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Abstract—With recent advances in Artificial Intelligence (AI),

agentic AI systems, capable of perception, reasoning, action, and

learning, have accelerated automation across domains. However,

their reliance on data raises significant challenges in terms of ex-

plicit trust and traceability, which can be addressed using chain-

based distributed ledger technology, such as blockchain. While

blockchain offers immutability and verifiable state, most existing

work focuses on synchronous or partially synchronous models.

In contrast, real-world applications utilising agentic AI would

benefit from asynchronous blockchains due to their robustness

and efficiency. This paper investigates the integration of agentic

AI with asynchronous blockchains, where temporal heterogeneity,

characterised by previous state observations, is apparent. Despite

the advantages of allowing interoperable applications for agentic

AI in asynchronous settings, agents querying different nodes

may observe divergent states due to network latency, resulting

in inconsistent decisions. As a resolution, a timed automaton

is combined with an existing Byzantine Fault Tolerance (BFT)-

governed gossip protocol and a Zero-Knowledge Proof (ZKP) to

ensure consensus safety while allowing controlled heterogeneity

and maintaining correctness. Inspired by ensemble learning,

the proposed approach treats disagreement not as noise but

as a signal for change detection. Experimental results across

distributed Virtual Machine (VM) environments demonstrate

that BFT compliance with controlled timing significantly reduces

ensemble error and improves convergence to ground truth.

Index Terms—Asynchronous Blockchain, State-Verification,

Smart Contract, Agentic AI, Fault-Tolerance

I. INTRODUCTION

Distributed Ledger Technology (DLT) follows a secure
decentralised architecture which drives properties such as
transparency, tamper-proof, and immutability [1]. Blockchain,
a chain-based DLT, stores data in the form of transactions se-
cured by cryptographic techniques, but suffers from throughput
and latency bottlenecks [1], [2]. Optimisation methods such
as sharding, data pruning, and improvements to consensus
protocols and layer two solutions have been proposed to
address these issues [2]. A key enabler of broader adoption
is the smart contract, which is a self-executing program that
runs on the blockchain if certain conditions or criteria are
satisfied, without the need for verification from a centralised
intermediary [1].

Smart contracts have been widely adopted across blockchain
platforms such as Solana, Ethereum, and Hyperledger Fabric,
enabling applications in supply chains, healthcare, and de-
centralised finance [1], [3]. However, most deployments rely
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Fig. 1: An exemplary illustration of state variations in an
asynchronous blockchain.

on synchronous and partially synchronous protocols, which
depend on timing assumptions between processes [3]. Asyn-
chronous protocols remove these constraints [4]. However,
the Fischer, Lynch, and Paterson (FLP) impossibility shows
that no deterministic protocol can maintain both liveness and
safety in a fully asynchronous setting [5]. Practical solutions,
such as HoneyBadgerBFT’s use of the randomised common
coin technique [5], have led to further practical asynchronous
protocol implementations, including [4], [6], which improve
transaction throughput and reduce latency. Consequently, there
has been a limited emphasis on integrating smart contracts
within asynchronous protocols. A key challenge lies in the
querying of a smart contract state from a node, as asyn-
chronous protocols lack guaranteed timing bounds and nodes
may not share a consistent view of the blockchain state at any
given time.

In this direction, some initial experimentation, as seen in
Fig. 1, demonstrates a proof of the problem. Here, all nodes
start at their initial state, and node 1 receives a transaction
which invokes a smart contract, resulting in a state change
from s1,i to s1,i+1. Due to the asynchronous nature, the states
of nodes 3 and 4 update to s3,i+1 and s4,i+1, respectively,
while node 2 remains at s2,i. An application querying the
blockchain from node 2 and node 3 will receive data from
different states, causing a fault (variation in the state). To verify
this asynchronous nature, an agentic Artificial Intelligence (AI)
system is implemented, where four agents query four different
nodes, as shown in Fig. 2, revealing a discrepancy in the states
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of agents when queried in parallel.
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Fig. 2: Difference in states in four agents when querying
multiple nodes.
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Fig. 3: Percentage mismatch in state information of a
blockchain following queries from four agents.

Further experimentation, as seen in Fig. 3, reveals that
an average of 37.3% agents were not fault-tolerant when
retrieving the most recent state, which further strengthens
the need to address this problem. This can be formalised as
follows: let L be a distributed ledger run by a set of nodes,
N = {n1, n2, . . . , nk}. At any time, t, where t → R, each
node, nk, maintains a local ledger state, sk,i (ith state at
time, t). For any two nodes, np and nq → N , each node
maintains its set of states as Sp = {sp,1, sp,2, ..., sp,i, ...} and
Sq = {sq,1, sq,2, ..., sq,i, ...}. In a fully asynchronous network,
there is no bound on message delivery time. Therefore, due to
network delays or adversarial behaviour, two nodes can have
different local states, i.e., for some time, t3, sp,i ↑= sq,i.

With the growing adoption of blockchain in agentic AI for
verification, reputation, trust, and integrity, the challenge of
consistency remains within an asynchronous protocol [7]. As
discussed earlier, orchestrators in a multi-agent system (MAS)
(including executing agents in parallel [8]) or the aggregating
agents risk making decisions on outdated or inconsistent data,
leading to unintended or adversarial outcomes [9]. Therefore,
the research question (RQ) remains: How can applications

such as agentic AI maintain the freshness of data when

querying multiple blockchain nodes to make decisions? In
resolving this RQ, the main contributions of this work are
as follows:

• Including temporal heterogeneity in asynchronous
blockchain queries as a source of valid responses to
detect state transitions rather than discarding them as
faults.

• Including an optimal number of delayed agents, f =⌊
ω→1
3

⌋
, into the framework, keeping in view the safety

and diversity of query responses from asynchronous
blockchains, where ω is the number of agents.

• Implementation of a timed automaton locally to govern
state variation within agents, and a global timed automa-
ton within the orchestrator to justify the agents’ validity
of the final response, where zero-knowledge proof (ZKP)
is used to verify agent information.

II. RELATED WORKS

Within the context of agentic AI, blockchain has been
a growing topic of interest due to the inherent traceability
features [7]. Binlashram et al. [10] have discussed the use of
blockchain to store agent information responsible for detecting
failures and errors within system logs, where blockchain stores
early warning signals of failures reported by an agent, which
is relayed across the network to other agents. However, there
is no empirical evaluation of the blockchain’s performance in
terms of latency impacts (if any) when relaying data across
the network.

Dorokhov et al. [11] further emphasises blockchain’s role in
enabling trustless decentralised agents. However, the latency
bottleneck within synchronous blockchains can impact agent
coordination and access to the most recent state. To mitigate
this, Dorokhov et al. have proposed a hierarchical multi-
blockchain architecture that allows for time-exact transaction
processing and verifiable smart contract execution. Addition-
ally, the approach incorporates reinforcement learning-based
data sharing to dynamically adapt communication among
agents, which improves trust, resilience, and scalable co-
ordination in decentralised agents. However, the approach
does not consider asynchronous blockchain architecture as a
potential solution to the latency and liveness bottlenecks that
arise from unexpected delays. Sun et al. [12] have discussed
trustless and decentralised agents for large-scale agentic AI
systems, proposing asynchronous agreement and tokenisation
incentives to ensure honest participation. However, concerns
over inconsistent state retrieval across nodes persist.

As highlighted above, blockchain can help overcome several
limitations within agentic AI systems, such as traceability and
smart contract-driven automation. However, there has been
limited research on asynchronous blockchains with agentic
AI. This work addresses this gap by tackling the inherent
problem of querying nodes within an asynchronous protocol
for multiple agents.

III. PRELIMINARIES

Ensemble Learning. A core machine learning concept that
explores the heterogeneity of results when running different
models [13]. The fundamental principle is that an ensemble of
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diverse models outperforms individual models due to averag-
ing errors and reducing variance, and is calculated using [13],

Eavg =
1

M

M∑
l=1

êl, (1)

where êl is the error of the individual model and M is the
total number of models. The ensemble output is based on the
mean of all models’ predictions,

Pm =
1

M

M∑
l=1

ŷl, (2)

where ŷl is the prediction of the l-th model. The ensemble
error is the error of the combined prediction,

Eens = (Pm ↓ εtrue)
2
, (3)

which is the mean squared error between Pm and the true
value, εtrue. The reduction, R, is calculated as,

R = Eavg ↓ Eens. (4)

Building on this theory, initial conceptual work has been
introduced in surveys on ensemble and perspectives on agentic
AI, which include parameters such as diversity and speciali-
sation of agents, collective intelligence, dynamic adaptation,
reputation, and trust [14], [15]. This shows that while ensemble
learning has been applied within machine learning, further
exploration of applications in agentic AI offers new insights,
which are increasingly relevant in decentralised scenarios
where agent states may differ.

Timed Automata. It is defined as a finite state machine with
real-valued clocks. It is used to specify a real value system
where constraints limit the behaviour of the automata and is
expressed as a tuple [16], A = (Q, s0, T, ϑ, µ, ϖ), where, Q is
a finite set of states, s0 → Q is the initial state, T is a finite set
of clocks, ϑ is a finite set of actions, µ ↔ Q↗ϑ↗G(T )↗2T↗Q

is a finite set of edges (or transitions). Here, G(T ) denotes
the set of clock constraints (guards) T , and 2T represents the
set of clocks to be reset on the transition. Further, ϖ : Q ↘
G(T ) assigns an invariant to each location. A timed automaton
verifies the logical flow of the proposed framework to ensure
that there are no deadlocks or logical faults when building a
solution to the problem of state control and verification.

Zero-Knowledge Proofs. A verification protocol where a
receiver can verify the contents shared by a sender without the
need to expose private information [17]. Based on the witness,
challenge, and response phases, ZKP provides properties of
completeness, soundness, and zero-knowledge, which benefits
applications such as DLT, ensuring privacy by keeping trans-
action details, including addresses and amounts, private [17].
Several implementations exist, as discussed in [17], such as
pySNARK, Virgo, Halo2, and Limbo, which differ in proof
size and the complexity of the prover and verifier. Initially,
pySNARK1 was considered. However, due to ARM architec-

1https://github.com/meilof/pysnark, last accessed - 25/09/2025

ture compatibility issues py ecc
2 was used to demonstrate the

security benefits of ZKP.

IV. PROPOSED FRAMEWORK

The proposed work resolves state conflicts in MAS by
utilising a combination of timed automata and ZKP, and is
motivated by ensemble learning. This is built using query
validation, utilising asynchronous blockchains to retrieve in-
formation. Fig. 4 highlights the proposed framework, where
an agent querying the state of the blockchain is susceptible
to retrieving different states. While the example in Fig. 4
shows a single agent connecting to one node, it is possible
to have multiple agents operate through one node or multiple
agents communicating with one node. For example, agents
1 and 4 query nodes 1 and 4, and receive s1,i and s4,i,
respectively, while agents 2 and 3 query nodes 2 and 3,
and receive s2,i→1 and s3,i→1, respectively. Here, two agents
received previous state information. Therefore, a constraint is
implemented with the existing gossip protocol [18] to ensure
progress only happens when at most only 1

3 of the total agents
have a different state. An exemplary scenario is shown in

Agent 1 Agent 2 Agent 3 Agent 4

Orchestrator agent

Node 1 Node 2 Node 3 Node 4
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timestamp, State)
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timestamp, State)

! = Prove(id, 
timestamp, State)

Fig. 4: Handling queries from multiple nodes to ensure
consistency across AI agents.

Fig. 5, where each agent communicated with another agent
at random for up to five rounds, based on clock C2, which
is defined as a part of the timed automata, until at least three
agents agree on the same state. While combining BFT with
timed automata, and the concepts from ensemble learning, the
orchestrator will only proceed after ensuring that

1) agents ensure that BFT is satisfied amongst themselves,
2) agents with previous states are still accepted within the

round, providing data heterogeneity via timed automata,
and

3) all agents return a valid response within a pre-defined
number of rounds.

These conditions are managed by algorithm 1, where the
random gossip protocol [18] is used. Within each round, an
agent randomly verifies their state with two other agents. In a
system of ω agents, the number of f agents that do not retrieve
the same state can be defined as [19],

f =

⌊
ω↓ 1

3

⌋
. (5)

2https://github.com/ethereum/py ecc, last accessed - 25/09/2025
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Fig. 5: Random gossip between agents based on timed
automata with clock, C2.

Algorithm 1 Response comparison using Gossip Protocol
Require: Agent ID: id, validator: (ip, port), results queue: result queue
Ensure: Final voting state and consensus status
1: Initialise LTA → LocalTimedAutomaton(id)
2: while LTA.round counter < LTA.rounds do

3: success, result → CompleteRound(LTA, node ip,
node port, result queue)

4: if success ↑ result ↓= null ↑ result.bft met then

5: return (result)

6: fallback → (InitialV alue)
7: return

(id, fallback,
{C1, C2},
round : LTA.round counter, final state : “FAILED”)

Here, the minimum quorum size of agreement is given by [19],

ϱ = 2f + 1 = 2

⌊
ω↓ 1

3

⌋
+ 1, (6)

and, f refers to non-malicious agents that have diverged in
state, excluding malicious agents whose security impact is be-
yond the scope of this paper. Since information is disseminated
to all nodes in O(log |N |) rounds with high probability [20],
the total number of ϱ consistent states is observed between 2
and 3 rounds in a setup with four agents. Therefore, setting
ς = 5 (rounds) provides a safe upper limit3.

Algorithm 1 is governed by algorithm 2, where each agent
follows its own local timed automaton. Here, the QueryNode

function receives a response from the blockchain smart con-
tract and is stored within a variable own state. Following this,
the agent generates a cryptographic commitment, φ, which
takes in the parameters, id, current state, timestamp, driven by
ZKP to allow verifying the underlying state. Random gossip
selects two agents based on the RandomPeer function, where
the SendGossip function is responsible for invoking the
existing gossip protocol [18]. The states are verified between
agents by retrieving peer states using the collectedPeerStates

function, which consists of a list with dictionaries of responses
from other agents. Algorithm 3 utilises a timed automaton
based on the outputs of the local timed automata from Al-
gorithm 2, which returns a tuple of a boolean indicating if

3For the sake of verification and experimentation, rounds that do not satisfy
BFT are also considered valid to show the impact on the ensemble error.
However, identifying the upper limit is beyond the scope of this work and
needs further empirical evaluation or asymptotic analysis.

Algorithm 2 Local Timed Automaton: Consensus Cycle
Require: Agent ID: id, validator: (ip, port), rounds = ω
Ensure: Success flag, result with BFT status
1: if rounds > ω then

2: return (false, null)
3: C1 → C1 + 1 ε Phase 1: Query blockchain
4: own state → QueryNode(current state, ip, port)
5: if own state = null then

6: return (false, null)
7: ϑ → ProveValidQuery(id, current state, timestamp)
8: C2 → C2 + 1 ε Phase 2: Gossip to peers
9: success count → 0

10: for each round ω do

11: peer1, peer2 → RandomPeer()
12: SendGossip(peer1, current state, ϑ)
13: SendGossip(peer2, current state, ϑ)
14: if gossip succeeds then

15: success count → success count+ 1
16: peer states → CollectedPeerStates() ε Phase 3: Check BFT
17: valid states → {S | (S, ϑ) ↔ peer data ↑ Verify(ϑ)}
18: all states → {current state} ↗ valid states
19: if |all states| < 2 then

20: return (false, null)
21: list states → {dict to list(S) | S ↔ all states}
22: (majority state, count) → counter.most common(list states)
23: bft met → (count ↘ 3)
24: result → (id, current state, bft met, C1, C2)
25: return (true, result)

Algorithm 3 Global Timed Automaton: Orchestrator
Require: rounds = ω
1: while not converged and rounds < ω do

2: rounds → rounds + 1
3: Reset all agent clocks {w, x, y, z}
4: Broadcast “vote” command to all agents
5: while waiting for responses do

6: Receive (agent id, result)
7: if Verify(result.ϑ) then

8: responses → responses ↗ {result}
9: else

10: Discard invalid proof
11: Increment clocks: w, x, y, z → w + 1, x+ 1, y + 1, z + 1
12: if w = x = y = z = rounds then

13: break

14: if ((responses.bft met) ↘ 3) then

15: return (true, responses)
16: return (false, responses)

states matched, followed by the result, which is a dictionary
containing id, current state, bft met, C1, and C2. Initially,
the orchestrator requests all agents to query the blockchain,
which is executed in parallel. A function Receive retrieves the
agent responses, and the Verify function ensures agent data is
verified based on ZKP. Finally, the orchestrator will check if
the condition for BFT is met, defined by a counter, bft met,
which determines whether to request another blockchain query
or make a decision based on the received responses.

The proposed framework’s workflow is formally verified
using UPPAAL [21], which helps to validate the behaviour
of the timed automata, as shown in Fig. 6. Here, Fig. 6a
consists of the timed automata responsible for ensuring the
execution of all agents, each with an individual clock, w, x,

y, z. All four agents are triggered in parallel, each interacting
with a separate blockchain node. As illustrated in Fig. 6b, each
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(a) Orchestrator’s workflow.

(b) Agent’s workflow.

(c) Blockchain’s workflow.

Fig. 6: Verification of system components with
timed-automata.

agent is executed through a local timed automaton. There are
three clocks: C1 is the default clock of the agent for querying
the blockchain, C2 is for the gossip round, and the third
clock, DLT, is for the blockchain. Whenever the blockchain is
queried through query node data, the DLT clock is updated.
Fig. 6c is the timed automaton for the blockchain. When the
agent queries the node, it returns the state of the blockchain,
where C3 is the clock that runs within the blockchain. The
verification helps ensure that there are no deadlock processes
within the entire system, allowing the orchestrator to continue
executing.

V. EXPERIMENTAL RESULTS

The proposed framework, initiated under asynchronous
conditions, consisted of four nodes running the Dumbo-NG
protocol [6] with a batch size of 500 transactions, each
comprising 20 slots. Transactions were deployed across the
network, which included smart contract triggering transactions
that utilised a virtual machine (VM) for off-chain smart
contract execution. An orchestrator with four independently-
deployed agents to communicate with the blockchain nodes.
The approach was developed in Python 3.7 and deployed
on Azure using Ubuntu Server 22.04 LTS (ARM64 Gen2)
with a standard D2ps v5 instance (2 vCPUs, 8 GB RAM).
All experiments were conducted using the same configuration

to ensure comparable conditions, and VMs were deployed
across East US, Australia East, Canada Central, North Europe,
West US, Sweden Central, Japan East, and Central India. The
orchestrator ran for thirty seconds, starting from the initial
state to the fifth state. The state comprises a voting system
consisting of three candidates, which gets updates based on
the invoked transaction. The orchestrator’s role was to trigger
agents to fetch the state of the nodes. Each triggered agent
queried the state of the smart contract every two milliseconds.
This timestamp helps to understand the asynchronous nature
of state updates, as four agents querying within the same
time window may observe different states depending on when
updates are committed. States were then shared with other
agents to decide and verify, before the final result was shared
with the orchestrator.
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Since nodes within the blockchain network behave asyn-
chronously, this can influence the baseline due to the variation
in state among agents. This means that running experiments
with the proposed approach can yield different baselines across
different systems, even with similar settings. Despite this
variation, the difference between rounds that adhere to BFT
and those that do not will be evident. As shown in Fig. 7, the
average individual error increases significantly in each exper-
iment when the timed automata conditions were not met. For
example, in Experiment 2, where all rounds satisfy the timed
automata, the average individual error remains consistently
low. In contrast, Experiment 5 shows a sharp rise in the mean
square error from 0.33 to 0.67, which demonstrates the impact
of rounds violating the timed automata, indicating greater
deviation from the ground truth. Fig. 8 displays the ensemble
error, where a similar trend emerges - higher ensemble error
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Fig. 9: Reduction gain in four agents vs. number of rounds.

occurs when f ≃ |N |/3, reflecting that agents deviate from
the ground truth due to insufficient majority agreement. For
example, in round 3 of Experiment 1, the ensemble error
increases from 0.33 to 1.5, where the constraints for the timed
automata are not compliant, suggesting a greater deviation
from the truth value due to the increased average individual
error. Finally, Fig. 9 shows the relative reduction gain using
Rg = (1 ↓ Eavg

Eens
) ↗ 100%. Based on the experimental results,

reduction remains high across all rounds where constraints
for the timed automata are not compliant. For example, in
Experiments 1 and 5, the reduction percentage on average
decreased by 15.7%, indicating a declining impact on improve-
ment across the agents’ responses. Similarly, Experiments 3,
8 and 10 show an average improvement in reduction gain of
14.96% across rounds that satisfy timed automata conditions.

VI. CONCLUSION

This paper explored the use of asynchronous blockchains
with smart contract integration in agentic Artificial Intelli-
gence (AI) systems. The proposed framework helps solve the
problem of state verification among agents, combining timed
automata for freshness and validation with randomised gossip
to minimise communication overhead while preserving verifia-
bility through zero-knowledge proof (ZKP). Results show that
a timed automata approach with ZKP and ensemble learning
achieves stable performance, with a significant improvement in
reduction gain. This work demonstrates that temporal hetero-
geneity can be enhanced, opening new pathways for resilient
agentic AI systems on asynchronous blockchains.
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