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Abstract—We propose an anomaly detection framework for
small unmanned aerial vehicles (UAVs) aimed at automated
preflight inspection. The system uses depth imaging from an
external camera, requiring no onboard sensors to capture attitude
during hovering flight. A simple three-axis viewpoint correc-
tion—X/Y ROI stabilization and Z-axis normalization with a
session-wise anchor and a globally fixed depth range—ensures
consistent representation across sessions. A convolutional autoen-
coder (CAE) trained on normal hovering data detects deviations
using an anomaly score. Experiments with payloads of 0–39 g
demonstrate that the CAE identifies both subtle and heavy load-
induced anomalies, including nonmonotonic responses linked
to flight-controller compensation. The framework provides a
nuanced health assessment beyond a binary classification by
treating the anomaly score as a continuous diagnostic score. This
approach provides a practical solution for UAV fleet safety and
maintenance.

Index Terms—Small UAVs, Convolutional autoencoder, Depth
imaging, Attitude monitoring

I. INTRODUCTION

The rapid expansion of unmanned aerial vehicle (UAV)
applications across diverse industries, including logistics, pre-
cision agriculture, infrastructure inspection, and emergency
response, has created an urgent need for automated health-
monitoring systems. UAVs are critical components of indus-
trial workflows. Ensuring their operational reliability through
predictive maintenance is paramount for both safety and
economic efficiency. Traditional inspection methods that rely
heavily on manual examinations and scheduled maintenance
intervals are becoming increasingly inadequate for managing
large UAV fleets operating in complex environments.

Attitude stability during flight is a fundamental indicator
of UAV health. Here, attitude refers to roll, pitch, and yaw
during hovering flight. Attitude deviations can signal various
underlying issues, including mechanical wear, motor imbal-
ances, structural damage, and excessive payload stress. Early

detection of such anomalies enables proactive maintenance
interventions, potentially preventing catastrophic failures and
extending the equipment lifespan. However, developing robust
attitude-monitoring systems faces several challenges: the dy-
namic nature of flight conditions, subtle manifestation of early-
stage degradation, and the practical difficulty of obtaining
comprehensive labeled failure data for supervised learning
approaches.

We address these challenges by proposing an unsupervised
anomaly detection framework based on convolutional autoen-
coders (CAEs) trained exclusively on normal operational data.
The proposed approach leverages depth imaging technology
to capture rich spatial information about UAV attitude from
a fixed front-oblique viewpoint. In particular, the system
acquires flight data nonintrusively using an external camera
without attaching additional sensors to the UAV, complying
with operational restrictions in real-world settings. By learning
to reconstruct normal attitude patterns, the CAE produces ele-
vated anomaly scores when anomalous states are encountered,
thereby effectively flagging potential issues without requiring
explicit failure examples during training.

Depth sensing offers several advantages over traditional
RGB imaging, including invariance to lighting conditions,
direct measurement of three-dimensional (3D) structures, and
reduced sensitivity to surface textures or colors. Furthermore,
we can leverage the feature-extraction capabilities of convolu-
tional neural networks originally developed for color image
processing by transforming depth maps into pseudo-color
representations.

In terms of flight patterns, although UAVs are capable of
hovering, rotational, and translational maneuvers, this study
specifically focused on hovering. During the hovering experi-
ments, a 3D viewpoint correction was applied to ensure accu-
rate capture of attitude dynamics. These design choices align
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the framework with the practical goal of automated preflight
inspection, thereby offering a scalable and deployment-ready
solution for UAV fleet health management.

Our primary contributions are threefold: (1) we develop a
comprehensive depth-based attitude anomaly detection frame-
work for UAV health monitoring that uses only externally
mounted depth sensors and requires no onboard sensors; (2)
we demonstrate the capability of the system to detect a
spectrum of load-induced attitude deviations without requiring
labeled anomaly data; and (3) we provide a detailed analysis
of the relationship between anomaly score patterns and flight
controller compensation mechanisms, offering insights into
UAV behavioral dynamics under stress conditions.

II. RELATED WORK

A. Evolution of UAV Attitude Monitoring Technologies

UAV attitude monitoring has advanced from inertial mea-
surement unit (IMU)/global positioning system (GPS)-based
stabilization to vision and multisensor methods. Scaramuzza
and Fraundorfer [1] provided a seminal tutorial on visual
odometry (VO), and Achtelik et al. [2] demonstrated the fusion
of IMU and monocular vision for micro aerial vehicle (MAV)
navigation in GPS-denied environments. Forster et al. [3]
proposed semi-direct visual odometry (SVO) to achieve faster
and more accurate pose estimation, although vision-based
methods remain vulnerable to blurring, illumination changes,
and computational load. Multisensor fusion can enhance ro-
bustness but often introduces cost and complexity. These
challenges have motivated the use of simple depth sensing
combined with unsupervised learning. Unlike many prior UAV
attitude monitoring approaches that rely on onboard sensors,
our framework explicitly uses an external depth camera and
requires no onboard instrumentation, aligning with pre-flight
health inspection settings.

B. Deep Learning Approaches to Anomaly Detection

Deep learning (DL) is crucial to anomaly detection, partic-
ularly when anomalies are rare. Pang et al. [4] and Chalapathy
and Chawla [5] conducted surveys that emphasized unsuper-
vised methods. Autoencoders learn the compact representa-
tions of normal data using a reconstruction-based anomaly
score. Bergmann et al. [6] introduced a teacher–student frame-
work that improved performance but increased complexity. A
single-model approach is sufficient and practical for monitor-
ing the UAV attitude.

C. Depth Sensing in Computer Vision Applications

Depth sensors have proven effective in motion and scene
analyses. Hara et al. [7] demonstrated a strong action recog-
nition performance using 3D residual networks. Kwolek and
Kepski [8] combined depth maps with accelerometer data
to achieve a reliable fall detection. For UAV applications,
Oleynikova et al. [9] developed Voxblox, an incremental 3D
mapping system for MAVs using onboard depth sensors.
Although these studies highlighted the versatility of depth
data (including RGB-D modalities), their application to UAV

health monitoring remains limited. Compared with RGB-D
inputs that increase compute and memory footprint, we adopt a
depth-only pseudo-color (three-channel) representation, yield-
ing a lighter and more deployment-friendly pipeline.

D. Industrial Anomaly Detection Systems

However, industrial deployment has encountered some prac-
tical challenges. Hirata et al. [10], [11] applied CAE-based
anomaly detection to air-conditioning systems and demon-
strated the importance of preprocessing, domain-specific
model design, and interpretable outputs. Real-world operations
also require the handling of sensor drift, seasonal variations,
and false alarms. These lessons inform the proposed frame-
work’s focus on robustness and usability.

E. Research Gap and Our Contribution

Although UAV monitoring, deep anomaly detection, and
depth sensing have advanced, their integration is limited.
UAV health monitoring largely relies on telemetry or labeled
failure data, whereas vision research focuses on navigation
and mapping. We addressed this gap by applying unsupervised
DL to depth-based attitude monitoring. The proposed method
is lighting-invariant and does not require collecting failure
data, and it provides interpretable anomaly score patterns for
practical maintenance.

III. SYSTEM ARCHITECTURE AND DESIGN

A. Overall System Design Philosophy

The core of the proposed approach centers on learning a
manifold of normal attitude patterns through unsupervised
training using healthy small UAV data. During the opera-
tion, deviations from this learned manifold manifested as
increased anomaly scores, providing a continuous measure of
the anomaly severity. This continuous scoring approach offers
several advantages: it supports a continuous, context-aware
interpretation of anomaly severity, enables early warning of
developing issues, and provides diagnostic value by indicating
the magnitude of deviation.

B. Data Acquisition and Preprocessing

As an overall design, we adopted an external, fixed-
geometry, depth-only configuration for preflight attitude moni-
toring that is, in principle, applicable to multiple flight patterns
(hovering, rotations about the vertical Z axis, and short-axis-
aligned translations along x, y, and z). We focused on hovering
to avoid the influence of large translations and rotations and
to clearly observe load-induced attitude changes.

Three-axis viewpoint correction. (X/Y) During the initial
10 s calibration (300 frames), we computed the image-plane
centroid of the UAV at each frame and obtained the average
(c̄x, c̄y). We then used a fixed region of interest (ROI) of
250×150 pixels centered at (c̄x, c̄y) for all subsequent frames.
This fixed-ROI aligns the initial viewpoint by centering the
crop at the calibration mean and reduces sensitivity to session-
to-session take-off offsets. We do not recenter per frame;
therefore, in-session x/y translations remain in the input and
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are analyzed by the model. (Z) Depth values are normalized
by anchoring at the session-wise minimum valid depth of the
UAV body and by applying a globally fixed normalization
width computed once from the 0 g sessions (details below),
which acts as an out-of-plane (range) correction.

To capture the UAV’s hovering attitude, we used an Intel
RealSense D455 depth camera installed externally in a fixed
front-oblique view (with no onboard sensors) and recorded at
30 Hz with a resolution of 848×480.

The raw depth frames were colorized with fixed mapping
for reproducibility, and the resulting three-channel pseudo-
color heatmaps were used as the CAE input. The colorizer
parameters were fixed across sessions such that the same depth
was always mapped to the same RGB triplet, maintaining
per-channel intensity distributions comparable and avoiding
domain shift.

We deliberately adopted pseudo-colorized depth-only
(three-channel) inputs instead of RGB-D to reduce compu-
tational and memory costs and to simplify the sensor config-
uration (see also Sec. II-C).

The depth maps were normalized with a session-specific
anchor and a globally fixed width to ensure consistency across
payload conditions and sessions. Let d

(s)
min be the minimum

valid depth of the UAV body during session s. We computed
the fixed range width once from all 0 g sessions as

wfix =
(
max
s∈S0g

d
(s)
min − min

s∈S0g

d
(s)
min

)
+ tbody,

where tbody denotes the physical thickness of the UAV. In
our setup, this yielded wfix ≈ 0.298m. Each frame was then
normalized by

d′ = clip

(
d− d

(s)
min

wfix
, 0, 1

)
,

thereby maintaining a consistent scale (global width) while
adapting to small takeoff offsets (session-wise anchor). This
approach maintains color mapping focused on UAV attitude
while avoiding background-driven scaling. Invalid (zero) depth
pixels were excluded from all calculations.

Data recording began only after the calibration phase deter-
mined a fixed ROI.

As shown in Fig. 1, the session-wise anchor plus global-
width normalization, fixed-parameter pseudo-colorization, and
fixed-ROI stabilization produced consistent three-channel in-
puts across sessions.

C. Convolutional Autoencoder Architecture

The CAE architecture was carefully designed to balance the
representational capacity with the generalization ability. The
encoder comprised five convolutional layers with progressively
increasing filter counts (64, 64, 128, 128, and 256), each
followed by rectified linear unit activation.

The decoder mirrors the encoder structure with transposed
convolutions for upsampling, maintaining the architectural
symmetry that facilitates gradient flow during training.

Fig. 1. Preprocessing and three-axis viewpoint-correction pipeline before
CAE inference.

The loss function is mean squared error computed pixel-
wise between the input and output (reconstruction).

The anomaly score for a given input frame was computed
as follows:

S =
1

N

N∑
i=1

‖xi − x̂i‖2 (1)

where xi and x̂i represent the original and reconstructed pixel
values, respectively, and N denotes the total number of pixels.

IV. EXPERIMENTAL METHODOLOGY

A. Experimental Platform and Setup

For our experiments, we used a DJI Mini 4 Pro, which is
a widely available consumer-grade quadrotor representative of
the current small UAV platforms. The baseline mass (without
additional payload) was 420 g.

Fig. 2 shows the experimental setup. The depth camera
mounting configuration placed an Intel RealSense D455 on a
rigid tripod in a fixed front-oblique view relative to the hover
center. The camera was positioned at a height of approximately
1.2 m above the floor with a horizontal offset of approximately
1.8 m from the hover center, maintaining the UAV within
the sensor’s optimal measurement range while providing a
sufficient field of view to accommodate minor position drift.

B. Payload Configuration and Testing Protocol

Calibrated payloads ranging from 0 to 39 g were applied
to simulate various stress conditions that might indicate me-
chanical issues or operational limits. These weights were
measured precisely and attached to the UAV using a consistent
mounting protocol that ensured repeatability. The payload
range includes light, medium, and heavy loads, spanning from
imperceptible perturbation (13 g represents approximately 3%
of UAV weight) to near-operational limits (32.5 and 39 g
conditions) that approach the maximum additional payload for
stable flight.

The payload conditions slightly differed between the two
experimental days (hereinafter referred to as the first test and
second test, respectively): 32.5 g was evaluated in the first
test as a conservative upper bound, whereas 39 g was added
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Fig. 2. Photograph of the experimental setup. A DJI Mini 4 Pro and an Intel
RealSense D455 depth camera mounted on a tripod in a fixed front-oblique
view during hovering.

in the second test after confirming a stable UAV performance
in initial trials.

C. Data Collection and Processing

We refer to the two experimental campaigns as the first
test and the second test. The pseudo-color mapping used
in this study is shown in Fig. 3; gray/black denotes out-of-
range/invalid pixels and warmer colors indicate shorter dis-
tances. The CAE was trained exclusively on concatenated 0 g
hovering sessions from both campaigns, and payload frames
were retained for evaluation.

For each experimental session, the framewise anomaly
scores were obtained from the trained CAE model. A 50-
frame moving average (MA-50) was applied to the per-frame
scores to highlight low-frequency trends and suppress frame-
level noise. Thus, the temporal dynamics are represented by
the frame index on the x-axis and the MA-50 value on the
y-axis.

Fig. 3. Example of a depth heat map of a small UAV. Gray regions represent
out-of-range values, black indicates missing data, blue tones correspond to
larger distances, and red tones correspond to closer regions.

Table I summarizes the two test configurations (first and
second tests). Each payload condition was repeated across
multiple sessions, and session-wise trajectories were compared
to verify reproducibility.

TABLE I
EXPERIMENTAL TEST CONDITIONS

Test Payloads (g)

First test(FT) 0, 13, 26, 32.5
Second test(ST) 0, 13, 26, 39

TABLE II
MA-50 ANOMALY SCORE (MEAN AND STD.) BY SESSION

Condition Test Mean Std.

0 g First test (FT) 4.99× 10−5 8.93× 10−6

0 g Second test (ST) 6.69× 10−5 1.07× 10−5

13 g First test (FT) 2.58× 10−4 2.84× 10−4

13 g Second test (ST) 1.39× 10−4 1.42× 10−4

26 g First test (FT) 1.01× 10−4 5.25× 10−5

26 g Second test (ST) 3.79× 10−4 5.00× 10−4

32.5 g First test (FT) 7.06× 10−4 5.80× 10−4

39 g Second test (ST) 2.45× 10−2 9.23× 10−3

V. RESULTS AND ANALYSIS

A. Baseline Performance

Under the baseline 0 g condition, the trained CAE model
exhibited extremely low anomaly scores, on the order of 10−5

across sessions. This established a stable reference level for
anomaly detection.

B. Error Dynamics under Payload Conditions

To improve readability, we have separated the time-series
plots into three figures. Figure 4a shows the baseline 0 g
behavior in the first and second tests (abbreviated as FT and
ST). Figure 4b summarizes the light/medium payloads (13 g,
26 g), where session-dependent transients appear early and
intermittently. Figure 4c presents the heavy payloads (32.5 g,
39 g), where the anomaly scores diverged from the baseline;
the 39 g condition (ST) exhibited an order-of-magnitude or
greater increase.

C. Statistical Summary

Table II summarizes the mean and standard deviations of
the MA-50 anomaly scores for the representative payload
conditions. The baseline remained low and stable, medium
payloads exhibited session-dependent variation, and heavy
payloads exhibited a clear increase.

VI. DISCUSSION

A. Quantifying Payload-Induced Attitude Change

Fig. 4 shows that the application of payloads increases
and separates the MA-50 anomaly score from the baseline.
The 0 g condition remained low and stable, thus serving
as a reliable reference. Light and medium loads exhibited
early or delayed transient peaks with some session-to-session
variability, whereas heavy loads (32.5/39 g) separated early
from the baseline and remained elevated.
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(a) Baseline 0 g. FT = solid, ST = dotted.

(b) Light/medium payloads (13 g, 26 g). FT = solid, ST = dotted.

(c) Heavy payloads (32.5 g, 39 g). FT = solid, ST = dotted.

Fig. 4. MA-50 anomaly-score time series (aligned at takeoff). Line style encodes the test campaign: FT = first test (solid), ST = second test (dotted). x-axis:
frame index (samples). y-axis: MA-50 anomaly score (unitless).

B. Continuous Health Assessment Relative to a 0 g Baseline

Rather than relying on single peak values, we evaluated
attitude changes using a continuous MA-50 time series, which
was empirically more robust. The payload conditions tended to
exhibit higher scores and earlier separation than 0 g, whereas
light/medium loads may show session-dependent differences.
For operational use, two thresholds can be derived from the
0 g baseline, T1 = µ0 + 2σ0 and T2 = µ0 + 3σ0, yielding
a three-state policy on the same (MA-50) score: normal for
S < T1, attention for T1 ≤ S < T2, and warning for S ≥ T2.

C. Interpreting Nonmonotonicity

Two factors plausibly explain the nonmonotonic responses.
Control-side: near-hover compensation can introduce short-
lived overshoot or oscillation. Experimental-side: the battery
state-of-charge and limits of manual repeatability can shift the
timing and amplitude of observed peaks.

D. Limitations and Next Steps

This study used a fixed external depth camera viewpoint
and an indoor setting with a single UAV platform. Next, we
will extend the evaluation to indoor yaw rotations (about the
Z-axis) and short-axis-aligned translations along x, y, and z.
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VII. CONCLUSION

We presented a comprehensive framework for attitude
anomaly detection for small UAVs using depth imaging and
CAEs. The system successfully identified both subtle and sig-
nificant attitude deviations without requiring labeled anomaly
data, demonstrating the viability of unsupervised learning for
practical health-monitoring applications. This depth-based ap-
proach provides a robust, lighting-invariant operation suitable
for diverse deployment scenarios.

Our experimental results revealed complex relationships
between mechanical stress and anomaly manifestations, high-
lighting the importance of understanding the control sys-
tem dynamics in the interpretation of detection results. The
nonmonotonic response to the loading conditions suggests
that simple threshold-based approaches may be insufficient,
motivating continued research on context-aware anomaly in-
terpretations.

The modular architecture and unsupervised learning ap-
proach of the framework facilitate adaptation to different small
UAV platforms and operational requirements. The system sup-
ports nuanced decision-making and early warnings of develop-
ing issues by providing continuous anomaly scores instead of
binary classifications. These characteristics make this approach
particularly suitable for integration into predictive maintenance
workflows.

Future studies will focus on field validation, specifically
for automated preflight inspection, extension to additional
UAV platforms, and integration with complementary sensing
modalities. The ultimate goal is to develop comprehensive and
automated health monitoring systems that ensure the safety
and reliability of increasingly autonomous UAV operations
across diverse application domains.
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