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Abstract— With the advent of the 6G era, Integrated Sensing 
and Communications (ISAC) has attracted increasing attention. 
One representative of use cases is crowd flow estimation on 
outdoor streets. However, most existing studies have focused on 
indoor environments or vehicles, and demonstrations of outdoor 
crowd flow estimation using commercial LTE base station 
remain limited. This study addresses this use case and proposes 
an analysis of a crowd flow estimation method using Reference 
Signal Received Power (RSRP) obtained from a commercial 
LTE base station. Specifically, pedestrian counts derived from a 
camera-based object recognition algorithm were associated with 
the variance of RSRP. The features obtained from the variance 
were quantitatively evaluated by combining a CatBoost 
regression model with SHapley Additive exPlanations (SHAP) 
analysis.  Through this investigation, we clarified that an 
optimal variance window size for RSRP is 0.1–0.2 seconds and 
that enlarging the counting area increased the features obtained 
from the variance of RSRP, for machine learning. Consequently, 
this study is the first to quantitatively demonstrate the 
effectiveness of outdoor crowd flow estimation using 
commercial LTE, while also revealing the characteristic 
behavior of variance window size and counting area size in 
feature design.  

Keywords— ISAC, LTE, RSRP, Commercial LTE Base 
Station, Crowd flow Estimation 

I. INTRODUCTION 
In recent years, environmental sensing utilizing wireless 

communication signals has been actively studied. In particular, 
device-free sensing with Wi-Fi has been applied to human 
activity recognition [1], gesture estimation [2], crowd 
counting, and occupancy estimation [3], producing numerous 
research outcomes. However, since Wi-Fi is primarily 
designed for indoor use, its coverage and stability are limited, 
restricting its applicability to large-scale outdoor 
environments. 

3GPP has discussed Integrated Sensing and 
Communications (ISAC), which leverages frequency bands 
used for communication for both communication and sensing, 
and it has attracted growing attention toward the 6G era [4][5]. 
In particular, ISAC is expected to serve as a fundamental 
technology that enables the deployment of new services by 
realizing simultaneous communication and sensing using 
existing commercial communication infrastructure [6]. 

Various studies have also reported the use of wireless 
sensing using LTE signals, primarily in indoor environments. 
For instance, gesture recognition using femtocell or 
commercial 4G microcell base stations [7][8], crowd density 
estimation with LTE synchronization signals transmitted by 
eNodeB [9], and indoor localization with simulated base 
stations [10] have been explored. For outdoor environments, 
position estimation in scenarios without explicit base station 
type [11] and vehicle speed or traffic flow estimation [12] 
have been reported. Furthermore, as an ISAC use case, 
another study demonstrated the effectiveness of CSI-based 
autonomous mobile robot (AMR) crossing detection in a 
smart factory scenario using an experimental base station [13]. 
Nevertheless, these prior studies have been mainly confined 
to controlled laboratory or indoor environments, or to outdoor 
scenarios limited to position estimation and vehicle sensing. 
Experimental demonstrations of crowd flow estimation in 
outdoor environments using operational commercial LTE 
base stations remain extremely scarce. Moreover, from the 
perspective of feature design in machine learning, the effects 
of factors such as the variance window size of RSRP and the 
size of counting areas on estimation performance have not 
been sufficiently investigated. 

To explore the feasible use case, this study conducted a 
proof-of-concept experiment on crowd flow estimation in an 
outdoor street environment by measuring Reference Signal 
Received Power (RSRP) obtained from commercial LTE base 
stations using the open-source platform OpenAirInterface 
(OAI) [14], which enables cost-effective LTE/5G deployment. 
In particular, we focused on the effects of variance window 
size and counting area size, and systematically clarified the 
factors contributing to estimation accuracy by evaluating 
feature contributions using a CatBoost regression model and 
SHAP analysis. The results of this study provide, for the first 
time, a quantitative demonstration of the effectiveness of 
outdoor crowd flow estimation using commercial LTE, 
offering fundamental insights for future 5G/6G ISAC 
applications. 

In summary, the contributions of this study are twofold. 
First, it presents the first quantitative field demonstration of 
outdoor crowd flow estimation using RSRP obtained from an 
operational commercial LTE base station. Second, it 
systematically reveals how the RSRP variance window size 
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and the pedestrian counting area size influence estimation 
performance, thereby clarifying the characteristic behavior of 
these features in ISAC-based urban sensing using existing 
LTE infrastructure. 

II. EXPERIMENTAL OVERVIEW 
In this study, we conducted a crowd estimation experiment 

on the main street of a university campus. Fig. 1 shows the 
configuration of the measurement system. This system 
consists of a receiving antenna, a band-pass filter (BPF), a 
Universal Software Radio Peripheral (USRP), and a PC of 
OpenAirInterface (OAI). The receiving antenna of this system 
receives the Cell-specific Reference Signal transmitted from 
the commercial base station, and the RSRP was calculated 
from the received power of this signal. RSRP was measured 
at an interval of 0.01 seconds. 

The measurement environment is shown in Fig. 2. A 
directional antenna (Siretta OSCAR20A, length: 22 cm) was 
installed as the receiving antenna for RSRP measurements. To 
measure the number of pedestrians using a camera-based 
object recognition algorithm, three counting areas of different 
sizes were defined along the main street, with areas of 13.1 m² 
(Small area), 27.0 m² (Medium area), and 66.9 m² (Large area), 
respectively. The frequency band used for measurements was 
2.1 GHz. Since the operator does not open the exact location 
of the commercial base station, we investigated the maximum 
RSRP measured by iPhone’s field test mode using the Cell ID 
of the target base station. As a result, we confirmed that the 
base station’s antenna corresponding to the target Cell ID was 
installed on the rooftop of a nine-story building. According to 

the Ministry of Land, Infrastructure, Transport and Tourism’s 
PLATEAU dataset [15], the building height is 50 m, and the 
horizontal distance from the receiving antenna was estimated 
to be 55 m using Google Maps. Consequently, the direct 
distance between the base station antenna and the receiving 
antenna was approximately 74 m, indicating that the 
experimental environment corresponded to a non-line-of-sight 
(NLoS) condition due to building obstruction. The relative 
positions of the base station antenna and receiving antenna are 
illustrated in Fig. 3. 

The measurements were carried out on five separate days 
during the academic term, from 9:00 to 19:00 each day. For 
pedestrian counting, we applied the YOLO11 object detection 
algorithm to detect pedestrian positions. Based on the 
detection results, the number of pedestrians was calculated for 
each of the three predefined counting areas. Given that the 
traversal time of the smallest counting area was approximately 
2 seconds, a 2-second pedestrian count window was adopted 
for pedestrian counting. 

III. CORRELATION ANALYSIS BETWEEN PEDESTRIAN COUNT 
AND RSRP VARIANCE 

We analyzed the relationship between the pedestrian count 
on the main street and the RSRP variance. Since the pedestrian 
counts were aggregated over a 2-second window, the RSRP 
variance was also averaged over 2 seconds to ensure temporal 
alignment. We call this value RSRP-Var(Δt, 2s), where Δt 
represents the variance window size used to calculate the 
RSRP variance, and the subsequent averaging is performed 
over 2 seconds. The correlation between RSRP-Var(Δt, 2s) 
and the pedestrian count was calculated using Spearman’s 
rank correlation coefficient ρ . In this context, a sample 
corresponds to a pair consisting of the RSRP-Var(Δt, 2s) with 
a 1-second shift and the corresponding pedestrian count 
obtained from YOLO11. Thus, each sample represents an 
observation aligned at 1-second intervals, and N denotes the 
total number of such pairs within a single measurement day. 
Spearman’s rank correlation coefficient is defined as 

 𝜌𝜌 = 1 − 6∑ 𝑑𝑑𝑖𝑖2𝑁𝑁
𝑖𝑖=1

𝑁𝑁(𝑁𝑁2−1)  (1) 

where di denotes the difference between the ranks of the i-th 
pair of samples. 

Fig. 4 shows the averaged results across five measurement 
days for each feature RSRP-Var(Δt, 2s) with different 
variance window sizes Δt. In the experiment, it was observed 
that larger counting areas tended to exhibit higher correlations. 
The variance window size Δt that yielded the highest 

 
Fig.1  Measurement system. 

 

 
Fig.2  Measurement environment. 
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Fig.3  Geometric configuration between the base station antenna and 
the reception antenna. 
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correlation was 0.1 seconds for the large area, and 0.2 seconds 
for both the medium and small areas. Overall, the correlation 
coefficients ranged from 0.46 to 0.59, which indicates a 
moderate level of correlation in statistical terms. These results 
suggest that RSRP-Var(Δt, 2s) is a promising indicator for 
estimating pedestrian counts on the main street. 

IV. FEATURE ANALYSIS 

A. Definition of the Training Dataset 
We use the CatBoost regression model for machine 

learning. The selected reason is that previous studies have 
demonstrated it outperforms other state-of-the-art methods 
such as, LightGBM, XGBoost, Random Forest, and Decision 
Tree, in terms of predictive accuracy [16]. In particular, 
CatBoost has been reported to achieve superior performance 
with respect to evaluation metrics such as the coefficient of 
determination (R2) and the root mean squared error (RMSE), 
making it well-suited for the regression task of pedestrian 
count estimation in this study. 

The training dataset was constructed as follows. The 
ground-truth pedestrian counts were obtained from YOLO11 
using a two-second aggregation window, shifted in one-
second increments. As the input features, we adopted RSRP-
Var(Δt, 2s), which was defined in the previous section. 
Specifically, the short-term variance of RSRP was first 
calculated with a variance window size of Δt, and then 
averaged over a two-second interval to ensure temporal 
alignment with the pedestrian count. 

Each sample was thus defined as a pair consisting of the 
RSRP-Var(Δt, 2s) and the corresponding two-second 
pedestrian count. Measurements were conducted on the main 
street of the university campus over five separate days, from 
9:00 a.m. to 7:00 p.m. For evaluation, four days of data were 
used for training, while the remaining one day was used for 
testing. 

B. Analysis of RSRP Variance Window Sizes 
To investigate the optimal variance window size Δt of 

RSRP-Var(Δt, 2s) for crowd flow estimation, we evaluated a 
regression model trained with this single feature. Here, the 
single feature refers to the value of RSRP-Var(Δt, 2s) 
computed for each sample, without incorporating any 
additional auxiliary features. 

A sample was defined as a pair consisting of the RSRP-
Var(Δt, 2s) calculated with a one-second shift and the 
corresponding two-second pedestrian count obtained from 
YOLO11. In other words, each sample represents a paired 
observation of the RSRP variance feature and the pedestrian 
count for the same period. The analysis in this section was 
conducted using the data from a single measurement day. 

The variance window size Δt was varied incrementally 
from 0.05 to 1.0 seconds, and for each condition the CatBoost 
regression model was trained accordingly. The estimation 
error was quantified using the root mean squared error 
(RMSE), which is defined as 

 RMSE = √1
𝑁𝑁∑ (𝑦𝑦𝑖̂𝑖 − 𝑦𝑦𝑖𝑖)2𝑁𝑁

𝑖𝑖=1  (2) 

where 𝑦𝑦𝑖̂𝑖  and yi denote the predicted and ground-truth 
pedestrian counts, respectively, and N is the total number of 
samples within a single measurement day. Given that RMSE 
is sensitive to outliers, it provides a reliable indicator of errors 
associated with abrupt fluctuations in pedestrian counts. 
Therefore, RMSE was adopted as the primary evaluation 
metric in this study. 

For training, data from four of the five measurement days 
were used, while the remaining day was for testing. The 
results for the large, medium, and small areas are presented in 
Figs. 5, 6, and 7, respectively. In the large area, four out of 
five test days recorded the minimum RMSE at a variance 
window size Δt of 0.1 seconds, while the remaining day 
showed the minimum at 0.05 seconds, indicating that shorter 

  
Fig.6  RMSE vs. Variance window size Δt.  (Medium area). 

 

 
Fig.7  RMSE vs. Variance window size Δt  (Small area). 

 

 
Fig.4  Spearman’s ρ vs. Window size ∆t (5-days mean). 

 

 
Fig.5  RMSE vs. Variance window size Δt  (Large  area). 
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variance window sizes were consistently effective. In the 
medium area, three test days yielded the minimum RMSE at 
0.1 seconds and two days at 0.2 seconds, suggesting a 
relatively clear optimal range. In contrast, in the small area, 
the variance window size Δt that minimized RMSE varied 
across test days, making it difficult to identify a unique 
optimal value. Within the same test day, differences in RMSE 
across variance window sizes were negligible, and no 
substantial variations in estimation performance were 
observed. However, when compared across different days, the 
variance window sizes Δt yielding the minimum RMSE were 
distributed widely, ranging from 0.05 to 0.6 seconds, 
indicating a lack of stability. These findings confirm that, in 
the small area, the effect of the variance window size on 
estimation performance is limited, and it is challenging to 
determine a stable, unique optimal value. 

Next, to incorporate multiple variance window sizes 
simultaneously, we constructed feature vectors at each 
timestamp consisting of RSRP-Var(Δt, 2s) for Δt ranging 
from 0.05 to 1.0 seconds. A single CatBoost regression model 
was then trained on this joint feature set, enabling the 
simultaneous evaluation of the contributions of each variance 
window size Δt. Feature importance was quantified using 
SHapley Additive exPlanations (SHAP), Specifically, SHAP 
values were computed separately for each measurement day, 
and the mean absolute SHAP values were averaged across the 
five days to obtain representative contributions for each 
window size within each counting area. The resulting 
outcomes are presented in Fig. 8. 

The analysis revealed that, across all areas, the 
contributions of Δt=0.1 s and Δt=0.2 s were particularly high, 
with Δt=0.1 s being the most effective in the large area, and 
Δt=0.2 s in the medium and small areas. These findings 
demonstrated that a variance window size of approximately 
0.1–0.2 s is optimal for pedestrian count estimation. 

Considering that the RSRP measurement interval was 0.01 
s, this corresponds to variance values computed over 10–20 

consecutive RSRP measurements. At Δt=0.05 s, the number 
of samples for calculating variance was insufficient, resulting 
in unstable variance values when no pedestrians were present. 
Conversely, at larger windows such as Δt=1.0 s, short-term 
multipath variations caused by pedestrian movement were 
excessively smoothed, thereby reducing estimation accuracy. 
Based on these observations, Δt=0.2 s was adopted as a 
representative and stable window size for subsequent 
evaluations. 

C. Contribution Analysis of Look-back Intervals 
To further clarify the temporal influence of RSRP-Var ∆t, 

2s) on crowd size estimation, a 14-second look-back period 
was divided into seven consecutive 2-second intervals: 0–2 s, 
2–4 s, 4–6 s, 6–8 s, 8–10 s, 10–12 s, and 12–14 s. The RSRP-
Var ∆t, 2s  within each interval were used as features, so that 
multiple look-back intervals were simultaneously included in 
the input feature set. Since the ground-truth pedestrians were 
aggregated using a 2-second pedestrian count window, the 
same look-back period was applied to ensure temporal 
alignment between features and the ground-truth pedestrians. 
A CatBoost regression model was then trained with these 
features, and SHAP analysis was applied to quantify the 
contribution of each look-back interval. Data from four of the 
five measurement days were used for training, and the 
remaining day was reserved for testing. The mean SHAP 
values for each counting area are shown in Fig. 9. 

As illustrated in Fig. 9, contributions remained high for a 
certain duration in all areas, but then exhibited markedly 
declines beyond specific intervals. In the small area, 
contributions were high in the 0–2 s and 2–4 s intervals, but 
decreased markedly after 4–6 s. In the medium area, 
contributions remained high up to 0–6 s, followed by a sharp 
reduction after 6–8 s. In the large area, contributions persisted 
until 0–8 s, then decreased to approximately half of their 
previous value at 8–10 s. These results indicate that 
contributions did not gradually decay but rather dropped 
steeply after particular intervals. 

Furthermore, larger areas were found to sustain effective 
contributions over longer look-back intervals. This tendency 
can be attributed to the fact that pedestrians require more time 
to traverse larger areas; thus, the RSRP-Var ∆t, 2s  from 
longer look-back periods carries more informative content for 
crowd size estimation. 

Based on these findings, the effective look-back intervals 
were identified as 0–4 s for the small area, 0–6 s for the 
medium area, and 0–8 s for the large area. In the subsequent 
evaluations, these intervals were adopted as the primary 
features. 

 
Fig.8  Mean |SHAP| vs. Variance window size Δt. 

 

 
Fig.9  Mean |SHAP| vs. Look-back interval  

(Variance window size ∆t = 0.2s). 
 

 
Fig.10  RMSE vs. Counting area size (Variance window size ∆t = 0.2s). 
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V. ESTIMATION PERFORMANCE EVALUATION 
The performance of the crowd flow estimation was 

evaluated using the selected features. As evaluation metrics, 
both the RMSE and absolute error were employed. 

Fig. 10 presents the RMSE results across five 
measurement days for each counting area. The results indicate 
that RMSE tended to increase as the counting area size 
became larger. This can be attributed to the fact that larger 
areas contain more pedestrians, leading to larger absolute 
errors. The mean RMSE values over five days were 0.53 
persons for the small area, 0.91 persons for the medium area, 
and 1.79 persons for the large area, confirming that the RMSE 
remained within a range of two persons. 

Fig. 11 illustrates the temporal variation of pedestrian 
counts on Day 5 in the large area as an example. Overall, the 
estimated values followed the temporal trends observed by the 
YOLO11. In particular, our analysis successfully reflected the 
temporal patterns of reduced flows during class hours and 
increased flows during breaks, demonstrating its capability to 
characterize variations over time. It should also be noted that 

the time-series graph includes missing intervals due to packet 
loss during data collection. However, during peak break times 
with more than ten pedestrians, the estimated values could not 
fully align with the ground-truth counts, resulting in errors of 
approximately ten pedestrians. 

Fig. 12, 13, and 14 present the distribution of absolute 
errors by pedestrian count for the large, medium, and small 
areas on Day 5, using boxplots. In all areas, absolute errors 
were found to increase with the number of pedestrians. 
Moreover, as the pedestrian count increased, both the spread 
of the distributions and the number of outliers expanded 
rapidly, suggesting that under large-scale crowd conditions, 
pedestrian flows fluctuate substantially, making accurate 
pedestrian count estimation difficult. 

Fig. 15 shows the cumulative distribution function (CDF) 
of estimation errors during class hours (In-class) and break 
times (No-class). Here, No-class refers to break periods 
without classes (10:40–10:55, 12:35–13:30, 15:10–15:25, 
17:05–17:20), while In-class corresponds to the remaining 

 
Fig.12  Absolute Error vs. Ground-truth Pedestrian Count  

(Variance window size ∆t = 0.2s, Large Area, day5). 
 

 
Fig.13  Absolute Error vs. Ground-truth Pedestrian Count  
(Variance window size ∆t = 0.2s, Medium Area, day5). 

 
 

 
Fig.14  Absolute Error vs. Ground-truth Pedestrian Count  

(Variance window size ∆t = 0.2s, Small Area, day5). 
 

 
Fig.15  CDF of Absolute Error, In-class vs. No-class 
(Variance window size ∆t = 0.2s, Large Area, day5). 

 
 

 
Fig.11 Ground truth vs. Predicted pedestrian count (Variance window size ∆t = 0.2s, Large area, day5) 
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class hours. The difference between In-class and No-class is 
the congestion on the street. During the No-class period, the 
number of pedestrians increases because they move from one 
classroom to another. During In-class periods, approximately 
90% of the cases fell within an error of two persons, and about 
60% within one person. The steep rise of the cumulative 
probability curve further confirmed stable estimation 
performance. In contrast, during No-class periods, 
approximately 90% of the cases involved errors involving four 
or fewer persons, and about 60% involved errors involving 
two or fewer persons. The gradual rise of the cumulative 
probability curve clearly indicated degraded estimation 
accuracy. These results demonstrate that during periods of low 
pedestrian density, estimation errors remain small and stable. 
In contrast, during break times, when large and abrupt 
fluctuations in pedestrian flow occur, errors increase and 
accuracy decreases. 

Overall, our analysis was able to estimate the temporal 
variation of pedestrian flows on the main street with 
reasonable accuracy. Although estimation performance 
decreased during peak periods with large crowds, our method 
generally successfully tracked daily pedestrian flow patterns. 
These findings confirm the effectiveness of our analysis for 
capturing everyday crowd dynamics using commercial LTE. 
Future work includes expanding the dataset for large-scale 
crowds and designing a peak detection method to further 
improve estimation accuracy. 

VI. CONCLUSION 
In this study, we conducted a field experiment on crowd 

flow estimation in an outdoor street environment using the 
variance of RSRP obtained from a commercial LTE base 
station. By associating camera-based pedestrian counts with 
RSRP variance and applying a CatBoost regression model 
together with SHAP analysis, we systematically evaluated the 
impact of feature design on estimation performance. 

The analysis revealed that the optimal variance window 
size, Δt, of RSRP is 0.1–0.2 seconds for estimating pedestrian 
counts. Moreover, as the counting area was expanded, the 
effective look-back interval was extended, and the 
contributions of corresponding features increased. Regarding 
estimation performance, the estimation error as measured by 
RMSE, remained within approximately two persons’ range 
even for the large area of 66.9 m². On the other hand, during 
peak periods with large crowds, estimation errors increased 
and accuracy degraded. 

The contributions of this study can be summarized in two 
aspects. First, this work provides the first quantitative 
demonstration worldwide of outdoor crowd flow estimation 
using RSRP obtained from an operational commercial LTE 
base station. Second, it systematically clarifies how the 
variance window size and the counting area size influence 
estimation performance, thereby revealing the characteristic 
behavior of these features. These outcomes highlight crowd 
flow estimation as a promising use case for ISAC by 
extending existing LTE infrastructure to sensing and 
demonstrating its feasibility. 

As future directions, we propose introducing peak-aware 
feature design to address degraded performance under large 

crowd conditions, integrating additional communication 
signal information, such as CSI or multi-cell RSRP, and 
conducting experimental validation in diverse urban 
environments. Through these extensions, this research is 
expected to further contribute to smart city services and next-
generation urban management systems powered by ISAC. 
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