant issue was the model’s difficulty
in accurately predicting the states of vehicles approaching
from the left-rear and right-rear. This single factor was re-
sponsible for approximately 73% of all collisions. The second
major factor stemmed from the design of our reward function,
which accounted for about 20% of the failures. The current
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design prioritizes efficiency, sometimes neglecting critical
safety considerations. For example, in extreme scenarios with
three vehicles driving abreast, the agent would still attempt a
lane change to seek a higher reward. This behavior often led to
a collision when no safe gap was available. Finally, perception
errors from the YOLO system contributed to the remaining
6% of collisions. On rare occasions, the system failed to detect
a nearby vehicle, resulting in an unsafe maneuver. Based on
our analysis, future improvements should focus on enhancing
rear-side vehicle prediction, increasing the safety weight in
the reward function, and improving perception reliability.

V. CONCLUSION

In this work, we developed an RL-based scheme for au-
tonomous drive decision-making that includes a comprehen-
sive data extraction process. The proposed method integrates
YOLO vl11 and a DQN model. We utilize the output of the
YOLO model to construct the relative position and distance
between the vehicle and surrounding vehicles. Based on this
relative information and the vehicle’s velocity, the DQN
model determines speed control and lane-changing actions
to enhance traveling efficiency and avoid potential risks. The
experimental results show that the proposed approach can be
effectively implemented on multi-lane highways built with
the CARLA simulator, and they reveal the trade-off between
efficiency and safety for different driving strategies. Conse-
quently, we analyzed the reasons for the failure cases of our
proposed approach. For future work, we can design a more
lightweight model that fuses vision-based object detection
and low-level control to reduce computational complexity for
realistic, high-speed scenarios. Meanwhile, a novel mixed-
model approach could be explored to address the safety issue.
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