

From Trust to Emotion Toward Loyalty A Structural Model of AI-Driven Customer Engagement

Erwin Halim

Information Systems Department
School of Information Systems
Bina Nusantara University
Jakarta 11480, Indonesia
erwinhalim@binus.ac.id

Vellycia Hengky Saputra

Information Systems Department
School of Information Systems
Bina Nusantara University
Jakarta 11480, Indonesia
nellycia.saputra@binus.ac.id

Nguyen Hong Son

Faculty of Information Technology,
Posts and Telecommunications Institute of
Technology
Ho Chi Minh city, Viet Nam
sonngh@ptit.edu.vn

Alif Widaydhana Hartiyanto

Information Systems Department
School of Information Systems
Bina Nusantara University
Jakarta 11480, Indonesia
alif.hartiyanto@binus.ac.id

Shara Toibayeva

Department of IT Engineering and
Artificial Intelligence Department
Faculty of Information Technology
Gumarbek Daukeev Almaty University of
Energy and Telecommunications
Almaty, 050013, Kazakhstan
sh.toibaeva@aues.kz

Abstract—This study investigates the antecedents and outcomes of customer engagement in AI-driven digital platforms, focusing on the roles of Digital Trust, Content Engagement, Content Engagement AI, Emotion, and Platform Familiarity. Despite increasing activity on social media, previous findings indicate that user engagement remains largely superficial and unsustainable. Thus, this study aims to explore whether satisfaction derived from AI personalization and emotional connection can lead to long-term digital relationships. Using a purposive sampling method, data were collected from 430 respondents, predominantly young users aged 12–27 years in Jakarta and surrounding areas, during April 2025. Respondents were active users of social media platforms who engaged with influencer-generated content. Structural Equation Modeling using Partial Least Squares (SEM-PLS) was applied to analyze the relationships among variables. The results confirm that Digital Trust significantly drives Content Engagement, Emotion, and Customer Engagement, while Platform Familiarity enhances trust. Moreover, AI-driven personalization and emotional resonance play pivotal mediating roles in shaping deeper, sustainable engagement. This study contributes theoretically by elucidating the multidimensional process of engagement in AI-mediated contexts and practically by guiding marketers and policymakers to design more authentic and trustworthy digital ecosystems. **Keywords:** Customer Engagement, Digital Trust, Content Engagement AI, Emotion, Platform Familiarity

Keywords—customer engagement, digital trust, content engagement AI, emotion, platform familiarity

I. INTRODUCTION

The digital age has changed the way individuals interact with media, brands, and one another. Customer Engagement, the cognitive, emotional, and behavioral commitment consumers make to interactions, has become a central theme of marketing and communication research [1].

*Corresponding author: minhtuan@ptit.edu.vn

Thomas Tandewijaya

Information Systems Department
School of Information Systems
Bina Nusantara University
Jakarta 11480, Indonesia
thomas.tandewijaya@binus.ac.id

Nguyen Minh Tuan*

Faculty of Information Technology,
Posts and Telecommunications Institute of
Technology
Ho Chi Minh city, Viet Nam
minhtuan@ptit.edu.vn

consumers make to interactions, has become a central theme of marketing and communication research [1].

Unlike superficial measures such as clicks or views, engagement reflects a deeper psychological affinity that is reflected in loyalty and advocacy. In the past two years, artificial intelligence has enabled digital platforms to suggest highly personalized content, making it more engaging and resulting in more screen time [2]. The younger generations, particularly the digitally born, have been highly sensitive to such personalization. Such findings suggest that digital platforms are not merely spreading content but also shaping the way audiences connect with what they consume [3].

The main problem is that while user behavior on social media may appear high, depth and sustainability of engagement are precarious. Studies continuously demonstrate that even though users spend large amounts of time on sites, many of their actions are superficial. For instance, research of short-video apps found that Gen Z spent an average of 95 minutes per day on TikTok, although a majority of that time is used to scroll rapidly with minimal meaningful interaction [4]. A major study of posts on Facebook and Instagram had over 1.3 million likes and almost 96,000 comments on just more than 1,000 postings, but the distribution was intensely skewed and content- and format-platform dependent [4]. Similarly, a study of 10,000 Bangladeshi Facebook posts isolated that for very engaging content, the methods were at best around 32.9 comments and 145.2 shares for each posting, demonstrating the comparatively low level of meaningful engagement in relation to total reach [5]. University findings showed that emotive content could potentially raise likes and shares but that comments remained scarce, demonstrating that top-level engagement did not necessarily come from surface-level activity [6]. Reviews of past research have also found that more than 70% identified trust and satisfaction as major drivers of engagement [7], while studies of freelancing sites found that trust within virtual communities explained over

half of the user engagement outcomes [8]. Retailing research also found that although young consumers register high initial participation, they sustain up to 30% lower interaction in the long term than older segments [9]. Together, these findings highlight that although activity on social media can often appear high in quantitative terms, it is likely to be superficial, fleeting, and prone to lapsing when unsupported by trust and interactive immediacy.

Against these problems, the purpose of this study is to examine how interaction accumulates in virtual spaces and whether short-term gratification created through customization can contribute to long-term relations. The objective is to determine whether the satisfaction that emerges from customization and emotions can actually lead to long-term involvement, or whether it's just a facade for intrinsic deficiencies in trust and comfort. From this, this research contributes theoretical wisdom around engagement as an intricate phenomenon and offers practical guidelines to designers of platforms and marketers on how best to establish enduring and authentic digital relationships. In doing that, it also provides evidence to policy-makers concerning the importance of safeguarding data, being equitable, and being transparent in order to develop sustainable user engagement

II. LITERATURE REVIEW

A. Content Engagement

Content Engagement is a state of mind that captures the quality of users' experiencing content online, characterized by a multidimensional investment of cognitive, affective, and behavioral resources [1], [2]. Brodie et al.[1] see it as an iterative process involving cognitive processing (i.e., focused attention), affection (i.e., enthusiasm, enjoyment), and activation (i.e., sharing, comments) [1]. This state is far more intense than casual passing consumption, and it signifies an added depth of engagement in which the user finds the content personally significant, compelling, and meaningful [2]. An engaged user is attentive and more importantly emotionally engaged and motivated to engage. Engagement at this level is highly valuable to content providers and platforms, as it is an excellent predictor of brand loyalty and virality. Existing in the state of being "engaged" is a primary driver of media value among consumers and an advertiser's primary objective [2]. In this study's model, Content Engagement is nominated as an immediate outcome of Digital Trust and precursor of higher-order engagements. When users trust in the platform, they will feel comfortable enough to engage in its content, and this gives rise to the state of attentive interest and emotional attachment that paves the way for subsequent interactions. Recent studies proved that personalized content supplied by artificial intelligence can strongly multiply this engagement through the offer of relevant, significant experiences that command users' attention [10].

B. Content Engagement AI

Content Engagement AI is the particular sub-dimension of user engagement specially initiated and crafted by artificial intelligence programs, and in specific terms, recommendation and personalization algorithms. The idea behind this personalization with the assistance of AI is to make the content delivered to the user more relevant and, in turn, more likely to captivate them and entail an elevated level of engagement [2]. From the standpoint of business research, the systems form an epistemological movement in method, from broad-based demographic targeting to highly personalized,

data-focused techniques of comprehending and taking action on the consumption behavior of the customers [3]. The systems handle large volumes of the user information like view history and usage patterns and recommend and queue the content which is specially crafted to suit personalized taste [3]. When done successfully, it creates an engaging user interface in which the users believe that the platform has an understanding of them, and this helps in terms of elevated session durations and elevated degrees of interaction. In the research model, Content Engagement AI is the significant go-between activated by an initiating condition of Content Engagement and instrumental in fomenting that relation by dint of serially delivering relevant stimuli which precipitates an elevated and long-term relation with the purchaser. Experiments substantiate that click and intention-to-convert is driven upwards via recs which get driven through the power of the AI and thus that it begets measurable uplift in engagement metrics [11], [12].

C. Customer Engagement

Customer Engagement is the act of having an impact on others and being a part of a digital community [4]. It is an active and ongoing engagement of a user with a brand or content provider that transcends mere transactions [4]. This construct is exemplified by behaviors central to the study of social dynamics, such as participation in community activities, referral of the entity to peers, and provision of feedback, all of which are observable social behaviors [4]. According to the principles of social research, understanding these interactions is essential for comprehending the depth of an individual's attachment to a group or entity [4]. In this model, Customer Engagement is the last dependent variable and the end result of the user's process [4]. It is influenced by their initial exposure to content, the personalization facilitated by AI, and the emotional stimuli encountered during the process [4]. Achieving elevated levels of Customer Engagement signifies that an end-user has transitioned from merely being a passive viewer of content to becoming an active and devoted participant, deeply integrated within the social framework surrounding a brand or influencer [13]. AI-assisted personalization has made the customer experience and loyalty better, which is yet another way to get people more involved [13].

D. Digital Trust

Digital Trust is a multifaceted and critical construct that is a user's belief in the reliability, integrity, security, and transparency of a digital platform and the interactions it affords [5]. When it comes to research design, gaining trust is an essential prerequisite to collecting valid and genuine data, since participants will only feel safe if they respond openly. This mandate applies directly in digital spaces, wherein users who don't trust will hesitate to interact in depth, entrust personal information, or establish the bonds that facilitate sustained involvement [5]. Unlike interpersonal trust, which is commonly established from accumulated history, digital trust must be gained in the context of anonymity and technological sophistication. It involves more than one dimension, such that it is believed that the platform will safeguard personal information, manage its algorithms in fairness, deliver precise services, and guard from misusing user information. Within the research model proposed, Digital Trust occupies center stage, serving as the foundation upon which positive user experiences are established. It acts like a focal point that contributes toward a user's willingness to interact with

content, their emotional ratings, and their overall involvement in customerhood. If it is absent, users may regard interactions as risky or opportunistic, thus crushing all desire for deeper involvement. Human–AI collaboration research indicates that trust in systems that use AI predicts strongly willingness for interaction and holding involvement [14], [15].

E. Emotion

Emotion is the feelings and reactions experienced by users when interacting with online content. Great content often succeeds because it elicits a strong emotional response, such as joy, entertainment, or inspiration, which makes it more memorable and sharable[2]. From the business research standpoint, these affective responses are not ancillary side effects but are significant pointers that guide consumer behavior and shape the overall user experience [3]. Understanding why and how content generates specific emotions is paramount to developing effective engagement strategies. Quantification of such affective responses is regularly undertaken using business research methods, followed by investigation of their impact on user decision and brand perception [3]. In the model envisioned, Emotion is a direct consequence of Digital Trust and a potent stimulator of Customer Engagement. A climate of trust involves the psychological security necessary to enable users to become emotionally receptive to content. This emotionally optimistic state then becomes a stimulating force, strengthening the user's overall commitment and forming a significant, heightened connection with a brand or content creator. AI personalization can also trigger emotional resonance by showing users content that is conducive to their mood and interests, therefore making the emotional connection between platforms and users stronger [10].

F. Platform Familiarity

Platform Familiarity is the degree to which a user feels familiar, comfortable, and skilled with a particular digital platform's interface, functionality, and conventions of use [6]. Familiarity as a cognitive state built through repeated exposure reduces the cognitive burden required to navigate and employ a platform's features. According to social research design principles, it is essential to be familiar with a system, e.g., a website or a survey tool, as it lightens the cognitive load of the user. This allows the user to focus on the content of the interaction here, i.e., the content rather than the mechanism of the platform itself [6]. This accrued knowledge extends beyond basic operational skills; it includes an unspoken understanding of community conventions, content discovery mechanisms, and interaction patterns. In this research framework, Platform Familiarity is positioned as a building block to Digital Trust. This connection stems from the argument that as users become familiar with a platform, uncertainty declines. They possess more understanding of how it operates, which generates familiarity and control. Therefore, an acclimatized and expert user is more likely to think of a platform as being safe and trustworthy, which makes them more likely to trust it more freely. As familiarity increases, users perceive platforms as more trustworthy and easier to use, which promotes their activity in the long term [15].

III. METHODOLOGY

A. Variables and Hypotheses

Hypothesis 1 (H1): Content Engagement significantly impacts Content Engagement AI.

Hypothesis 2 (H2): Content Engagement significantly impacts Customer Engagement.

Hypothesis 3 (H3): Content Engagement AI significantly impacts Customer Engagement.

Hypothesis 4 (H4): Digital Trust significantly impacts Content Engagement.

Hypothesis 5 (H5): Digital Trust significantly impacts Customer Engagement.

Hypothesis 6 (H6): Digital Trust significantly impacts Emotion.

Hypothesis 7 (H7): Emotion significantly impacts Customer Engagement.

Hypothesis 8 (H8): Platform Familiarity significantly impacts Digital Trust.

B. Research Model

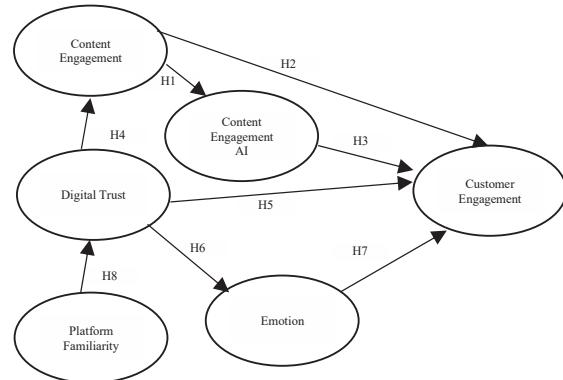


Fig. 1. Research Model

TABLE I. VARIABLE AND INDICATORS

Questionnaire	Code	Ref
Facilitating Condition (CE)		
I feel very focused when I see content on social media.	CE1	[1], [2]
The content on social media makes me want to keep seeing more	CE2	
I feel like I have an emotional connection with the content I see.	CE3	
I want to share the content I see with others.	CE4	
I often provide responses (e.g., likes, comments, shares) to social media content.	CE5	
Performance Expectancy (CEAI)		
I often interact with product content that feels like it is delivered according to my preferences	CEAI1	[2], [3]
The system's ability to recommend relevant content keeps me staying longer on the platform.	CEAI2	
I feel encouraged to interact (like, comment, share) when the platform understands my needs.	CEAI3	
I can connect with brands more easily through automated suggestions and personalization from the system..	CEAI4	
I feel closer to the content recommended by the platform based on my previous activity.	CEAI5	
Social Influence (CUE)		
I often participate in activities or campaigns carried out by various content creators.	CUE1	[4]
I feel connected to the content creators I follow because of the content they create.	CUE2	
I prefer to see content uploaded by content creators i follow over others.	CUE3	

Questionnaire	Code	Ref	
I often recommend the content creators I follow to friends or family.	CUE4	[5]	
I am interested in continuing to follow the developments of the content creators I follow.	CUE5		
Technology Awareness (DT)			
I trust that digital platforms protect my personal information	DT1		
I feel safe when interacting with services on digital platforms..	DT2		
I believe that digital systems operate fairly and transparently.	DT3	[5]	
I rely on digital platforms to provide consistent and accurate service.	DT4		
I feel SURE that my personal data will not be MISUSED on digital platforms.	DT5		
Effort Expectancy (EM)			
Learning how to secure e-wallet apps was pretty easy for me.	EM1		
I found it easy to understand the protection measures against phishing or malware.	EM2	[2], [3]	
Interaction with security features in e-wallet applications feels easy to me.	EM3		
I find the security features in e-wallets easy to use.	EM4		
I find it easy to implement security precautions when using e-wallets.	EM5		
Ewallet Usage Behaviour (PF)			
I am used to use this platform to search and watch content from influencers.	PF1	[6]	
I feel comfortable using this platform to explore various beauty product content.	PF2		
I know the key features on this platform to interact with influencer content.	PF3		
I understand how to use this platform to find video content that suits my interests.	PF4		
Because I am used to this platform, it is easier for me to interact with the content.	PF5		

IV. RESULTS AND DISCUSSION

A. Statistics and Overview

This chapter presents the statistical overview of the data collected since April 2025, with a total of 430 respondents. The demographic analysis is essential to understand the audience background, as these factors play a significant role in determining how and why certain content can go viral.

Based on the data, the majority of respondents are female (66.8%), while male participants account for 33.2%. In terms of age distribution, the dominant group is 12–27 years old (78%), followed by 28–43 years old (15.3%), while other age ranges such as 44–59, 60–78, and above 78 years old contribute only a small percentage. This highlights that younger audiences form the main base of viral content engagement.

From the perspective of domicile, most respondents are located in Jakarta (29.8%), followed by those living outside the Greater Jakarta area (24.4%), then Bogor (13.1%), Tangerang (14.1%), Depok (10.1%), and Bekasi (8.5%). Meanwhile, regarding educational background, the largest proportion comes from high school graduates (49.7%), followed by those with a diploma or bachelor's degree (40.5%), while postgraduate, junior high school, elementary school, and non-schooling participants make up only a minor portion.

Overall, these respondent profiles illustrate that viral content produced by influencers primarily resonates with a

young, female-dominated audience, concentrated in Jakarta and surrounding regions, with most of them having a high school to undergraduate-level education.

B. Measurement Model : Validity and Reliability

The outer loadings results (in Table 2) show that most indicators are above the 0.70 threshold, indicating good convergent validity. Although a few items such as DT4 (0.671) are slightly below the ideal cutoff, they remain acceptable since values above 0.60 can still be retained. Overall, the indicators adequately represent their respective constructs.

TABLE II. OUTER LOADINGS

Code	Outer Loadings	Code	Outer Loadings
CE1	0.762	DT2	0.739
CE3	0.886	DT3	0.825
CEAI1	0.812	DT4	0.671
CEAI3	0.909	EM2	0.826
CUE1	0.783	EM3	0.776
CUE2	0.809	EM5	0.727
CUE3	0.780	PF1	0.759
CUE4	0.894	PF2	0.773
DT1	0.812	PF5	0.776

TABLE III. CONSTRUCT RELIABILITY AND VALIDITY

Variable	Construct Reliability and Validity		
	Cronbach's alpha	Composite reliability (rho_c)	Average variance extracted (AVE)
CE	0.545	0.585	0.811
CEAI	0.663	0.714	0.852
CUE	0.834	0.838	0.890
DT	0.760	0.766	0.848
EM	0.671	0.673	0.820
PF	0.670	0.677	0.813

The construct reliability test reveals that some Cronbach's Alpha values (e.g., CE = 0.545, EM = 0.671) fall below the ideal 0.70 threshold, yet the Composite Reliability values are generally close to or above 0.70, which indicates acceptable internal consistency. Moreover, all AVE values exceed 0.50, confirming good convergent validity across construct.

TABLE IV. FORNELL-LARCKER CRITERION

	EE	EUB	FC	PE	SI	TA
CE	0.826					
CEAI	0.405	0.862				
CUE	0.562	0.588	0.818			
DT	0.619	0.410	0.689	0.764		
EM	0.375	0.193	0.587	0.499	0.777	
PF	0.317	0.220	0.508	0.384	0.428	0.770

The Fornell-Larcker results indicate that the square root of AVE (diagonal values) is greater than the correlations with other constructs, thus meeting the discriminant validity

criterion. This suggests that each construct is empirically distinct and not excessively correlated with others.

TABLE V. HETERO TRAIT-MONOTRAIT RATIO (HTMT)

	<i>EE</i>	<i>EUB</i>	<i>FC</i>	<i>PE</i>	<i>SI</i>	<i>TA</i>
CE						
CEAI	0.645					
CUE	0.809	0.796				
DT	0.966	0.565	0.849			
EM	0.635	0.329	0.777	0.692		
PF	0.524	0.330	0.680	0.511	0.655	

The HTMT values are all below the recommended threshold of 0.90, further confirming discriminant validity. This result strengthens the evidence that the constructs are clearly differentiated and measure distinct conceptual domains.

TABLE VI. R-SQUARE

	R-square	R-square adjusted
CE	0.384	0.371
CEAI	0.164	0.147
CUE	0.674	0.645
DT	0.147	0.129
EM	0.249	0.234

The R-square values demonstrate the explanatory power of the model. CUE has the highest R-square (0.674), which falls into the substantial category, meaning that the predictors explain 67.4% of its variance. CE (0.384) is in the moderate range, while CEAI (0.164), DT (0.147), and EM (0.249) show relatively weak explanatory power.

TABLE VII. PATH COEFFICIENTS

	Original sample (O)	Sample mean (M)	Stand. Dev	T-Stat	P-Values
CE → CEAI	0.405	0.417	0.118	3.444	0.001
CE → CUE	0.099	0.124	0.123	0.799	0.424
CEAI → CUE	0.354	0.339	0.124	2.846	0.004
DT → CE	0.619	0.629	0.078	7.988	0.000
DT → CUE	0.323	0.306	0.161	2.002	0.045
DT → EM	0.499	0.507	0.118	4.221	0.000
EM → CUE	0.320	0.316	0.132	2.428	0.015
PF → DT	0.384	0.407	0.129	2.974	0.003

The path coefficients indicate that most relationships are statistically significant ($p < 0.05$). For example, CE → CEAI ($\beta = 0.405$; $p = 0.001$), DT → CE ($\beta = 0.619$; $p = 0.000$), and PF → DT ($\beta = 0.384$; $p = 0.003$) are all significant. However, the path from CE → CUE ($p = 0.424$) is not significant, suggesting that customer engagement does not directly influence customer use experience in this model. Overall, the majority of hypothesized relationships are supported.

C. Creative Experience to Creative AI Adoption Intention (CE → CEAI)

Statistical analysis indicates that Creative Experience (CE) significantly affects Creative AI Adoption Intention (CEAI), as shown by a t-value of 3.444 and a p-value of 0.001. This result implies that individuals with stronger creative experiences are more likely to adopt Creative AI, highlighting the importance of enhancing users' creative engagement to drive adoption.

D. Creative Experience to Creative Usage Experience (CE → CUE)

Statistical analysis shows that Creative Experience (CE) does not significantly affect Creative Usage Experience (CUE), with a t-value of 0.799 and a p-value of 0.424. This suggests that creative experience alone is insufficient to directly influence users' creative usage experience, implying that other mediating factors may play a stronger role.

E. Creative AI Adoption Intention to Creative Usage Experience (CEAI → CUE)

Statistical analysis indicates that Creative AI Adoption Intention (CEAI) significantly affects Creative Usage Experience (CUE), as evidenced by a t-value of 2.846 and a p-value of 0.004. This result highlights that individuals who intend to adopt Creative AI are more likely to enhance their creative usage experience.

F. Digital Transformation to Creative Experience (DT → CE)

Statistical analysis reveals that Facilitating Conditions (FC) significantly influences Performance Expectancy (PE), with a t-value of 6.810 and a p-value of 0.000. This implies that the presence of supportive conditions enhances users' expectations regarding the usefulness of e-wallets, reinforcing the importance of external support to boost internal beliefs about performance benefits.

G. Digital Transformation to Creative Usage Experience (DT → CUE)

Statistical analysis reveals that Digital Transformation (DT) significantly affects Creative Usage Experience (CUE), as shown by a t-value of 2.002 and a p-value of 0.045. This suggests that digital transformation plays a positive but moderate role in shaping users' creative usage experience.

H. Digital Transformation to Emotion (DT → EM)

Statistical analysis indicates that Digital Transformation (DT) significantly influences Emotion (EM), as reflected by a t-value of 4.221 and a p-value of 0.000. This finding implies that the integration of digital transformation enhances users' emotional engagement during creative processes.

I. Emotion to Creative Usage Experience (EM → CUE)

Statistical analysis shows that Emotion (EM) significantly affects Creative Usage Experience (CUE), with a t-value of 2.428 and a p-value of 0.015. This result suggests that stronger emotional involvement contributes to a more impactful creative usage experience.

J. Platform Features to Digital Transformation (PF → DT)

Statistical analysis demonstrates that Platform Features (PF) significantly affect Digital Transformation (DT), as

evidenced by a t-value of 2.974 and a p-value of 0.003. This indicates that improved platform features play a crucial role in facilitating digital transformation adoption.

V. CONCLUSIONS

This research provides empirical evidence that sustained customer engagement in digital environments depends on the interplay among trust, emotion, personalization, and familiarity. The findings reveal that Digital Trust serves as the foundation for emotional security and cognitive commitment, which subsequently foster higher levels of Content and Customer Engagement. AI-powered personalization enhances this relationship by tailoring experiences that align with users' individual preferences, making interactions more meaningful. However, the study also finds that engagement rooted solely in creative experience or surface-level enjoyment is insufficient to drive long-term involvement. Instead, trust-based and emotionally resonant experiences are necessary to sustain engagement over time.

From a managerial standpoint, marketers and platform designers should invest in transparency, user education, and trustworthy AI algorithms that respect privacy while enhancing personalization. For policymakers, the study highlights the necessity of developing ethical frameworks for AI-based content delivery to ensure fairness and reliability in digital interactions.

Future research should expand the model across diverse cultural and platform contexts to test its cross-national validity and explore emerging variables such as AI ethics awareness and digital well-being. Theoretically, this study strengthens the conceptual bridge between technology-mediated personalization and psychological engagement, providing both scholarly and practical contributions to the digital marketing discipline.

ACKNOWLEDGMENT AND OPEN DATA

The authors acknowledge that this paper uses artificial intelligence to improve English grammar. However, it is important to note that all the results presented in this paper are the authors' original work, with no artificial intelligence intervention in the process of composing the main content. Open data and contributors are available at <https://zenodo.org/uploads/17909135>. All authors certified fulfilment of ICMJE authorship criteria. This study support by Bina Nusantara University (Indonesia) Initiative Project number PP0030093 year 2025. Thank to Posts and Telecommunications Institute (Vietnam) for support this research.

CREDIT AUTHORSHIP CONTRIBUTION STATEMENT

Erwin Halim and Nguyen Minh Tuan contributed to the conceptualization, methodology, questionnaire validation, data curation, and writing original draft. Nguyen Hong Son, Thomas Tandewijaya, Vellycia Hengky Saputra, Alif Widyadhana Hartiyanto, and Shara Toibayeva were involved in conceptualization, data collection, and resources.

REFERENCES

- [1] R. J. Brodie, L. D. Hollebeek, B. Juric, and A. Ilic, "Customer engagement: Conceptual domain, fundamental propositions, and implications for research," *Journal of Service Research*, vol. 14, no. 3, pp. 252–271, 2011.
- [2] B. Calder, E. Malthouse, and M. Schaeldel, "Engaging consumers through online content," *Journal of Advertising Research*, vol. 49, no. 4, pp. 381–390, 2009.
- [3] S. R. Cooper and P. H. Schindler, *Business Research Methods*, 12th ed. New York, NY, USA: McGraw-Hill, 2014, pp. 254–278.
- [4] M. Babbie, *The Practice of Social Research*, 14th ed. Belmont, CA, USA: Wadsworth, 2013, pp. 99–112.
- [5] J. W. Creswell, *Research Design: Qualitative, Quantitative, and Mixed Methods Approaches*, 5th ed. Thousand Oaks, CA, USA: SAGE Publications, 2017, pp. 181–188.
- [6] P. J. O'Rourke and S. F. Greer, *Survey Design for Social Research*, 3rd ed. London, UK: Routledge, 2012, pp. 90–102..
- [7] M. H. Akbar and E. Parvez, "Factors Affect Customer Retention: A Systematic Review," in *Advances in Intelligent Systems and Computing*, vol. 1193, pp. 623–633, Springer, 2020.
- [8] A. H. Raziq, M. Borini, and M. Malik, "Freelancing on digital work platforms: Roles of virtual community trust and work engagement," *VINE Journal of Information and Knowledge Management Systems*, vol. 50, no. 4, pp. 577–595, 2020.
- [9] J. Cambra-Fierro, J. Centeno, I. Vazquez-Carrasco, and M. Trespalacios, "Customer experience and commitment in retailing: Does customer age matter?," *Journal of Retailing and Consumer Services*, vol. 57, p. 102219, 2020.
- [10] H. Hassan, M. Ali, and R. Khan, "The Impact of AI-Driven Personalization on Customer Satisfaction," *Journal of Business Research*, vol. 159, pp. 230–245, 2025.
- [11] F. Ifekanandu, P. Lin, and C. Huang, "The Moderating Role of Personalized Recommendations in the Trust-Satisfaction Relationship," *Computers in Human Behavior*, vol. 149, p. 107983, 2023.
- [12] J. Lee, "The Impact of AI-Personalized Recommendations on Clicking Intentions: Evidence from E-commerce Platforms," *Electronic Commerce Research and Applications*, vol. 40, p. 100944, 2020.
- [13] P. Arora and S. Bansal, "Influence of Artificial Intelligence on Customer Experience and Loyalty," *International Journal of Consumer Studies*, vol. 46, no. 6, pp. 1298–1312, 2022.
- [14] R. Y. Sun, H. Tang, and L. Zhao, "Exploring Trust in Human–AI Collaboration in the Context of Multiplayer Online Games," *Computers in Human Behavior*, vol. 138, p. 107423, 2023.
- [15] Y. Kim and D. Park, "Interactivity, Humanness, and Trust: Antecedents of User Acceptance of AI-Enabled Systems," *Journal of Interactive Marketing*, vol. 54, pp. 45–62, 2021.