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Abstract— With the advent of the 6G era, Integrated Sensing
and Communications (ISAC) has attracted increasing attention.
One representative of use cases is crowd flow estimation on
outdoor streets. However, most existing studies have focused on
indoor environments or vehicles, and demonstrations of outdoor
crowd flow estimation using commercial LTE base station
remain limited. This study addresses this use case and proposes
an analysis of a crowd flow estimation method using Reference
Signal Received Power (RSRP) obtained from a commercial
LTE base station. Specifically, pedestrian counts derived from a
camera-based object recognition algorithm were associated with
the variance of RSRP. The features obtained from the variance
were quantitatively evaluated by combining a CatBoost
regression model with SHapley Additive exPlanations (SHAP)
analysis. Through this investigation, we clarified that an
optimal variance window size for RSRP is 0.1-0.2 seconds and
that enlarging the counting area increased the features obtained
from the variance of RSRP, for machine learning. Consequently,
this study is the first to quantitatively demonstrate the
effectiveness of outdoor crowd flow estimation using
commercial LTE, while also revealing the characteristic
behavior of variance window size and counting area size in
feature design.

Keywords— ISAC, LTE, RSRP, Commercial LTE Base
Station, Crowd flow Estimation

[. INTRODUCTION

In recent years, environmental sensing utilizing wireless
communication signals has been actively studied. In particular,
device-free sensing with Wi-Fi has been applied to human
activity recognition [1], gesture estimation [2], crowd
counting, and occupancy estimation [3], producing numerous
research outcomes. However, since Wi-Fi is primarily
designed for indoor use, its coverage and stability are limited,

restricting  its  applicability to large-scale outdoor
environments.
3GPP has discussed Integrated Sensing and

Communications (ISAC), which leverages frequency bands
used for communication for both communication and sensing,
and it has attracted growing attention toward the 6G era [4][5].
In particular, ISAC is expected to serve as a fundamental
technology that enables the deployment of new services by
realizing simultaneous communication and sensing using
existing commercial communication infrastructure [6].
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Various studies have also reported the use of wireless
sensing using LTE signals, primarily in indoor environments.
For instance, gesture recognition using femtocell or
commercial 4G microcell base stations [7][8], crowd density
estimation with LTE synchronization signals transmitted by
eNodeB [9], and indoor localization with simulated base
stations [10] have been explored. For outdoor environments,
position estimation in scenarios without explicit base station
type [11] and vehicle speed or traffic flow estimation [12]
have been reported. Furthermore, as an ISAC use case,
another study demonstrated the effectiveness of CSI-based
autonomous mobile robot (AMR) crossing detection in a
smart factory scenario using an experimental base station [13].
Nevertheless, these prior studies have been mainly confined
to controlled laboratory or indoor environments, or to outdoor
scenarios limited to position estimation and vehicle sensing.
Experimental demonstrations of crowd flow estimation in
outdoor environments using operational commercial LTE
base stations remain extremely scarce. Moreover, from the
perspective of feature design in machine learning, the effects
of factors such as the variance window size of RSRP and the
size of counting areas on estimation performance have not
been sufficiently investigated.

To explore the feasible use case, this study conducted a
proof-of-concept experiment on crowd flow estimation in an
outdoor street environment by measuring Reference Signal
Received Power (RSRP) obtained from commercial LTE base
stations using the open-source platform OpenAirlnterface
(OAI) [14], which enables cost-effective LTE/5G deployment.
In particular, we focused on the effects of variance window
size and counting area size, and systematically clarified the
factors contributing to estimation accuracy by evaluating
feature contributions using a CatBoost regression model and
SHAP analysis. The results of this study provide, for the first
time, a quantitative demonstration of the effectiveness of
outdoor crowd flow estimation using commercial LTE,
offering fundamental insights for future 5G/6G ISAC
applications.

In summary, the contributions of this study are twofold.
First, it presents the first quantitative field demonstration of
outdoor crowd flow estimation using RSRP obtained from an
operational commercial LTE base station. Second, it
systematically reveals how the RSRP variance window size
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and the pedestrian counting area size influence estimation
performance, thereby clarifying the characteristic behavior of
these features in ISAC-based urban sensing using existing
LTE infrastructure.

II. EXPERIMENTAL OVERVIEW

In this study, we conducted a crowd estimation experiment
on the main street of a university campus. Fig. 1 shows the
configuration of the measurement system. This system
consists of a receiving antenna, a band-pass filter (BPF), a
Universal Software Radio Peripheral (USRP), and a PC of
OpenAirInterface (OAI). The receiving antenna of this system
receives the Cell-specific Reference Signal transmitted from
the commercial base station, and the RSRP was calculated
from the received power of this signal. RSRP was measured
at an interval of 0.01 seconds.

The measurement environment is shown in Fig. 2. A
directional antenna (Siretta OSCAR20A, length: 22 cm) was
installed as the receiving antenna for RSRP measurements. To
measure the number of pedestrians using a camera-based
object recognition algorithm, three counting areas of different
sizes were defined along the main street, with areas of 13.1 m?
(Small area), 27.0 m? (Medium area), and 66.9 m? (Large area),
respectively. The frequency band used for measurements was
2.1 GHz. Since the operator does not open the exact location
of the commercial base station, we investigated the maximum
RSRP measured by iPhone’s field test mode using the Cell ID
of the target base station. As a result, we confirmed that the
base station’s antenna corresponding to the target Cell ID was
installed on the rooftop of a nine-story building. According to
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the reception antenna.

the Ministry of Land, Infrastructure, Transport and Tourism’s
PLATEAU dataset [15], the building height is 50 m, and the
horizontal distance from the receiving antenna was estimated
to be 55 m using Google Maps. Consequently, the direct
distance between the base station antenna and the receiving
antenna was approximately 74 m, indicating that the
experimental environment corresponded to a non-line-of-sight
(NLoS) condition due to building obstruction. The relative
positions of the base station antenna and receiving antenna are
illustrated in Fig. 3.

The measurements were carried out on five separate days
during the academic term, from 9:00 to 19:00 each day. For
pedestrian counting, we applied the YOLO11 object detection
algorithm to detect pedestrian positions. Based on the
detection results, the number of pedestrians was calculated for
each of the three predefined counting areas. Given that the
traversal time of the smallest counting area was approximately
2 seconds, a 2-second pedestrian count window was adopted
for pedestrian counting.

III. CORRELATION ANALYSIS BETWEEN PEDESTRIAN COUNT
AND RSRP VARIANCE

We analyzed the relationship between the pedestrian count
on the main street and the RSRP variance. Since the pedestrian
counts were aggregated over a 2-second window, the RSRP
variance was also averaged over 2 seconds to ensure temporal
alignment. We call this value RSRP-Var(At, 2s), where At
represents the variance window size used to calculate the
RSRP variance, and the subsequent averaging is performed
over 2 seconds. The correlation between RSRP-Var(A¢, 2s)
and the pedestrian count was calculated using Spearman’s

rank correlation coefficient o . In this context, a sample

corresponds to a pair consisting of the RSRP-Var(At, 2s) with
a l-second shift and the corresponding pedestrian count
obtained from YOLOI11. Thus, each sample represents an
observation aligned at 1-second intervals, and N denotes the
total number of such pairs within a single measurement day.
Spearman’s rank correlation coefficient is defined as

_ 62{\21 diz
N(N2-1)

p= ey

where d; denotes the difference between the ranks of the i-th
pair of samples.

Fig. 4 shows the averaged results across five measurement
days for each feature RSRP-Var(At, 2s) with different
variance window sizes At. In the experiment, it was observed
that larger counting areas tended to exhibit higher correlations.
The variance window size Ar that yielded the highest
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correlation was 0.1 seconds for the large area, and 0.2 seconds
for both the medium and small areas. Overall, the correlation
coefficients ranged from 0.46 to 0.59, which indicates a
moderate level of correlation in statistical terms. These results
suggest that RSRP-Var(Az, 2s) is a promising indicator for
estimating pedestrian counts on the main street.

IV. FEATURE ANALYSIS

A. Definition of the Training Dataset

We use the CatBoost regression model for machine
learning. The selected reason is that previous studies have
demonstrated it outperforms other state-of-the-art methods
such as, LightGBM, XGBoost, Random Forest, and Decision
Tree, in terms of predictive accuracy [16]. In particular,
CatBoost has been reported to achieve superior performance
with respect to evaluation metrics such as the coefficient of
determination (R?) and the root mean squared error (RMSE),
making it well-suited for the regression task of pedestrian
count estimation in this study.

The training dataset was constructed as follows. The
ground-truth pedestrian counts were obtained from YOLO11
using a two-second aggregation window, shifted in one-
second increments. As the input features, we adopted RSRP-
Var(At, 2s), which was defined in the previous section.
Specifically, the short-term variance of RSRP was first
calculated with a variance window size of At¢, and then
averaged over a two-second interval to ensure temporal
alignment with the pedestrian count.

Each sample was thus defined as a pair consisting of the
RSRP-Var(Af, 2s) and the -corresponding two-second
pedestrian count. Measurements were conducted on the main
street of the university campus over five separate days, from
9:00 a.m. to 7:00 p.m. For evaluation, four days of data were
used for training, while the remaining one day was used for
testing.
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B. Analysis of RSRP Variance Window Sizes

To investigate the optimal variance window size At of
RSRP-Var(At, 2s) for crowd flow estimation, we evaluated a
regression model trained with this single feature. Here, the
single feature refers to the value of RSRP-Var(At, 2s)
computed for each sample, without incorporating any
additional auxiliary features.

A sample was defined as a pair consisting of the RSRP-
Var(At, 2s) calculated with a one-second shift and the
corresponding two-second pedestrian count obtained from
YOLOLI11. In other words, each sample represents a paired
observation of the RSRP variance feature and the pedestrian
count for the same period. The analysis in this section was
conducted using the data from a single measurement day.

The variance window size At was varied incrementally
from 0.05 to 1.0 seconds, and for each condition the CatBoost
regression model was trained accordingly. The estimation
error was quantified using the root mean squared error
(RMSE), which is defined as

RMSE = [L5,(5, - yo)?

where ¥, and y; denote the predicted and ground-truth
pedestrian counts, respectively, and N is the total number of
samples within a single measurement day. Given that RMSE
is sensitive to outliers, it provides a reliable indicator of errors
associated with abrupt fluctuations in pedestrian counts.
Therefore, RMSE was adopted as the primary evaluation
metric in this study.

@

For training, data from four of the five measurement days
were used, while the remaining day was for testing. The
results for the large, medium, and small areas are presented in
Figs. 5, 6, and 7, respectively. In the large area, four out of
five test days recorded the minimum RMSE at a variance
window size At of 0.1 seconds, while the remaining day
showed the minimum at 0.05 seconds, indicating that shorter
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variance window sizes were consistently effective. In the
medium area, three test days yielded the minimum RMSE at
0.1 seconds and two days at 0.2 seconds, suggesting a
relatively clear optimal range. In contrast, in the small area,
the variance window size A¢ that minimized RMSE varied
across test days, making it difficult to identify a unique
optimal value. Within the same test day, differences in RMSE
across variance window sizes were negligible, and no
substantial variations in estimation performance were
observed. However, when compared across different days, the
variance window sizes At yielding the minimum RMSE were
distributed widely, ranging from 0.05 to 0.6 seconds,
indicating a lack of stability. These findings confirm that, in
the small area, the effect of the variance window size on
estimation performance is limited, and it is challenging to
determine a stable, unique optimal value.

Next, to incorporate multiple variance window sizes
simultaneously, we constructed feature vectors at each
timestamp consisting of RSRP-Var(A¢, 2s) for At ranging
from 0.05 to 1.0 seconds. A single CatBoost regression model
was then trained on this joint feature set, enabling the
simultaneous evaluation of the contributions of each variance
window size At. Feature importance was quantified using
SHapley Additive exPlanations (SHAP), Specifically, SHAP
values were computed separately for each measurement day,
and the mean absolute SHAP values were averaged across the
five days to obtain representative contributions for each
window size within each counting area. The resulting
outcomes are presented in Fig. 8.

The analysis revealed that, across all areas, the
contributions of Ar=0.1 s and A=0.2 s were particularly high,
with A=0.1 s being the most effective in the large area, and
Ar=0.2 s in the medium and small areas. These findings
demonstrated that a variance window size of approximately
0.1-0.2 s is optimal for pedestrian count estimation.

Considering that the RSRP measurement interval was 0.01
s, this corresponds to variance values computed over 10-20
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Large

consecutive RSRP measurements. At A=0.05 s, the number
of samples for calculating variance was insufficient, resulting
in unstable variance values when no pedestrians were present.
Conversely, at larger windows such as A=1.0 s, short-term
multipath variations caused by pedestrian movement were
excessively smoothed, thereby reducing estimation accuracy.
Based on these observations, Ar=0.2 s was adopted as a
representative and stable window size for subsequent
evaluations.

C. Contribution Analysis of Look-back Intervals

To further clarify the temporal influence of RSRP-Var At,
2s) on crowd size estimation, a 14-second look-back period
was divided into seven consecutive 2-second intervals: 0-2 s,
2-453,4-6s,68s,8-10s,10-12s, and 12-14 s. The RSRP-
Var At, 2s within each interval were used as features, so that
multiple look-back intervals were simultaneously included in
the input feature set. Since the ground-truth pedestrians were
aggregated using a 2-second pedestrian count window, the
same look-back period was applied to ensure temporal
alignment between features and the ground-truth pedestrians.
A CatBoost regression model was then trained with these
features, and SHAP analysis was applied to quantify the
contribution of each look-back interval. Data from four of the
five measurement days were used for training, and the
remaining day was reserved for testing. The mean SHAP
values for each counting area are shown in Fig. 9.

As illustrated in Fig. 9, contributions remained high for a
certain duration in all areas, but then exhibited markedly
declines beyond specific intervals. In the small area,
contributions were high in the 0-2 s and 2—4 s intervals, but
decreased markedly after 4-6 s. In the medium area,
contributions remained high up to 0-6 s, followed by a sharp
reduction after 6-8 s. In the large area, contributions persisted
until 0-8 s, then decreased to approximately half of their
previous value at 8-10 s. These results indicate that
contributions did not gradually decay but rather dropped
steeply after particular intervals.

Furthermore, larger areas were found to sustain effective
contributions over longer look-back intervals. This tendency
can be attributed to the fact that pedestrians require more time
to traverse larger areas; thus, the RSRP-Var At, 2s from
longer look-back periods carries more informative content for
crowd size estimation.

Based on these findings, the effective look-back intervals
were identified as 0—4 s for the small area, 0—6 s for the
medium area, and 08 s for the large area. In the subsequent
evaluations, these intervals were adopted as the primary
features.
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V. ESTIMATION PERFORMANCE EVALUATION

The performance of the crowd flow estimation was
evaluated using the selected features. As evaluation metrics,
both the RMSE and absolute error were employed.

Fig. 10 presents the RMSE results across five
measurement days for each counting area. The results indicate
that RMSE tended to increase as the counting area size
became larger. This can be attributed to the fact that larger
areas contain more pedestrians, leading to larger absolute
errors. The mean RMSE values over five days were 0.53
persons for the small area, 0.91 persons for the medium area,
and 1.79 persons for the large area, confirming that the RMSE
remained within a range of two persons.

Fig. 11 illustrates the temporal variation of pedestrian
counts on Day 5 in the large area as an example. Overall, the
estimated values followed the temporal trends observed by the
YOLOL1 1. In particular, our analysis successfully reflected the
temporal patterns of reduced flows during class hours and
increased flows during breaks, demonstrating its capability to
characterize variations over time. It should also be noted that
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the time-series graph includes missing intervals due to packet
loss during data collection. However, during peak break times
with more than ten pedestrians, the estimated values could not
fully align with the ground-truth counts, resulting in errors of
approximately ten pedestrians.

Fig. 12, 13, and 14 present the distribution of absolute
errors by pedestrian count for the large, medium, and small
areas on Day 5, using boxplots. In all areas, absolute errors
were found to increase with the number of pedestrians.
Moreover, as the pedestrian count increased, both the spread
of the distributions and the number of outliers expanded
rapidly, suggesting that under large-scale crowd conditions,
pedestrian flows fluctuate substantially, making accurate
pedestrian count estimation difficult.

Fig. 15 shows the cumulative distribution function (CDF)
of estimation errors during class hours (In-class) and break
times (No-class). Here, No-class refers to break periods
without classes (10:40-10:55, 12:35-13:30, 15:10-15:25,
17:05-17:20), while In-class corresponds to the remaining



class hours. The difference between In-class and No-class is
the congestion on the street. During the No-class period, the
number of pedestrians increases because they move from one
classroom to another. During In-class periods, approximately
90% of the cases fell within an error of two persons, and about
60% within one person. The steep rise of the cumulative
probability curve further confirmed stable estimation
performance. In contrast, during No-class periods,
approximately 90% of the cases involved errors involving four
or fewer persons, and about 60% involved errors involving
two or fewer persons. The gradual rise of the cumulative
probability curve clearly indicated degraded estimation
accuracy. These results demonstrate that during periods of low
pedestrian density, estimation errors remain small and stable.
In contrast, during break times, when large and abrupt
fluctuations in pedestrian flow occur, errors increase and
accuracy decreases.

Overall, our analysis was able to estimate the temporal
variation of pedestrian flows on the main street with
reasonable accuracy. Although estimation performance
decreased during peak periods with large crowds, our method
generally successfully tracked daily pedestrian flow patterns.
These findings confirm the effectiveness of our analysis for
capturing everyday crowd dynamics using commercial LTE.
Future work includes expanding the dataset for large-scale
crowds and designing a peak detection method to further
improve estimation accuracy.

VI. CONCLUSION

In this study, we conducted a field experiment on crowd
flow estimation in an outdoor street environment using the
variance of RSRP obtained from a commercial LTE base
station. By associating camera-based pedestrian counts with
RSRP variance and applying a CatBoost regression model
together with SHAP analysis, we systematically evaluated the
impact of feature design on estimation performance.

The analysis revealed that the optimal variance window
size, At, of RSRP is 0.1-0.2 seconds for estimating pedestrian
counts. Moreover, as the counting area was expanded, the
effective look-back interval was extended, and the
contributions of corresponding features increased. Regarding
estimation performance, the estimation error as measured by
RMSE, remained within approximately two persons’ range
even for the large area of 66.9 m?. On the other hand, during
peak periods with large crowds, estimation errors increased
and accuracy degraded.

The contributions of this study can be summarized in two
aspects. First, this work provides the first quantitative
demonstration worldwide of outdoor crowd flow estimation
using RSRP obtained from an operational commercial LTE
base station. Second, it systematically clarifies how the
variance window size and the counting area size influence
estimation performance, thereby revealing the characteristic
behavior of these features. These outcomes highlight crowd
flow estimation as a promising use case for ISAC by
extending existing LTE infrastructure to sensing and
demonstrating its feasibility.

As future directions, we propose introducing peak-aware
feature design to address degraded performance under large
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crowd conditions, integrating additional communication
signal information, such as CSI or multi-cell RSRP, and
conducting experimental validation in diverse urban
environments. Through these extensions, this research is
expected to further contribute to smart city services and next-
generation urban management systems powered by ISAC.
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