A Design of Cost-Efficient GPU-based Training
Workloads on Preemptible Instances via Adaptive
Live Migration

Huan Le, Phuong Bac Ta, Vitumbiko Mafeni, and Younghan Kim*
Department of Electronic Engineering, Soongsil University, Seoul, Korea
{huanle, bactp, vitumafeni} @dcn.ssu.ac.kr, younghak @ssu.ac.kr

Abstract—GPU-based training workloads are increasingly de-
ployed on cloud infrastructure platforms due to their scalability
and resource elasticity. To reduce costs, many users leverage
preemptible (spot) GPU instances, which are significantly cheaper
than on-demand resources. However, spot instances do not pro-
vide native mechanisms to checkpoint or restore GPU workloads
upon preemption. Consequently, ongoing training processes are
abruptly terminated, resulting in the loss of intermediate model
states and wasted computation. This limitation significantly
hinders the use of spot instances for long-running, stateful
Al workloads. This paper proposes an adaptive live migration
framework to ensure the continuity of GPU-based training
workloads on preemptible instances. To address the lack of
native checkpointing in spot instances, the framework leverages
CRIUgpu to consistently capture and restore GPU execution
state. In addition, it incorporates an adaptive job replication
strategy across multiple preemptible instances, proactively co-
ordinating checkpointing and migration to maximize workload
continuity under instance preemptions. Initial evaluation results
suggest that the approach can achieve substantial cost savings
compared to on-demand GPU instances while preserving training
continuity and reducing interruptions caused by preemptions.

Index Terms—Spot Instance, AI Training, Multi-cloud, Cloud
Computing

I. INTRODUCTION

The rapid expansion of deep learning has increasingly
shifted model training to cloud platforms, where elastic re-
source pools and pay-as-you-go pricing facilitate large-scale
experimentation. Among available options, preemptible (spot)
GPUs are especially attractive: empirical evidence (e.g., Spot-
Lake) shows typical prices at 8-50% of on-demand [1], en-
abling more runs or larger models within fixed budgets. How-
ever, these savings come with volatility: spot capacity may be
reclaimed at short notice, and current platforms lack GPU-
native checkpoint/restore for user workloads. Consequently,
long-running training jobs are vulnerable to abrupt termina-
tion, which discards in-flight GPU state, erases progress, and
undermines the very cost benefits that motivate spot adoption.

This paper examines that core tension—cost efficiency
vs. reliability—for training workloads that retain substantial
state in device memory and driver contexts. Existing mitiga-
tions are insufficient. Framework-level periodic checkpointing
operates at coarse granularity, incurs I/O and synchroniza-
tion overheads, and still loses work since the last save.

*Corresponding Author: Younghan Kim (younghak @ssu.ac.kr)

979-8-3315-7896-1/26/$31.00 ©2026 IEEE

149

Elastic/asynchronous training can tolerate worker churn but
typically requires non-trivial code changes and still restarts
from the last durable checkpoint, without preserving in-flight
GPU execution (e.g., kernel queues, CUDA streams). Cloud
interruption signals are provider-specific and often too brief
for safe capture, limiting portability. What is missing is
a transparent, GPU-aware migration mechanism that allows
unmodified training workloads to survive preemptions with
minimal loss of progress.

We address this gap with a Kubernetes-native framework for
cost-efficient training on preemptible instances via adaptive
live migration. At its core is a preemptible-aware controller
(a custom K8s operator) that manages a spot node pool and
orchestrates GPU training pods. The controller is reactive: it
continuously watches termination notices and cluster health;
upon detecting a preemption, it immediately binds a replace-
ment pod to another running instance (or a small on-demand
fallback, if configured) and restores the training container
from the most recent checkpoint. We leverage the container
runtime’s native CRIU integration [2] together with CRIUgpu
plugin [3] to checkpoint and restore the container that hosts the
trainer, capturing CUDA contexts, device memory, and driver
state coherently with host process state. Checkpoint artifacts
are persisted to shared storage and used to resume the training
pod, thereby preserving continuity while retaining spot-level
costs.

We evaluate the framework on representative training tasks
under realistic spot churn. Compared to on-demand, our
system preserves the majority of spot—cost savings while
maintaining continuity under preemptions. Compared to a
periodic-only checkpoint baseline, it shortens time-to-finish
by resuming more quickly after revocations and losing less
training progress, at the expense of a small additional cost
from maintaining a second preemptible instance. This paper
makes two contributions:

o GPU-aware live migration for training jobs: We enable
live migration without losing job progress by integrating
CRIU with CRIUgpu plugin to checkpoint and restore the
training container, capturing GPU/device state coherently
with host process state.

« Adaptive replication and migration policy: Rather than
predicting revocations, the system reacts to a detected
preemption by using another running instance to spawn

ICOIN 2026

a replica (or promote a sibling) and continue from the
latest checkpoint.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work; Section III details the proposed
system; Section IV presents preliminary experiments and
evaluation results; and Section V outlines future directions and
concludes.

II. RELATED WORK

This section reviews prior studies most relevant to
our goal—cost-efficient, reliable training on preemptible
GPUs—emphasizing their objectives, system levels, and dif-
ferences from our approach.

Inference and service continuity on spot. SkyServe [4]
targets inference across on-demand and spot GPUs, optimizing
latency and cost to satisfy service SLOs rather than preserving
long-running training state. Tributary and Cocktail [5], [6]
likewise address elastic services/model serving, focusing on
SLO adherence and throughput under transient capacity. These
systems improve serving-time robustness but do not maintain
device-resident training state. Our focus is training continuity
with explicit preservation of GPU contexts.

Training on transient resources. Varuna [7] scales massive
models on commodity/spot VMs via parallelism strategies
and elastic job morphing, adapting to bandwidth and capacity
variability through reconfiguration. Bamboo [8] improves fault
tolerance for pipeline-parallel training by injecting redundant
computation into pipeline bubbles so neighboring stages can
continue during worker loss. Spotnik [9] advocates designing
distributed ML for transient resources, proposing abstractions
and schedulers that tolerate revocations using lightweight
checkpointing and reconfiguration on ephemeral workers. Col-
lectively, these operate at the training runtime/algorithmic
layer—trading reconfiguration or redundancy for resilience. In
contrast, we provide process-level, GPU-aware live migration:
we checkpoint and restore CUDA/device state coherently with
host state and reactively resume on another running instance
after a detected preemption, enabling continuity without model
or pipeline changes.

Infrastructure-level cost-availability policies. SNAPE
[10], [11] models the mix of spot and on-demand VMs to
achieve high availability at lower cost using production traces
and constrained RL. This line of work is workload-agnostic
and focuses on VM orchestration rather than preserving
application-level GPU state. Our approach is complementary:
it can sit atop such provisioning policies to further reduce
lost work when revocations occur by migrating containerized
training state.

III. SYSTEM DESCRIPTION

The system (Fig. 1) runs inside a Kubernetes (K8s) cluster
and provides reactive continuity for GPU training workloads
on preemptible (spot) instances by combining a control-plane
controller with node-local container checkpoint/restore using
CRIU and CRIUgpu plugin. The Spotlnstance Controller is
a leader-elected controller that continuously reconciles GPU

Cluster

Spotinstance Controller

Manage Instances

Spotinstance Pool

AN
AN

< checkpoint > GPU Instance
~_Agent
Agent,
N

Upload / Download Checkpoint artifacts

Checkpoint Checkpoint Checkpoint Checkpoint
Files Files Files Files.

Shared Storage

Fig. 1: Overview of the high-level architecture. The Spotln-
stance Controller manages the lifecycle of instances within
the Spotlnstance Pool. Each instance utilizes a local GPU-
checkpoint agent to save artifacts to the Shared Storage
backend.

jobs against live cluster state and cloud revocation feeds. The
GPU-Job Agent executes on each GPU spot node and interacts
with the node’s container runtime to issue checkpoint and
restore operations. Checkpoint artifacts are written to a shared
object store; artifacts are immutable, content-addressed, and
versioned by (job_id,replica_id,t). The migration boundary is
the entire training container, including process tree, memory
image, file-descriptor table, and GPU contexts/driver state
captured by CRIUgpu.

Spotinstance Controller [Spotinstance-1 (GPU)] Spotinstance-2 (GPU)]
T T

Initial deployment

[Shared Storage l

request spot instance 1 + deploy GPU pod

request spot instance 2 + deploy|GPU pod

ready

ready

Regular scheduled checkpoint
L
loop feven] checkpoint_intervai]

upload checkgoint (A, timestampA)

upload checkpoint (B, timestampB)

[Spotinstance-1 (GPU) J [Spotinstance-2 (GPU) J [Shared Storage J

Spotinstance Controller

Fig. 2: Periodic checkpointing timeline.

In steady state, the controller enforces a periodic checkpoint
cadence (Fig. 2). At each interval, it instructs the GPU-
Job Agent on every active replica to invoke the container
runtime’s CRIU/CRIUgpu pipeline to checkpoint the training
container. The resulting artifacts, along with integrity metadata
(hash, size, timestamp), are uploaded to shared storage. The
controller tracks per-replica placement and the last successful
checkpoint, maintaining the freshest consistent recovery point
for subsequent restores.

150

CPU on-demand instance

P

Control Plane Node

4.2
Updale checkpoint [
metadata ‘ S|

\

-

Listen for Preemption notify Cloud

GPUJﬂb CR Controller

Compute Engine

5) Request new Spot Instance

0 Create Job from CR

Create new spot instance

&1 & join node to cluster

2 |Trigger Checkpoint on healthy node

GPU Spot Instance (preempted)

Shared Storage

Checkpoint.tar

Node GPU 3
7

Create local checkpoint image,

and restore pod
GPU Pod

GPU Spot Instance

GPU-Training
Agent

6 | Pull Checkpoint File

Fig. 3: System architecture and recovery workflow.

Node GPU 1
50 Pod Checl kpm nt Pod | GFUA;I:::““Q
GPU Spot Instance
4.1 Push Checkpoint file
As shown in Fig. 1, when a preemption is
detected—via cloud termination/eviction notices, node

NotReady/Unknown conditions, or pod loss—the controller
reacts immediately. If a peer replica remains available, it
first tightens the recovery point by triggering an on-demand
checkpoint on the survivor, then allocates a replacement
spot node (or a small on-demand fallback if configured),
schedules a new pod, and directs the target node’s agent to
fetch the freshest artifact and execute CRIU/CRIUgpu restore.
If multiple replicas are revoked nearly simultaneously, the
controller provisions replacements and restores from the latest
completed periodic checkpoint. By preserving device-resident
state and re-homing containers rather than recomputing work,
the design maintains training throughput on volatile spot
pools while bounding both lost work and recovery latency.

IV. PRELIMINARY EXPERIMENT AND RESULTS

A. Spot Instance Setup

TABLE I: Per-hour GPU prices (USD) used.

GPU Model | On-Demand Instance ($ / h) | Spot Instance ($ / h)
P100 1.29 0.22
V100 1.91 0.65

We evaluate the system on Google Cloud Platform (GCP) in
asia-northeast3 (Seoul) using preemptible GPU nodes
provisioned with NVIDIA V100 and P100 accelerators; the
on-demand and spot prices used in our cost calculations are
summarized in Table I. We compare two baselines against our
approach: (i) a periodic-only checkpoint baseline that runs on
a single preemptible GPU instance and saves framework-level
checkpoints at a fixed interval (no GPU-state migration), and
(ii) an on-demand baseline that runs on a single on-demand
GPU instance (no preemptions). Our system executes the same
workload on two preemptible GPU instances, enabling reactive
recovery by restoring the container (including GPU state)

151

on surviving or newly provisioned capacity. All variants use
identical container images, CUDA/cuDNN stacks, and training
hyperparameters. Checkpoints for our system are created at a
fixed interval t and stored in shared object storage mounted to
the cluster; the periodic-only baseline uses the same t at the
framework level for comparability.

We consider two workloads. First, GPT-2 [12] finetuning
on the US Financial News Articles dataset (Kaggle) [13],
trained for 5 epochs. Second, ResNet-50 [14] on ILSVRC2012
(ImageNet) [15], trained for 5 epochs with batch_size = 128.
Data pipelines, augmentations, and optimizer settings are held
constant across baselines and our system. Unless otherwise
stated, results are reported per GPU family (V100/P100) and
averaged over repeated trials.

B. Experiment and Preliminary Results

For each workload (GPT-2, ResNet-50) and GPU type
(V100, P100), we run the three configurations end-to-end
and measure (i) Time-to-Finish (wall-clock from the first
training step to completion of the target epochs, including any
preemption handling) and (ii) Cost, computed as VM billable
time multiplied by the corresponding price class (spot/on-
demand) and aggregated over all instances used. To exercise
failure handling on preemptible nodes, we inject revocations
during training. In the periodic-only baseline, revocation forces
a restart from the last framework checkpoint. In our system,
revocation triggers a reactive container restore (including GPU
state) on a healthy or replacement node; if a peer replica
is alive, we first issue an on-demand checkpoint to mini-
mize progress loss. The on-demand baseline provides a no-
preemption reference for time but represents the highest cost
class.

As shown in Fig. 4a, the periodic-only spot baseline in-
curs substantial recomputation after revocations and therefore
lengthens completion time by +32.8% on average relative
to on-demand. In contrast, Adaptive Live Migration resumes

Comparison of training time between different mechanisms

B On-Demand Instance M Spot-instance with periodly checkpoint Adaptive Live Migration (Qur System)

400

300

200
) II
i

GPT2- P100 Resnet50 - P100 GPT2-\100 Resnets0 - V100

Training Time (minutes)

Model Name - GPU model

(a) Training time.

Comparison of cost between difference mechanisms
W on-Demand Instance [l Spotinstance with periodly checkpaint
]

LLkh

GPT2- P100 Resnet50- P100 GPT2- V100 Resnet50- V100

Adaptive Live Migration (Our System)

Cost ($)

Model Name - GPU model

(b) Training Cost.

Fig. 4: Evaluation result.

from a near-current container snapshot that includes GPU
state, reducing replay and avoiding CUDA cold-start over-
heads; it finishes 18.1% faster than periodic-only on average
and remains within +8.7% of on-demand time across models
and GPUs. Dual-revocation trials narrow the gap because both
spot configurations fall back to the latest periodic checkpoint,
yet container-level restore still shortens wall-clock by avoiding
framework re-initialization.

Cost results (Fig. 4b) mirror this trade-off. Despite running
two spot instances, Adaptive Live Migration retains most of
the monetary advantage of spot, averaging 0.54x the on-
demand cost (i.e., 46.2% savings). Relative to the single-node
periodic-only baseline, our configuration is 1.64x more expen-
sive on average—an expected premium for redundancy—but
delivers a systematic reduction in time-to-finish (-18.1%),
yielding better time-cost efficiency under realistic churn. Over-
all, the data indicate that GPU-aware container restore is an
effective mechanism to bound interruption overheads while
operating in the low-price regime of preemptible capacity.

V. CONCLUSION AND FUTURE DIRECTIONS

In this study, We presented a Kubernetes-native framework
for running GPU training on preemptible instances using
a preemptible-aware controller and container-level check-
point/restore (CRIU + CRIUgpu). In experiments on GPT-2
and ResNet-50 with P100/V100 GPUs, the system consistently
reduced time-to-finish versus a periodic-only spot baseline
(18% on average) while retaining most of the cost advantage
over on-demand runs, at the expense of a modest premium
relative to single-node spot.

Future work will extend the design to federated multi-GPU
training jobs and incorporate a predictive preemption subsys-
tem to pre-stage minimal standby capacity, further shrinking
recovery time without sacrificing spot-level cost.

ACKNOWLEDGMENT

This work was partly supported by the Institute of
Information & Communications Technology Planning &
Evaluation(IITP)-ITRC(Information =~ Technology Research
Center) grant funded by the Korea government(MSIT)(IITP-
2025-RS-2023-00258649, 50) and TP grant funded by the
Korea government(MSIT)(RS-2024-00398379, 50).

REFERENCES

[1] S. Lee, J. Hwang and K. Lee, "SpotLake: Diverse Spot Instance Dataset
Archive Service,” 2022 IEEE International Symposium on Workload
Characterization (IISWC), Austin, TX, USA, 2022, pp. 242-255, doi:
10.1109/1ISWC55918.2022.00029.

[2] CRIU, “Main Page,” CheckpointRestore in Userspace, [Online]. Avail-
able: https://criu.org/Main_Page. [Accessed: Oct. 24, 2025].

[3] R. Stoyanov, V. SpiSakovd, J. Ramos, S. Gurfinkel, A. Vagin, A.
Reber, et al., “CRIUgpu: Transparent checkpointing of GPU-accelerated
workloads,” arXiv preprint arXiv:2502.16631, 2025.

[4] Z. Mao, T. Xia, Z. Wu, W. L. Chiang, T. Griggs, R. Bhardwaj, et
al., “SkyServe: Serving Al models across regions and clouds with spot
instances,” in Proc. 20th European Conf. on Computer Systems (EuroSys
’25), Mar. 2025, pp. 159-175.

[5] A. Harlap, A. Chung, A. Tumanov, G. R. Ganger, and P. B. Gibbons,
“Tributary: Spot-dancing for elastic services with latency SLOs,” in Proc.
2018 USENIX Annual Technical Conference (USENIX ATC ’18), 2018,
pp. 1-14.

[6] J. R. Gunasekaran, C. S. Mishra, P. Thinakaran, B. Sharma, M. T.
Kandemir, and C. R. Das, “Cocktail: A multidimensional optimization
for model serving in cloud,” in Proc. 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’22), 2022, pp.
1041-1057.

[7]1 S. Athlur, N. Saran, M. Sivathanu, R. Ramjee, and N. Kwatra, “Varuna:
Scalable, low-cost training of massive deep learning models,” in Proc.
17th European Conf. on Computer Systems (EuroSys ’22), Mar. 2022,
pp. 472-487.

[8] J. Thorpe, P. Zhao, J. Eyolfson, Y. Qiao, Z. Jia, M. Zhang, et al.,
“Bamboo: Making preemptible instances resilient for affordable training
of large DNNs,” in Proc. 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI °23), 2023, pp. 497-513.

[9] M. Wagenldnder, L. Mai, G. Li, and P. Pietzuch, “Spotnik: Designing

distributed machine learning for transient cloud resources,” in Proc. 12th

USENIX Workshop on Hot Topics in Cloud Computing (HotCloud °20),

2020.

F. Yang, L. Wang, Z. Xu, J. Zhang, L. Li, B. Qiao, et al., “SNAPE:

Reliable and low-cost computing with mixture of spot and on-demand

VMs,” in Proc. 28th ACM Int. Conf. on Architectural Support for

Programming Languages and Operating Systems (ASPLOS °23), Vol.

3, Mar. 2023, pp. 631-643.

F. Yang, L. Wang, Z. Xu, J. Zhang, L. Li, B. Qiao, et al., “SNAPE:

Reliable and low-cost computing with mixture of spot and on-demand

VMs,” in Proc. 28th ACM Int. Conf. on Architectural Support for

Programming Languages and Operating Systems (ASPLOS °23), Vol.

3, Mar. 2023, pp. 631-643.

Hugging Face, “openai-community/gpt2,” Hugging Face Model Hub.

[Online]. Available: https://huggingface.co/openai-community/gpt2.

[Accessed: Oct. 25, 2025].

Jeet2016, “US Financial News Articles,” Kaggle Dataset. [Online].

Available: https://www.kaggle.com/datasets/jeet2016/us-financial-news-

articles. [Accessed: Oct. 25, 2025].

Microsoft, “ResNet-50,” Hugging Face Model Hub. [Online]. Available:

https://huggingface.co/microsoft/resnet-50. [Accessed: Oct. 25, 2025].

Thbdh5765, “ILSVRC2012,” Kaggle Dataset. [Online]. Available:

https://www.kaggle.com/datasets/thbdh5765/ilsvrc2012. [Accessed: Oct.

25, 2025].

[10]

(1]

[12]

[13]

[14]

[15]

152

