
A Design of Distributed Training Workflow for
Hybrid Cloud

Tuan Anh Vuong
School of Electronic Engineering

Soongsil University
Seoul, Korea

anhvt@dcn.ssu.ac.kr

Thai Nguyen Duc Thong
School of Electronic Engineering

Soongsil University
Seoul, Korea

thainguyen1309@dcn.ssu.ac.kr

Younghan Kim
School of Electronic Engineering

Soongsil University
Seoul, Korea

younghak@ssu.ac.kr

Abstract—Distributed training is a key approach to accelerat-
ing the training of large deep learning models. However, deploy-
ing and managing these workloads in hybrid cloud systems, which
combine on-premise and cloud resources, introduces significant
challenges, such as resource heterogeneity and communication
overhead. In this paper, we present a distributed training
workflow that focuses on evaluating the feasibility of addressing
these two challenges simultaneously. Our approach leverages pro-
portional batch size allocation to balance workloads across GPUs
with different capabilities and employs gradient compression to
reduce the volume of data exchanged during synchronization.
Preliminary experiments on a hybrid cloud testbed demonstrate
that these techniques can improve training throughput and
reduce time-to-accuracy, highlighting their potential to enhance
efficiency in realistic multi-cloud scenarios.

Index Terms—distributed training, cloud computing, hybrid
cloud environment, deep learning, heterogeneous system

I. INTRODUCTION

The rapid advancement of deep learning models has driven
an increasing demand for distributed training systems that
can scale across large GPU clusters. Although public clouds
provide elasticity, many organizations adopt hybrid cloud
environments, which encompass on-premise and cloud re-
sources, to balance cost, performance, and security. Training in
such environments introduces a variety of challenges [1]–[3],
among which the most notable considerations include:

• Communication overhead: the cost of exchanging gra-
dients or parameters among distributed workers, which
can become a bottleneck when bandwidth is limited.

• Resource heterogeneity: the system consists of hetero-
geneous devices that differ in computing power, memory
size, and communication bandwidth, etc. These variations
can hinder workload distribution and training efficiency.

• Security and privacy: the need to protect data confi-
dentiality and maintain model integrity when sensitive
information is transmitted between different devices.

• Fault tolerance: distributed training is more prone to
failures than single-node setups, requiring mechanisms to
recover and resume training without disrupting progress.

• Scalability: the capacity of the system to maintain effi-
cient performance and near-linear speedup as the number
of computing resources increases.

• Resource management and scheduling: the process of
dynamically allocating computational resources to opti-
mize performance, cost, utilization, and other factors.

• Debugging and troubleshooting: identifying and resolv-
ing issues in large-scale distributed jobs, where scattered
logs and metrics require effective monitoring and visual-
ization to ensure training reliability.

Given the range of considerations, addressing all of them
concurrently in a unified architecture can be non-trivial, al-
though various solutions exist to mitigate these challenges. In
this paper, we focus on evaluating the feasibility of addressing
two key challenges, heterogeneous GPUs and communication
overhead, which are particularly relevant for hybrid cloud
environments. Specifically, we propose a distributed training
workflow that leverages proportional batch size allocation to
balance workloads across diverse GPUs and gradient compres-
sion to reduce the amount of data exchanged during synchro-
nization. Afterwards, we conduct experiments to investigate
the effectiveness of our approach, summarize key findings,
and outline potential directions for future research and system
improvements.

This work is implemented on Ray [4], a high-performance
distributed computing framework, and deployed on Kuber-
netes [5] for cluster orchestration. This setup serves as the
testbed for evaluating the proposed workflow. The rest of
this article is organized as follows. Section II reviews back-
ground and motivation. Section III presents the design of
our distributed training platform. Section IV discusses the
experimental evaluation. Finally, Section V concludes and
outlines directions for future work.

II. BACKGROUND AND MOTIVATION

A. Distributed deep learning training

Training a deep learning model involves optimizing many
parameters through iterative updates. The process consists
of three stages: forward propagation to compute predictions
and loss, backward propagation to calculate gradients, and
parameter update to adjust weights using optimizers such as
SGD [6] or Adam [7]. As models and datasets grow, training
on a single machine becomes inefficient. Distributed training
leverages multiple resources to speed up learning, and this

145979-8-3315-7896-1/26/$31.00 ©2026 IEEE ICOIN 2026

Fig. 1: Ray cluster architecture.

paper focuses on data parallelism, the most widely adopted
approach in such environments. In data-parallel distributed
learning, each worker maintains a full model replica and
processes a distinct mini-batch of data. During synchronous
training, gradients computed by all workers are aggregated to
form a global gradient, which is then used to update the model
parameters with a chosen optimizer.

B. Communication architecture

Distributed training architectures can be broadly categorized
into two families: Parameter Server [8] and All-Reduce [9].
In Parameter Server, workers compute gradients and send
them to servers. Servers collect gradients from all workers,
combine them to update the global parameters, and broadcast
the updated model for the next training round. By contrast,
All-Reduce follows a decentralized design, where gradients
from every GPU are aggregated using collective operations
such as Ring All-Reduce, after which each GPU updates its
local parameters based on the aggregated result.

C. Ray on Kubernetes

Ray is an open-source framework for scalable AI and
machine learning applications. Running Ray on a single node
is simple, but scaling to multiple nodes requires a Ray clus-
ter [10], which consists of several worker nodes connected
to a common head node (Fig. 1). In addition, Kubernetes
offers powerful resource orchestration, thereby providing an
ideal platform for running Ray clusters at scale [11]. This
setup allows users to efficiently leverage compute resources
without requiring deep expertise in distributed systems and
infrastructure management.

D. Motivation

Distributed training in hybrid cloud environments faces
many obstacles, among which heterogeneous GPUs and com-
munication bottlenecks are significant and practical to opti-
mize. First, assigning equal batch sizes to heterogeneous GPUs
leads to inefficient utilization, as faster GPUs must wait for
slower ones, reducing overall system efficiency. A proportional
batch size allocation aligns each device’s workload with its
capacity, mitigating this imbalance. Second, communication

Fig. 2: Distributed training workflow overview.

bottlenecks arise when synchronizing gradients and parameters
across distributed nodes, especially with limited inter-node
bandwidth. Gradient compression [12]–[16], [20]–[22] can re-
duce communication volume, thereby improving synchroniza-
tion efficiency. This paper assesses the feasibility of integrating
proportional batch size allocation and gradient compression
into a unified workflow and evaluates how they jointly improve
training efficiency under realistic hybrid conditions.

III. SYSTEM DESIGN

We design a hybrid cloud distributed training workflow
(Fig. 2) based on the Parameter Server architecture. The cen-
tralized server aggregates gradients on CPUs, while parameter
updates occur on GPUs, alleviating CPU bottlenecks and
improving end-to-end training speed [17]. To further enhance
efficiency, we adjust batch sizes according to GPU capabilities
and apply gradient compression. These strategies help opti-
mize hardware utilization while mitigating the communication
overhead inherent in such diverse environments.

A. Proportional batch size allocation

A critical challenge in hybrid cloud environments is the
presence of heterogeneous GPUs with varying computational
capabilities. Assigning the same batch size to all workers
leads to load imbalance, where slower GPUs delay global
synchronization and reduce overall training throughput. To ad-
dress this issue, our system allocates batch sizes proportionally
based on the floating-point operations per second (FLOPs) of
each GPU, while preserving a fixed global batch size, as it is
considered an important training hyperparameter. Specifically,
faster GPUs process larger batches, and lighter workloads are
assigned to less powerful GPUs. The FLOPs specifications
of different GPU models are publicly available in the official
documentation provided by NVIDIA [18].

Since each worker processes different samples, directly
averaging their gradients at the parameter server would bias the
global update toward workers with smaller batches. Instead,

146

gradients are aggregated proportionally to the batch size of
each worker, as defined in (1):

αm =
nm∑M
i=1 ni

(1)

where αm is the aggregation weight for worker m, nm is the
batch size of worker m, and

∑M
i=1 ni is the global batch size

across all M workers. The global gradient at iteration t is then
calculated as (2):

gt =
M∑

m=1

αm · ∇L
(
wt;D

(m)
)

(2)

where ∇L(wt;D
(m)) is the gradient of the loss function L

with respect to parameters wt, computed on the local dataset
D(m) of worker m. Finally, the new global model parameters
are updated via SGD according to (3), in which η is the
learning rate:

wt+1 = wt − η · gt (3)

This approach ensures that the global batch size is retained
while preserving the convergence properties of the distributed
optimization algorithm [19]. In our implementation, each
gradient ∇L(wt;D

(m)) is compressed before aggregation, as
described in Section III-B.

B. Gradient compression

In hybrid cloud environments, communication overhead
can arise not only across WAN connections but also within
local clusters when scaling to many GPUs. To mitigate this,
our system employs Top-k sparsification, as it is simple and
effective [15], [20]. Initially, each worker compresses its
gradients locally and sends only the top (100 − Rt

m)% by
magnitude to the server for global aggregation, where Rt

m%
is the compression ratio for worker m in iteration t. To balance
communication and mitigate stragglers, Rt

m is adaptively
adjusted based on each worker’s previous transmission time
relative to the average of all workers. Specifically, workers
with shorter times use lighter compression, while those with
longer times apply more aggressive compression. To recover
information lost during compression, error compensation [14]
is employed, where discarded gradient values are accumulated
in a residual buffer and added back to the gradients in the
following iterations.

Although each worker transmits sparsified local gradients
to the parameter server to reduce communication cost, the
aggregated gradient gt often becomes dense. To further save
bandwidth, this aggregated gradient must be compressed
before being sent back to the workers [21], [22]. In our
design, Top-k sparsification is applied, where k is chosen
to be approximately one thirty-second of the total number
of model parameters. Moreover, it is essential to apply error
compensation directly at the parameter server, since only the
server has access to the history of compression errors and can
properly correct them during aggregation.

Fig. 3: Experimental system architecture.

IV. EXPERIMENTAL EVALUATION

A. Cluster setup

We conduct experiments on a Kubernetes cluster of four
nodes locally, assuming a hybrid cloud setup with two on-
premise nodes (one with an RTX 3090 Ti and one with an RTX
3090) and two public cloud nodes (each with a V100 GPU),
as shown in Fig. 3. To emulate a hybrid cloud environment,
the network bandwidth is restricted. While intra-environment
communication (within on-premise or within public cloud) is
limited to 1 Gbps, communication between on-premise and
public cloud nodes is limited to 100 Mbps to mimic WAN
connections. The centralized server in the Parameter Server
architecture is deployed on one of the on-premise nodes and
is limited to 3 CPU cores.

We benchmark four distributed training configurations
on the ResNet-152 model [23] with the ImageNet-100
dataset [24]. These include All-Reduce, Parameter Server (PS),
PS with gradient compression (PS-gc), and our proposed PS
with both gradient compression and proportional batch size
allocation (PS-bz-gc). All experiments run for up to 100
epochs with an initial per-worker batch size of 64 and use
SGD as the optimizer. The evaluation metrics consist of time-
to-accuracy (TTA), training throughput, and loss trends.

B. Experimental results

Fig. 4a shows that, compared with standard PS, PS-bz-gc
achieves the best performance with a 46% lower time-to-
accuracy, PS-gc achieves a 38% reduction, and All-Reduce
shows only a minor gain. In terms of training throughput,
Fig. 4b demonstrates that PS-bz-gc reaches about 30.5 samples
per second, more than double that of PS and 1.7× higher than
that of All-Reduce. Fig. 5 indicates that although gradient
compression slightly slows early loss reduction, this technique
maintains similar convergence behaviour compared with other
baselines in our benchmark. These results highlight the effec-
tiveness of combining proportional batch sizing with gradient
compression to mitigate communication overhead and improve
resource utilization in hybrid cloud environments.

147

(a) Time-to-accuracy. (b) Training throughput.

Fig. 4: TTA and Training throughput.

Fig. 5: Training loss over iterations.

V. CONCLUSION AND FUTURE WORK

In this work, we present a distributed training workflow for
hybrid cloud environments that addresses resource heterogene-
ity and communication overhead. By combining proportional
batch sizing and gradient compression, the system balances
workloads across diverse GPUs while reducing synchroniza-
tion cost. Experiments on a hybrid cloud testbed show that our
approach achieves more than 2× higher training throughput
and up to 46% shorter time-to-accuracy than the standard
PS setup. Future work could explore scaling to larger GPU
clusters, integrating adaptive scheduling for runtime efficiency,
and incorporating elastic and fault-tolerant mechanisms to
enhance the robustness of production systems.

ACKNOWLEDGMENT

This work was partly supported by the Institute of Informa-
tion & Communications Technology Planning & Evaluation
(IITP) - ITRC (Information Technology Research Center)
grant funded by the Korea government (MSIT) (IITP-2025-
RS-2023-00258649, 50) and IITP grant funded by the Korea
government (MSIT) (RS-2024-00398379, 50).

REFERENCES

[1] Khan, Siffat Ullah, Habib Ullah Khan, Naeem Ullah, and Rafiq Ahmad
Khan. ”Challenges and their practices in adoption of hybrid cloud com-
puting: An analytical hierarchy approach.” Security and Communication
Networks 2021, no. 1 (2021): 1024139.

[2] Verbraeken, Joost, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppen-
burg, Tim Verbelen, and Jan S. Rellermeyer. ”A survey on distributed
machine learning.” Acm computing surveys (csur) 53, no. 2 (2020): 1-
33.

[3] Threadgill, Madison, and Andreas Gerstlauer. ”A Survey of Dis-
tributed Learning in Cloud, Mobile, and Edge Settings.” arXiv preprint
arXiv:2405.15079 (2024).

[4] Moritz, Philipp, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol et al. ”Ray: A distributed
framework for emerging AI applications.” In 13th USENIX symposium
on operating systems design and implementation (OSDI 18), pp. 561-
577. 2018.

[5] Kubernetes: an open source system for automating deployment, scaling,
and management of containerized applications. URL: https://kubernetes.
io/. Last accessed: October 2025.

[6] Zinkevich, Martin, Markus Weimer, Lihong Li, and Alex Smola. ”Par-
allelized stochastic gradient descent.” Advances in neural information
processing systems 23 (2010).

[7] Kingma, Diederik P., and Jimmy Lei Ba. ”Adam: A method for stochas-
tic gradient descent.” In ICLR: international conference on learning
representations, pp. 1-15. 2015.

[8] Andersen, DG LiMu, and I. W. Park. ”Scaling Distributed Machine
Learning with the Parameter Server.” In Proceedings of the Operating
Systems Design and Implementation (OSDI). 2014.

[9] Patarasuk, Pitch, and Xin Yuan. ”Bandwidth optimal all-reduce algo-
rithms for clusters of workstations.” Journal of Parallel and Distributed
Computing 69, no. 2 (2009): 117-124.

[10] Ray Clusters Overview, URL: https://docs.ray.io/en/latest/cluster/
getting-started.html. Last accessed: October 2025.

[11] Kanso, Ali, Edi Palencia, Kinshuman Patra, Jiaxin Shan, Mengyuan
Chao, Xu Wei, Tengwei Cai, Kang Chen, and Shuai Qiao. ”Designing a
kubernetes operator for machine learning applications.” In Proceedings
of the Seventh International Workshop on Container Technologies and
Container Clouds, pp. 7-12. 2021.

[12] Aji, Alham Fikri, and Kenneth Heafield. ”Sparse communication for
distributed gradient descent.” arXiv preprint arXiv:1704.05021 (2017).

[13] Horvóth, Samuel, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu,
Marco Canini, and Peter Richtárik. ”Natural compression for distributed
deep learning.” In Mathematical and Scientific Machine Learning, pp.
129-141. PMLR, 2022.

[14] Seide, Frank, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. ”1-bit
stochastic gradient descent and its application to data-parallel distributed
training of speech DNNs.” In Interspeech, vol. 2014, pp. 1058-1062.
2014.

[15] Stich, Sebastian U., Jean-Baptiste Cordonnier, and Martin Jaggi. ”Spar-
sified SGD with memory.” Advances in neural information processing
systems 31 (2018).

[16] Xu, Hang, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta, El
Houcine Bergou, Konstantinos Karatsenidis, Marco Canini, and Panos
Kalnis. ”Compressed communication for distributed deep learning: Sur-
vey and quantitative evaluation.” (2020).

[17] Jiang, Yimin, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and
Chuanxiong Guo. ”A unified architecture for accelerating distributed
DNN training in heterogeneous GPU/CPU clusters.” In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pp. 463-479. 2020.

[18] NVIDIA Deep Learning Performance Documentation, URL: https://
docs.nvidia.com/deeplearning/performance/, 2023.

[19] Ferdinand, Nuwan, Haider Al-Lawati, Stark C. Draper, and Matthew
Nokleby. ”Anytime minibatch: Exploiting stragglers in online distributed
optimization.” arXiv preprint arXiv:2006.05752 (2020).

[20] Lin, Yujun, Song Han, Huizi Mao, Yu Wang, and William J. Dally.
”Deep gradient compression: Reducing the communication bandwidth
for distributed training.” arXiv preprint arXiv:1712.01887 (2017).

[21] Wangni, Jianqiao, Jialei Wang, Ji Liu, and Tong Zhang. ”Gradient sparsi-
fication for communication-efficient distributed optimization.” Advances
in Neural Information Processing Systems 31 (2018).

[22] Tang, Hanlin, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. ”Dou-
blesqueeze: Parallel stochastic gradient descent with double-pass error-
compensated compression.” In International Conference on Machine
Learning, pp. 6155-6165. PMLR, 2019.

[23] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. ”Deep
residual learning for image recognition.” In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 770-778.
2016.

[24] Tian, Yonglong, Dilip Krishnan, and Phillip Isola. ”Contrastive multi-
view coding.” In European conference on computer vision, pp. 776-794.
Cham: Springer International Publishing, 2020.

148

