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Abstract—Multi-access edge computing (MEC) has emerged
as a promising paradigm for supporting computation-intensive
and latency-sensitive services by deploying edge servers closer to
user terminal devices (UTDs). However, the limited computation
and communication resources in MEC environments make the
joint optimization of computation offloading and resource allo-
cation highly challenging. This complexity arises from the strong
coupling among optimization variables and the interdependence
of users’ decisions. To address this, we propose a consistency-
preserving deep reinforcement learning (CPDRL) method to
reduce the latency and energy consumption of all UTDs, while
ensuring the consistency between UTDs’ computation and com-
munication resource demands. We first formulate the system as a
mixed-integer nonlinear programming (MINLP) problem. Then,
we propose a novel optimization algorithm by modifying the
network architecture, post-processing the predicted actions, and
designing a task-specific reward function and loss formulation.
Extensive simulations demonstrate that our approach derives
training stability, converges to superior feasible solutions, while
achieving high execution efficiency and reliability.

Index Terms—multi-access edge computing, computation of-
floading, resource allocation, deep reinforcement learning, mixed-
integer nonlinear programming.

I. INTRODUCTION

The rapid emergence of novel communication services has
imposed tremendous pressure on user terminal devices (UTDs)
[1]. Multi-access edge computing (MEC) addresses this chal-
lenge by deploying edge servers closer to UTDs, enabling
computation offloading that provides additional computing and
storage resources while alleviating local burdens [2]. However,
since computation and communication resources are limited,
it is necessary to jointly optimize computation offloading and
resource allocation to achieve system-wide efficiency. This
joint optimization is typically formulated as a mixed-integer
nonlinear programming (MINLP) problem, which is difficult
to solve with classical methods [3], [6].

Deep reinforcement learning (DRL) imposes no strict re-
quirements on the problem form and has emerged as an
effective approach for solving such optimization problems [4].
Nevertheless, existing DRL-based solutions often treat compu-
tation offloading and resource allocation either separately or
only loosely coupled, which frequently results in infeasible

decisions. For example, assigning transmission power without
actually offloading, or requesting edge computation resources
while retaining tasks locally, not only wastes scarce system
resources but also contaminates the replay buffer with mis-
leading samples. Such inconsistencies enlarge the exploration
space, degrade sample efficiency, and may even cause insta-
bility or non-convergence in training. Therefore, preserving
consistency among optimization variables during learning is
essential to ensure both convergence and deployability of
the resulting strategies. Here, consistency-preserving refers to
maintaining the alignment between users’ offloading decisions
and resource allocation, ensuring that only the necessary
computation resources are assigned during the optimization
process.

To achieve joint optimization of computation offloading
and resource allocation while preserving the strong coupling
among optimization variables, we propose a consistency-
preserving deep reinforcement learning (CPDRL) method.
During training, the algorithm enforces consistency between
UTDs’ computation and communication resource demands,
avoiding infeasible variable combinations. This reduces the
exploration space, lowers computational complexity, and pre-
vents invalid solutions from contaminating the replay buffer,
thereby improving both convergence speed and training sta-
bility. The main contributions are summarized as follows:

• We investigate a single-server multi-user scenario in the
MEC environment. We formulate the joint optimization
of computation offloading and resource allocation as a
MINLP problem. The objective is to minimize the total
time delay and energy consumption of the UTDs by ad-
justing variables such as offloading decision, bandwidth,
transmission power, and local computing ability, while
satisfying the delay requirements of each UTD.

• We propose a CPDRL method. By modifying the network
architecture, post-processing the predicted actions, and
introducing reward and penalty terms into the reward
function and network loss, we enforce the consistency
among optimization variables during the training process
and improve the convergence.
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• We conduct extensive simulations under various param-
eter settings and compare the proposed method with
several classical baselines. The results demonstrate the
effectiveness and reliability of the proposed approach.

The remainder of the paper is organized as follows: Section
II introduces the related works. The system model and problem
formulation are given in Section III. Section IV presents
the proposed method. Section V demonstrates the simulation
results and discussions. Finally, we conclude this paper in
Section VI.

II. RELATED WORK

The joint optimization of computation offloading and re-
source allocation in MEC networks has long been a research
hotspot. Due to the heterogeneous data types of optimization
variables and the complexity of delay and energy consumption
calculations, this problem is typically modeled as a non-
convex optimization problem. A common approach to solving
it is through a non-convex problem transformation. In [5],
the authors used an equivalent transformation to convert the
resource allocation problem into a convex form and solved it
using the Karush-Kuhn-Tucker (KKT) conditions. However,
such transformations require strict structural assumptions and
equivalence proofs, limiting their generality and practicality.
Moreover, the strong coupling among optimization variables
presents another major challenge. In [6], the authors addressed
this issue by decomposing the original joint optimization
problem into two separate stages and performing iterative
updates. While this method handles the coupling effectively,
it may increase computing complexity and makes it difficult
to guarantee convergence during iteration.

DRL places no strict requirements on the form of the
optimization problem and has become a popular approach
for solving such problems in recent years. In [7], the authors
proposed a DRL approach combined with multiple deep neural
networks to obtain the optimal solution in complex action
spaces. In [8], the authors further considered the mutual
influence among different users and proposed a multi-agent
DRL method. However, these works do not address the issue
of consistency among optimization variables during the opti-
mization process. Properly handling this consistency is critical
for improving algorithm performance, yet current research on
this topic remains limited.

III. SYSTEM MODEL

We consider a single-server multi-user communication sce-
nario, as illustrated in Fig. 1. Within a rectangular area,
there is one edge server S and n UTDs. The edge server is
located at the center of the area and its coverage includes the
entire region. The UTDs are randomly distributed within the
rectangular area and are denoted by N = {1, 2, 3, . . . , n}.

Each UTD n has a computation task to be executed,
represented by a tuple (Dn, Cn, τ ), where Dn denotes the data
size in bits, Cn denotes the number of CPU cycles required
to process one bit of data in cycles/bit, and τ represents the
maximum tolerable delay. In this study, we focus on the binary

Fig. 1: System model

offloading, so a computation task cannot be partitioned and
must be executed either entirely at the edge server or entirely
locally. The offloading decision matrix is denoted by A = {a1,
a2, . . . , an, n ∈ N }, where each element an takes one of the
following two values:

• an = 0 : UTD n executes the task locally.
• an = 1 : UTD n offloads the task to the edge server S.
Depending on the offloading decisions of the UTDs, the

computation tasks can be executed in two different modes.

A. Local computation

When a UTD chooses to execute the computation task
locally, it needs to allocate computation resources for the task.
We quantify the computation resources using CPU frequency
and denote the local computation resource allocation matrix
by f = {f1, f2, . . . , fn, n ∈ N }, where fn denotes the CPU
frequency allocated by UTD n in Hz. Based on the above
definitions, the local computation delay can be expressed as:

T l
n =

DnCn

fn
(1)

The energy consumption of local computation depends on
the CPU frequency and the number of CPU cycles required
by the task, and is calculated as follows:

El
n = κDnCnf

2
n (2)

where κ denotes the energy consumption coefficient for local
computation [9].

B. Edge computation

When a UTD chooses to offload its computation task to the
edge server, it must first transmit the required data to the edge
server. After executing the task, the edge server returns the
result to the UTD. Therefore, edge computation consists of
two stages: data transmission and task execution.

1) Data transmission: During communication with the
edge server, the UTD must occupy communication resources
in the network and configure appropriate transmission param-
eters. The bandwidth allocation matrix is denoted by B =
{b1, b2, . . . , bn, n ∈ N } and the power allocation matrix
is denoted by P = {p1, p2, . . . , pn, n ∈ N }. bn and pn
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denote the channel bandwidth occupied by UTD n and the
transmission power used during communication, respectively.
In this study, we assume that orthogonal frequency division
multiple access (OFDMA) is used, so inter-user interference
is not considered [10]. According to Shannon’s theorem, the
data transmission rate is calculated as follows:

Rn = bn log(1 +
pngn
σ2

) (3)

where σ2 represents the power of Gaussian white noise. gn
denotes the channel gain, which depends on the distance
between the UTD n and the edge server:

gn = distanceα (4)

where α is the path loss factor.
It is worth noting that, the size of result data after task

execution is relatively small. Therefore, the downlink data
transmission process is not considered in this study. The data
transmission delay is given by:

T t
n =

Dn

Rn
=

Dn

bn log(1 +
pngn
σ2 )

(5)

The energy consumption of data transmission process is:

Et
n = pnT

t
n =

pnDn

bn log(1 +
pngn
σ2 )

(6)

2) Task execution: After receiving the computation request
and the required data from the UTD, the edge server pro-
cesses the task using its own computation resources. The total
computation resources of the edge server are denoted by F .
When computation requests are received simultaneously from
multiple UTDs, the edge server allocates its resources equally
to them. The task execution delay is calculated as follows:

T e
n =

DnCn

∑
n∈N

an

F
(7)

The optimization objective of this study is to minimize the
overall delay and energy consumption of all UTDs. Therefore,
the energy consumption during the task execution phase is not
included in the objective function.

C. Problem formulation
In summary, the total delay of a UTD is given by:

Tn = (1− an)T
l
n + an(T

t
n + T e

n) (8)

The total energy consumption of a UTD is given by:

En = (1− an)E
l
n + anE

t
n (9)

The joint optimization problem of computation offloading
and resource allocation is formulated as follows:

objective : min
A,B,f,P

∑
n∈N

(λ1Tn + λ2En)

s.t. C1 : Tn ≤ τ, ∀n ∈ N

C2 :
∑
n∈N

bn ≤ B

C3 : 0 ≤ fn ≤ fmax, ∀n ∈ N

C4 : 0 ≤ Pn ≤ Pmax, ∀n ∈ N

(10)

The optimization objective is to minimize the weighted
sum of delay and energy consumption for all UTDs, λ1

and λ2 denote the weights of delay and energy consumption
respectively and can be adjusted according to the specific
requirements of different communication services. The op-
timization variables include the offloading decision, channel
selection, power allocation, and local computation resource
allocation of the UTDs. Constraint C1 indicates that the total
delay of UTD can not exceed its maximum tolerable delay.
Constraint C2 indicates that the bandwidth allocated to all
the UTDs can not exceed the total bandwidth in the network.
Constraints C3 and C4 indicate that the local computation
ability and transmission power of the UTDs can not exceed
their capacity.

D. Consistency relationship

The offloading decisions of UTDs directly affect the manner
of resource allocation, and a strong consistency relationship
exists between the two, as follows:{

bn = 0, pn = 0, fn ̸= 0 if an = 0,

bn ̸= 0, pn ̸= 0, fn = 0 if an = 1.
(11)

When a UTD offloads its task, it requires no local compu-
tation resources but must allocate transmission power, as well
as network bandwidth and edge server resources. Ignoring the
consistency among optimization variables during the optimiza-
tion process can significantly degrade the algorithm’s ability
to explore feasible solutions and may hinder its convergence.

IV. PROPOSED METHOD

A. Problem analysis

According to the problem formulation in the previous sec-
tion, the joint optimization problem of computation offloading
and resource allocation is a MINLP problem, which is difficult
to solve using conventional mathematical methods. Moreover,
the interdependence of optimization variables further increases
the problem’s complexity.

DRL imposes no strict constraints on the form of the
optimization problem, making it a suitable tool for addressing
the challenges outlined above. Traditional DRL algorithms
lack explicit control over their network outputs, which leads
to a large number of infeasible solutions. By customizing the
action space, adjusting the network architecture, and design-
ing appropriate reward functions and loss formulations, we
propose a novel CPDRL method.

B. CPDRL method

1) Markov decision process (MDP) fundamentals: In rein-
forcement learning, the optimization process is abstracted as a
MDP, where each state transition corresponds to an exploration
of the feasible solution space [11]. An agent’s interaction
with the environment is typically represented as a quadruple
(st, at, rt, st+1), comprising the current state, action, reward,
and next state.

In this study, the state space is composed of the time
delay and energy consumption of all UTDs. The action space
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includes each UTD’s offloading decision, allocated bandwidth,
transmission power, and local computing frequency.

The reward is composed of the objective function, con-
straint conditions, and the consistency relationships among
optimization variables. Given the current state and action, the
distribution of the future state is independent of past history,
forming a MDP.

2) Algorithm overview: Based on the deep determinis-
tic policy gradient (DDPG) algorithm [12], we propose a
consistency-preserving deep reinforcement learning algorithm,
whose structure is illustrated in Fig. 2. Through actor network
output control and the innovative design of reward and loss
functions, we ensure the consistency relationship between
optimization variables during training.

The overall procedure of CPDRL is presented in Algorithm
1. At each step, the actor network generates a predicted action
based on the current state. Here We modify the actor net-
work by employing offloading decisions as masks to enforce
consistency among resource allocation variables in the actor
network output. Next, noise is added to the predicted action
to enhance exploration. The action then interacts with the
environment, yielding a reward and leading to a transition to
the next state. Each experience is stored in the replay buffer
as a tuple (st, at, rt, st+1). The Q value used for updating the
networks corresponds to the immediate reward resulting from
the chosen action. Consistency penalty terms are incorporated
into both the reward and the actor’s loss functions, enabling the
algorithm to autonomously learn the consistency relationships.
In each episode, the best objective function value and the
corresponding action are recorded.

The weights of the critic network are updated by minimizing
the following loss function:

Lcritic =
1

N

∑
i

(yi −Q(si, ai|θQ))2 (12)

The parameters of the target networks are updated using a
soft update mechanism:

θQ
′
← ηQ + (1− η)θQ

′
(13)

θµ
′
← ηθµ + (1− η)θµ

′
(14)

Fig. 2: The structure of CPDRL

Algorithm 1 CPDRL Algorithm

1: Randomly initialize critic network Q(s, a|θQ) and actor
µ(s|θµ) with weights θQ and θµ.

2: Initialize target network Q′ and µ′ with weights θQ
′ ←

θQ, θµ
′ ← θµ.

3: Initialize replay buffer R.
4: for episode = 1,M do
5: Initialize a random noise N for action exploration.
6: Receive initial observation state s1.
7: for step = 1, T do
8: Select action at = µ(st|θµ) +Nt.
9: Perform consistency-preserving adjustment.

10: Execute at, observe reward rt and new state st+1.
11: Store tuple (st, at, rt, st+1) in R.
12: Sample a random batch of (si, ai, ri, si+1) from R.
13: Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′

).
14: Update critic using eq. (12)
15: Update the actor policy using eq. (18)
16: Update the target networks using eq. (13) and eq.

(14)
17: end for
18: Record the best objective value and action.
19: end for

3) Action output control: We modify the actor network
architecture, as shown in Fig. 3. The input to the actor
network is the state, and the output action is divided into four
components: the offloading decision A, channel selection B,
local computing frequency f and power allocation P .

In this study, we adopt the tanh function as the activation
function in the output layer, resulting in continuous values
within the range [-1,1]. Therefore, the offloading decision A
is first binarized using the straight-through estimator (STE),
as shown below [13]:
{
ãn = round(sigmoid(βarawn ))

an = ãn + (sigmoid(βarawn )− stop grad(sigmoid(βarawn )))
(15)

arawn is the raw output of the actor network. β is a sharpness
factor to push the sigmoid output closer to 0 or 1. round()
performs binary discretization (0 or 1). stop grad() prevents
gradients from being propagated through its argument. ãn is
the discrete action used during the forward pass. an is the final
differentiable surrogate used during training.

Fig. 3: Actor network design of CPDRL
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Next, the binarized offloading decision is used as a mask
to element-wise multiply the remaining components of the
action: 



bn = ãn · brawn

fn = (1− ãn) · brawn

pn = ãn · brawn

(16)

Finally, the four components are concatenated to obtain the
final output of the actor network.

4) Reward and actor loss design: We introduce bonus and
penalty terms into both the reward function and the actor loss,
enabling the algorithm to autonomously learn the consistency
relationships and get feasible solutions. The reward function
is defined as follows:

reward =−
�
n∈N

Tn −
�
n∈N

En

−

��
n∈N

Tn − τ

�
−

��
n∈N

bn −B

�

+ consistency bonus (17)

The first two terms reflect the objective function, where
lower delay and energy consumption yield higher reward. The
third and fourth terms correspond to constraint C1 and C2,
violation of these constraints results in a reduction in the
reward. The fifth term represents the number of UTDs whose
strategies satisfy the consistency relationships, serving as a
bonus term to guide the algorithm’s exploration direction.

The actor loss is modified based on the standard DDPG
algorithm by incorporating a penalty term for consistency
violations. It is calculated as follows:

Lactor = −Es∼D [Q(s, µ(s))] + λc · Lconsistency (18)

Lconsistency =
1

N

N�
n=1

�
an · (fn)2 + (1− an) ·

�
b2n + p2n

��

(19)

C. Complexity analysis

Let O(La) and O(Lc) denote the time complexity of a
single forward and backward pass of the actor and critic
networks, respectively. In each step, the actor computes an
action from the current state with a complexity of O(La).
The complexity of noise injection and post-processing is
O(La+N). The environment interaction based on the selected
action incurs a complexity of O(N). The complexity of
sampling from the replay buffer and updating the networks
is O(Lb(La+Lc)+Lp), where Lb is the batch size and Lp is
the total number of network parameters. Therefore, the overall
time complexity of the proposed CPDRL algorithm over M
episodes with T steps is: O(MT (N + Lb(La + Lc)) + Lp).

V. EVALUATION

A. Simulation settings

The simulation scenario is configured within a 300×300 m
rectangular area comprising one centrally located edge server
and multiple randomly distributed UTDs. In the proposed

CPDRL algorithm, both the actor and critic networks consist
of an input layer, two fully connected layers, and an output
layer. The detailed parameter settings are shown in Table I.

We compared CPDRL with the following methods in terms
of reward, execution time, critic loss, and objective value,
where the objective value is defined as the sum of delay and
energy consumption of all UTDs:

• The exhaustive method (TEM): An enumeration method
that yields a near-optimal solution.

• DDPG algorithm: A classic DRL method.
• STE-DDPG algorithm: DDPG algorithm with STE con-

trol in actor network without penalty control.
• ASTE-DDPG algorithm: DDPG algorithm with STE and

action control in actor network without penalty control.
• Random offloading method (ROM): The communication

and computation resources are randomly allocated.
• Fully offloading method (FOM): All UTDs offload com-

putation tasks with random communication resources.
• Local execution method (LEM): All UTDs execute com-

putation tasks locally with random computation resource.

B. Results and discussion
1) Effectiveness validation: Fig. 4 and Fig. 5 compare

the objective values and execution time of CPDRL with the
exhaustive method. As the number of UTDs increases, the
objective values of both methods rise, with CPDRL closely
matching the exhaustive method and achieving near-optimal
solutions. Meanwhile, CPDRL’s execution time remains al-
most constant, whereas that of the exhaustive method grows
exponentially. Fig. 6 further shows that CPDRL outperforms
all classical baselines by achieving the lowest objective value.

2) Convergence and stability validation: Fig. 7 and Fig.
8 demonstrate the effectiveness of CPDRL in improving
convergence and training stability. Fig. 7 shows that CPDRL
consistently achieves higher rewards than the baselines, while
Fig. 8 indicates that its critic loss has the smallest variance,
highlighting superior stability and convergence.

TABLE I: Simulation Parameter Settings

Simulation Parameters Value

The computing ability of UTDs 1-2GHz
The computing ability of edge server 15 GHz
The local data size of UTDs 200-400 KB
The CPU cycles required per data in local training 500-1000 cycles/bit
The channel bandwidth 5MHz
The noise power 10−13

The maximum tolerance time delay 0.5s
The maximum transmission power of UTDs 1W
The path loss exponent -3
The energy exponent 1× 10−28

The learning rate of actor network 1× 10−4

The learning rate of critic network 1× 10−4

The units number of dense layer in actor network (24, 16)
The units number of dense layer in critic network (24, 16)
The standard deviation of Gaussian noise in CPDRL 1.0
The soft update coefficient in CPDRL 0.005
The discount factor in CPDRL 0.85
The batch size in CPDRL 64
The capacity of replay buffer in CPDRL 100000
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3) Cross-Scenario Performance: We evaluate the proposed
algorithm under different communication scenarios. As shown
in Fig. 9, more UTDs lead to higher total delay and energy
consumption. Fig. 10 shows that greater bandwidth improves
transmission rates during offloading, thereby reducing delay
and energy consumption. Fig. 11 demonstrates that higher
edge server capacity further decreases delay and energy
consumption. Overall, the proposed algorithm performs well
across all scenarios, consistent with theoretical expectations.

Fig. 4: Objective value com-
parison of CPDRL and TEM

Fig. 5: Execution time com-
parison of CPDRL and TEM

Fig. 6: Objective value com-
parison of CPDRL and base-
lines

Fig. 7: Reward comparison of
CPDRL and baselines

Fig. 8: Convergence compari-
sion of CPDRL and baselines

Fig. 9: CPDRL objective
value vs. UTD number

Fig. 10: CPDRL objective
value vs. bandwidth

Fig. 11: CPDRL objective
value vs. edge server ability

VI. CONCLUSION

In this study, we investigated the joint computation offload-
ing and resource allocation problem in MEC environment.
We proposed a consistency-preserving deep reinforcement
learning algorithm that maintains the consistency among op-
timization variables during the training process. Simulation
results demonstrate that the proposed algorithm can more
efficiently obtain better feasible solutions while improving
convergence performance. In future work, we plan to extend
this approach to scenarios involving multiple edge servers.
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