
Availability-Aware Backup Provisioning and
Resource Allocation for Energy-Efficient vRANs

Taeyun Kim, Daeyoung Jung, Eunsok Lee, Daesik Kim, and Sangheon Pack
School of Electrical Engineering, Korea University, Seoul, Korea
{kimtyoun123, eodud1884, tinedge, dsk24, shpack}@korea.ac.kr

Abstract—Virtualized radio access networks (vRANs) enhance
scalability and architectural flexibility, but failures of both servers
and containerized network functions (cNFs) intensify availability
requirements. Availability is typically ensured through redun-
dancy mechanisms, with two representative strategies: dedicated
and shared backups. Dedicated backups provide immediate
recovery by replicating the state of original cNFs, but incur
substantial energy consumption. In contrast, shared backups
improve resource efficiency but expose the system to traffic loss
or overload during failures. Thus, relying on a single backup
strategy is inherently inefficient, and the choice of backup type
must adapt to traffic dynamics and heterogeneous availability
demands. In this paper, we formulate an availability-aware
backup provisioning and resource allocation problem in vRAN as
an integer linear programming (ILP) model, with the objective of
minimizing total cost—including energy consumption and traffic
loss penalties—under resource and availability constraints. To
address the NP-hard complexity, we develop a threshold-based
heuristic algorithm that adaptively selects backup types and
allocates resources. Trace-driven evaluations demonstrate that
the proposed approach reduces total cost by up to 52.9% and
decreases failure-related penalties by about 94.1% compared to
state-of-the-art methods.

Index Terms—vRAN, O-RAN, availability, backup provision-
ing, resource scaling, containerized network function.

I. INTRODUCTION

As mobile networks evolve into virtualized radio access
networks (vRANs), deploying containerized network func-
tions (cNFs) on commercial off-the-shelf (COTS) servers pro-
vides enhanced scalability and architectural flexibility [1]–[3].
However, virtualization introduces potential failures at both
hardware and software levels, making availability assurance
a critical objective for service operation. In general, service
availability is maintained through redundancy mechanisms
such as backup provisioning, and the choice of backup strategy
directly affects resource utilization and overall operational
costs.

In the literature, two representative backup strategies are
available: 1) dedicated backup and 2) shared backup. Dedi-
cated backup replicates both the state and incoming flows of
the original cNF, enabling immediate recovery in the event of
a failure [10], [11]. Nevertheless, maintaining such replication

This work was supported in part by Samsung, in part by the National
Research Foundation (NRF) of Korea Grant funded by the Korea Government
(MSIT) (No. RS-2024-00341965), and in part by the Institute of Information
& Communications Technology Planning & Evaluation (IITP) grant funded
by the Korea Government (MSIT) (No. RS-2024-00405128).

consumes considerable resources, leading to energy overhead.
In contrast, shared backup does not replicate the state of
a specific cNF but reserves an empty cNF instance with
predefined capacity [4], [5]. This approach achieves better
resource efficiency and lower energy consumption compared
to dedicated backup. However, recovery is slower because state
transfer is required after a failure, resulting in temporary traffic
loss. Furthermore, shared backup is vulnerable to overload
when multiple cNFs fail simultaneously.

Therefore, relying on a single backup strategy is inherently
inefficient, as it often leads to excessive resource consumption
or significant performance degradation due to frequent failures.
It is thus essential to determine the appropriate backup type
according to the traffic volume and availability requirements
of each flow. In vRAN environments, traffic volume fluc-
tuates significantly over time, and the required availability
level also varies with service characteristics. Consequently,
frequent decisions must be made between dedicated and shared
backups, and the capacity of each backup resource should
be dynamically adjusted. However, existing availability-aware
VNF management frameworks are designed for data center
environments with fixed traffic patterns and static availability
requirements, making them unsuitable for highly dynamic
vRAN environments with heterogeneous traffic and availabil-
ity demands [4]–[6].

In this paper, we formulate an availability-aware backup
provisioning and resource allocation problem in vRAN as an
integer linear programming (ILP) model. The objective is to
minimize the total cost, which consists of energy consumption
from operating and scaling PMs and cNFs, as well as penalty
costs from traffic loss during failures, while satisfying both
resource and availability constraints. Given the NP-hard nature
of the problem, we develop a threshold-based greedy heuristic
to provide scalable and adaptive solutions. Trace-driven eval-
uations show that the proposed approach reduces total cost
by up to 52.9% and decreases failure-related penalty costs by
about 94.1% compared to state-of-the-art schemes.

The remainder of this letter is organized as follows. Sec-
tion II presents the system model. Section III formulates
the optimization problem. Section IV describes the proposed
algorithm to solve the formulated problem. Section V provides
the simulation results. Finally, Section VI concludes the letter.

87979-8-3315-7896-1/26/$31.00 ©2026 IEEE ICOIN 2026



II. SYSTEM MODEL

Figure 1 illustrates our system model, which consists of
a set of radio units (RUs) and a pool of physical ma-
chines (PMs) hosting virtualized central units (CUs) and
distributed units (DUs). These CUs/DUs are implemented
as cNFs running on PM. The set of PMs is denoted by
𝑃𝑃 = {𝑝𝑝1, 𝑝𝑝2, . . . , 𝑝𝑝𝑛𝑛, . . . , 𝑝𝑝𝑁𝑁 }. For each time slot 𝑡𝑡, the state of
PM 𝑝𝑝𝑛𝑛 is represented as 𝑝𝑝𝑡𝑡𝑛𝑛 = {𝑜𝑜𝑡𝑡𝑛𝑛, ℎ𝑡𝑡𝑛𝑛}. The binary variable
𝑜𝑜𝑡𝑡𝑛𝑛 ∈ {0, 1} indicates the operational status of 𝑝𝑝𝑛𝑛 at time 𝑡𝑡,
where 𝑜𝑜𝑡𝑡𝑛𝑛 = 1 means 𝑝𝑝𝑛𝑛 is powered on and 𝑜𝑜𝑡𝑡𝑛𝑛 = 0 means
it is turned off. The binary variable ℎ𝑡𝑡𝑛𝑛 ∈ {0, 1} indicates
whether PM 𝑝𝑝𝑛𝑛 has experienced a failure at time 𝑡𝑡, with ℎ𝑡𝑡𝑛𝑛 = 0
representing a failure and ℎ𝑡𝑡𝑛𝑛 = 1 indicating normal operation.

Each flow from an RU is processed by cNF deployed
on an active PM. The set of cNFs is denoted by 𝐸𝐸 =
{𝑒𝑒1, 𝑒𝑒2, . . . , 𝑒𝑒𝑖𝑖 , . . . , 𝑒𝑒𝐼𝐼 }, and the state of each cNF 𝑒𝑒𝑖𝑖 at time 𝑡𝑡

is given by 𝑒𝑒𝑡𝑡
𝑖𝑖
= {𝑢𝑢𝑡𝑡

𝑖𝑖
, 𝑙𝑙𝑡𝑡

𝑖𝑖
, 𝑣𝑣𝑡𝑡

𝑖𝑖
}. Here, 𝑢𝑢𝑡𝑡

𝑖𝑖
∈ {0, 1, . . . ,𝑈𝑈} denotes

the number of CPU cores allocated to 𝑒𝑒𝑖𝑖 at time 𝑡𝑡, where 𝑈𝑈 is
the maximum number of cores available on a single PM. The
variable 𝑙𝑙𝑡𝑡

𝑖𝑖
indicates the index of PM to which 𝑒𝑒𝑖𝑖 is assigned.

The binary variable 𝑣𝑣𝑡𝑡
𝑖𝑖
∈ {0, 1} represents whether 𝑒𝑒𝑖𝑖 has failed

at time 𝑡𝑡, with 𝑣𝑣𝑡𝑡
𝑖𝑖
= 0 indicating failure and 𝑣𝑣𝑡𝑡

𝑖𝑖
= 1 indicating

normal operation. The availability of each PM and cNF is
denoted by 𝐴𝐴P and 𝐴𝐴E, respectively.

Traffic flows are requested through RUs, and the set of flows
at time slot 𝑡𝑡 is defined as 𝐹𝐹𝑡𝑡 = { 𝑓𝑓 𝑡𝑡1 , 𝑓𝑓

𝑡𝑡
2 , . . . , 𝑓𝑓

𝑡𝑡
𝑘𝑘
, . . . , 𝑓𝑓 𝑡𝑡

𝐾𝐾
},

where 𝑡𝑡 denotes the current time slot and 𝐾𝐾 is the total
number of flows. Each flow 𝑓𝑓 𝑡𝑡

𝑘𝑘
is represented as a tuple

𝑓𝑓 𝑡𝑡
𝑘𝑘

= {𝑚𝑚𝑡𝑡
𝑘𝑘
, 𝑟𝑟 𝑡𝑡

𝑘𝑘
, 𝑠𝑠𝑡𝑡

𝑘𝑘
, 𝑦𝑦𝑡𝑡

𝑘𝑘
, 𝑧𝑧𝑡𝑡

𝑘𝑘
}. The parameter 𝑚𝑚𝑡𝑡

𝑘𝑘
∈ {1, . . . , 𝑀𝑀}

indicates the number of CPU cores required to process the
flow, where 𝑀𝑀 is the maximum core request. The parameter
𝑟𝑟 𝑡𝑡
𝑘𝑘

denotes the availability requirement of the flow and takes
a value within the range [𝑅𝑅min, 𝑅𝑅max] (e.g., 𝑅𝑅min = 0.99 and
𝑅𝑅max = 0.9999999). The variable 𝑠𝑠𝑡𝑡

𝑘𝑘
indicates the index of

cNF to which the flow is assigned. The binary variable 𝑦𝑦𝑡𝑡
𝑘𝑘

represents the backup type: if 𝑦𝑦𝑡𝑡
𝑘𝑘
= 1, the flow is protected

with a dedicated backup; if 𝑦𝑦𝑡𝑡
𝑘𝑘

= 0, the flow is protected
using a shared backup. Finally, 𝑧𝑧𝑡𝑡

𝑘𝑘
specifies the index of cNF

designated to serve as the backup for the flow.

III. PROBLEM FORMULATION

A. Objective function

At each time slot 𝑡𝑡, the total cost is composed of two
components: 1) energy cost and 2) penalty cost.

The energy cost reflects the energy consumed for scaling
and operating PMs or cNFs, and is defined as

C𝑡𝑡
energy = 𝐶𝐶𝑡𝑡

𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑡𝑡
𝑜𝑜𝑜𝑜 , (1)

where 𝐶𝐶𝑡𝑡
𝑠𝑠𝑠𝑠 denotes the scaling cost and 𝐶𝐶𝑡𝑡

𝑜𝑜𝑜𝑜 denotes the
operational cost.

Fig. 1. System model.

The scaling cost 𝐶𝐶𝑡𝑡
𝑠𝑠𝑠𝑠 represents the energy consumed when

turning PMs on or off, adjusting the resources allocated to a
cNF, or migrating a cNF to another PM, and is defined as

𝐶𝐶𝑡𝑡
𝑠𝑠𝑠𝑠 = 𝑐𝑐𝛼𝛼 ·

𝑁𝑁∑︁
𝑛𝑛=1

1(𝑜𝑜𝑡𝑡−1
𝑛𝑛 ≠ 𝑜𝑜𝑡𝑡𝑛𝑛) +

𝐼𝐼∑︁
𝑖𝑖=1

𝑐𝑐𝛿𝛿 · 1(𝑢𝑢𝑡𝑡−1
𝑖𝑖 ≠ 𝑢𝑢𝑡𝑡𝑖𝑖 ∨ 𝑙𝑙𝑡𝑡−1

𝑖𝑖 ≠ 𝑙𝑙𝑡𝑡𝑖𝑖 ),

(2)
where 𝑐𝑐𝛼𝛼 denotes the constant energy cost associated with
turning a PM on or off, and 𝑐𝑐𝛿𝛿 denotes the constant energy
cost associated with modifying the state of a cNF, such as
adjusting its allocated CPU resources or migrating it to another
PM. The indicator function 1(·) equals 1 if the condition inside
the parentheses is satisfied and 0 otherwise.

The operational cost 𝐶𝐶𝑡𝑡
𝑜𝑜𝑜𝑜 represents the energy consumed

in operating PMs and cNFs to process flows and is defined as

𝐶𝐶𝑡𝑡
𝑜𝑜𝑜𝑜 = 𝑐𝑐𝛾𝛾 ·

𝑁𝑁∑︁
𝑛𝑛=1

𝑜𝑜𝑡𝑡𝑛𝑛 + 𝑐𝑐𝜅𝜅 ·
𝐼𝐼∑︁

𝑖𝑖=1
𝑢𝑢𝑡𝑡𝑖𝑖 + 𝑐𝑐𝜔𝜔 ·

𝐾𝐾∑︁
𝑘𝑘=1

(1 + 𝑦𝑦𝑡𝑡𝑘𝑘) · 𝑑𝑑
𝑡𝑡
𝑘𝑘 , (3)

where 𝑐𝑐𝛾𝛾 denotes the base energy constant for keeping a PM
active, 𝑐𝑐𝜅𝜅 denotes the energy constant for operating a cNF
(increasing proportionally with the number of allocated CPU
cores), and 𝑐𝑐𝜔𝜔 denotes the base processing energy constant
per flow, which also applies to replicated flows handled by
dedicated backups.

The penalty cost reflects the traffic loss caused by service
disruption during failures, and is defined as

C𝑡𝑡
penalty = 𝐶𝐶𝑡𝑡

𝑓𝑓 𝑓𝑓 + 𝐶𝐶𝑡𝑡
𝑏𝑏𝑏𝑏 , (4)

where 𝐶𝐶𝑡𝑡
𝑓𝑓 𝑓𝑓

denotes the failure cost and 𝐶𝐶𝑡𝑡
𝑏𝑏𝑏𝑏

denotes the backup
cost.

The failure cost 𝐶𝐶𝑡𝑡
𝑓𝑓 𝑓𝑓

represents the penalty incurred when
both the original cNF and its backup fail, or when the original
cNF fails but the shared backup is overloaded and unable to
recover the flow. In such cases, complete traffic loss for the
affected flow occurs. It is defined as

𝐶𝐶𝑡𝑡
𝑓𝑓 𝑓𝑓 = 𝑐𝑐𝜁𝜁 ·

𝐾𝐾∑︁
𝑘𝑘=1

1
1 − 𝑟𝑟 𝑡𝑡

𝑘𝑘

· 𝑚𝑚𝑡𝑡
𝑘𝑘 · 𝐿𝐿

𝑡𝑡
𝑘𝑘 · 𝑦𝑦

𝑡𝑡
𝑘𝑘 · 𝐷𝐷

𝑡𝑡
𝑘𝑘 + (1 − 𝑦𝑦𝑡𝑡𝑘𝑘) · 𝑆𝑆

𝑡𝑡
𝑘𝑘 , (5)

88



where 𝑐𝑐𝜁𝜁 denotes the penalty constant for traffic loss. The
penalty reflects the availability requirement, such that flows
with higher availability demands incur proportionally higher
costs when dropped, modeled as 1

1−𝑟𝑟 𝑡𝑡
𝑘𝑘

. The term 𝐿𝐿𝑡𝑡
𝑘𝑘
= 1 −

𝑣𝑣𝑡𝑡
𝑠𝑠𝑡𝑡
𝑘𝑘

· ℎ𝑡𝑡PM(𝑠𝑠𝑡𝑡
𝑘𝑘
) indicates whether the primary cNF for flow 𝑓𝑓 𝑡𝑡

𝑘𝑘

has failed and equals 1 in case of failure. Similarly, 𝐷𝐷𝑡𝑡
𝑘𝑘
=

1 − 𝑣𝑣𝑡𝑡
𝑧𝑧𝑡𝑡
𝑘𝑘

· ℎ𝑡𝑡PM(𝑧𝑧𝑡𝑡
𝑘𝑘
) denotes whether the designated dedicated

backup has failed. Here, PM(𝑠𝑠𝑡𝑡
𝑘𝑘
) refers to the PM hosting

cNF 𝑠𝑠𝑡𝑡
𝑘𝑘
, i.e., if 𝑠𝑠𝑡𝑡

𝑘𝑘
= 𝑖𝑖, then PM(𝑠𝑠𝑡𝑡

𝑘𝑘
) = 𝑙𝑙𝑡𝑡

𝑖𝑖
. Finally, 𝑆𝑆𝑡𝑡

𝑘𝑘
= 1 −

𝑣𝑣𝑡𝑡
𝑧𝑧𝑡𝑡
𝑘𝑘

·ℎ𝑡𝑡PM(𝑧𝑧𝑡𝑡
𝑘𝑘
) ·1

�
𝑢𝑢𝑡𝑡
𝑧𝑧𝑡𝑡
𝑘𝑘

≥ �𝐾𝐾
𝑘𝑘′=1 𝐿𝐿

𝑡𝑡
𝑘𝑘′ · 1(𝑧𝑧𝑡𝑡

𝑘𝑘′ = 𝑧𝑧𝑡𝑡
𝑘𝑘
) · 𝑚𝑚𝑡𝑡

𝑘𝑘

�
becomes 1

when the shared backup either fails or lacks sufficient capacity
to support all assigned flows during simultaneous failures.

The backup cost 𝐶𝐶𝑡𝑡
𝑏𝑏𝑏𝑏

represents the penalty incurred when
shared backups are used. Specifically, it accounts for traffic
loss caused by delays during service migration, where the state
and flow of the failed cNF must be transferred to the shared
backup. It is defined as

𝐶𝐶𝑡𝑡
𝑏𝑏𝑏𝑏 = 𝑐𝑐𝜏𝜏 ·

𝐾𝐾∑︁
𝑘𝑘=1

1
1 − 𝑟𝑟 𝑡𝑡

𝑘𝑘

· (1 − 𝑦𝑦𝑡𝑡𝑘𝑘) · 𝐿𝐿
𝑡𝑡
𝑘𝑘 · (1 − 𝑆𝑆𝑡𝑡𝑘𝑘) · 𝑚𝑚

𝑡𝑡
𝑘𝑘 , (6)

where 𝑐𝑐𝜏𝜏 denotes the penalty constant associated with service
migration. The backup cost arises only when a shared backup
is used (i.e., 𝑦𝑦𝑡𝑡

𝑘𝑘
= 0), the original cNF fails (𝐿𝐿𝑡𝑡

𝑘𝑘
= 1), and

the shared backup remains available to recover the flow (𝑆𝑆𝑡𝑡
𝑘𝑘
=

0). The penalty is proportional to the number of CPU cores
requested by the flow, represented by 𝑚𝑚𝑡𝑡

𝑘𝑘
.

The objective function, which aims to minimize the total
cost across all timeslots, is defined as

min
Ξ

𝑓𝑓 (Ξ) =
𝑇𝑇∑︁
𝑡𝑡=1

�
𝜆𝜆𝑒𝑒C𝑡𝑡

energy + 𝜆𝜆𝑝𝑝C𝑡𝑡
penalty

�
, (7)

where Ξ denotes the set of all scaling decisions, and 𝑇𝑇 is
the total number of timeslots. The decision variables at time
slot 𝑡𝑡 are defined as 𝜉𝜉𝑡𝑡 = {𝑠𝑠𝑡𝑡

𝑘𝑘
, 𝑦𝑦𝑡𝑡

𝑘𝑘
, 𝑧𝑧𝑡𝑡

𝑘𝑘
, 𝑜𝑜𝑡𝑡𝑛𝑛, 𝑢𝑢

𝑡𝑡
𝑖𝑖
, 𝑙𝑙𝑡𝑡

𝑖𝑖
}. The weighting

parameters 𝜆𝜆𝑒𝑒 and 𝜆𝜆𝑝𝑝 are introduced to normalize the relative
impact of the energy cost and the penalty cost on the total
cost.

B. Constraints

We have the following constraints:

∀𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖 ≥
𝐾𝐾∑︁
𝑘𝑘=1

1(𝑠𝑠𝑡𝑡𝑘𝑘 = 𝑖𝑖) · 𝑚𝑚𝑡𝑡
𝑘𝑘 (8)

∀𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖 ≥
𝐾𝐾∑︁
𝑘𝑘=1

𝑦𝑦𝑡𝑡𝑘𝑘 · 1(𝑧𝑧𝑡𝑡𝑘𝑘 = 𝑖𝑖) · 𝑚𝑚𝑡𝑡
𝑘𝑘 (9)

∀𝑙𝑙𝑡𝑡𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑛𝑛 = 1 (10)

∀𝑠𝑠𝑡𝑡𝑘𝑘 = 𝑖𝑖𝑖

𝐾𝐾∑︁
𝑘𝑘=1

1(𝑧𝑧𝑡𝑡𝑘𝑘 = 𝑖𝑖) = 0 (11)

∀𝑧𝑧𝑡𝑡𝑘𝑘 = 𝑖𝑖𝑖

𝐾𝐾∑︁
𝑘𝑘=1

1(𝑠𝑠𝑡𝑡𝑘𝑘 = 𝑖𝑖) = 0 (12)

Constraint (8) ensures that each cNF has at least as many
CPU cores as the sum of resource demands from the flows
assigned to it. Constraint (9) guarantees that if a cNF is
designated as a dedicated backup, it must also have sufficient
resources to accommodate all its assigned replicated flows.
Constraint (10) enforces that a PM hosting a cNF must be
powered on. Constraints (11) and (12) ensure role separation:
if a cNF is assigned as a primary processor for any flow, it
cannot simultaneously serve as a backup, and vice versa.

IV. HEURISTIC ALGORITHM

Solving the formulated problem via exhaustive search in-
curs a computational complexity of 𝑂𝑂 (𝐼𝐼2𝐾𝐾𝐾𝐾22(𝐼𝐼+𝑁𝑁 )𝑈𝑈 𝐼𝐼𝐼𝐼𝑁𝑁 𝐼𝐼𝐼𝐼 ),
which is NP-hard. Owing to the real-time decision-making
requirements in vRAN environments, we propose a threshold-
based heuristic algorithm that achieves fast processing with
significantly lower complexity.

Algorithm 1 Availability-aware backup provisioning and re-
source allocation algorithm

1: for each flow 𝑓𝑓 𝑡𝑡
𝑘𝑘

do
2: Assign 𝑓𝑓 𝑡𝑡

𝑘𝑘
to H if 𝑟𝑟 𝑡𝑡

𝑘𝑘
≥ 𝜃𝜃, else to L

3: Set 𝑦𝑦𝑡𝑡
𝑘𝑘
← 1 if 𝑓𝑓 𝑡𝑡

𝑘𝑘
∈ H , else 𝑦𝑦𝑡𝑡

𝑘𝑘
← 0

4: for each group 𝑔𝑔 ∈ {H ,L} do
5: for each 𝑓𝑓 𝑡𝑡

𝑘𝑘
∈ 𝑔𝑔 in descending 𝑚𝑚𝑡𝑡

𝑘𝑘
do

6: 𝑠𝑠𝑡𝑡
𝑘𝑘
← 𝑖𝑖 (𝑒𝑒𝑖𝑖 ∈ C𝑔𝑔), if 𝑢𝑢𝑡𝑡

𝑖𝑖
≥ 𝑚𝑚𝑡𝑡

𝑘𝑘
+�𝐾𝐾

𝑘𝑘′=1 1(𝑠𝑠𝑡𝑡
𝑘𝑘′ = 𝑖𝑖) · 𝑚𝑚𝑡𝑡

𝑘𝑘′

7: if no such 𝑒𝑒𝑖𝑖 ∈ C𝑔𝑔 exists then
8: Turn on new 𝑝𝑝𝑛𝑛 and launch 𝑒𝑒𝑖𝑖′ ∈ C𝑔𝑔

(𝑜𝑜𝑡𝑡𝑛𝑛 ← 1, 𝑢𝑢𝑡𝑡
𝑖𝑖′ ← 𝑈𝑈, 𝑙𝑙𝑡𝑡

𝑖𝑖′ ← 𝑛𝑛, 𝑠𝑠𝑡𝑡
𝑘𝑘
← 𝑖𝑖′)

9: for each 𝑓𝑓 𝑡𝑡
𝑘𝑘
∈ H in descending 𝑚𝑚𝑡𝑡

𝑘𝑘
do

10: 𝑧𝑧𝑡𝑡
𝑘𝑘
← 𝑖𝑖 (𝑒𝑒𝑖𝑖 ∈ BH), if 𝑢𝑢𝑡𝑡

𝑖𝑖
≥ 𝑚𝑚𝑡𝑡

𝑘𝑘
+�𝐾𝐾

𝑘𝑘′=1 1(𝑧𝑧𝑡𝑡
𝑘𝑘′ = 𝑖𝑖) · 𝑚𝑚𝑡𝑡

𝑘𝑘′

11: if no such 𝑒𝑒𝑖𝑖 ∈ BH exists then
12: Turn on new 𝑝𝑝𝑛𝑛 and launch 𝑒𝑒𝑖𝑖′ ∈ BH

(𝑜𝑜𝑡𝑡𝑛𝑛 ← 1, 𝑢𝑢𝑡𝑡
𝑖𝑖′ ← 𝑈𝑈, 𝑙𝑙𝑡𝑡

𝑖𝑖′ ← 𝑛𝑛, 𝑧𝑧𝑡𝑡
𝑘𝑘
← 𝑖𝑖′)

13: if |BL | < ⌈|L|/𝑊𝑊⌉ then
14: 𝜓𝜓up ← 𝜓𝜓up + 1, 𝜓𝜓dw ← 0
15: if 𝜓𝜓up ≥ T then
16: Turn on new 𝑝𝑝𝑛𝑛 and launch 𝑒𝑒𝑖𝑖′ ∈ BL

(𝑜𝑜𝑡𝑡𝑛𝑛 ← 1, 𝑢𝑢𝑡𝑡
𝑖𝑖′ ← 𝑈𝑈, 𝑙𝑙𝑡𝑡

𝑖𝑖′ ← 𝑛𝑛)
17: else if |BL | > ⌈|L|/𝑊𝑊⌉ then
18: 𝜓𝜓dw ← 𝜓𝜓dw + 1, 𝜓𝜓up ← 0
19: if 𝜓𝜓dw ≥ T then
20: Turn off one 𝑒𝑒𝑖𝑖 ∈ BL and its PM (𝑢𝑢𝑡𝑡

𝑖𝑖
← 0, 𝑜𝑜𝑡𝑡

𝑙𝑙𝑡𝑡
𝑖𝑖

← 0)
21: Assign 𝑓𝑓 𝑡𝑡

𝑘𝑘
∈ L to 𝑒𝑒𝑖𝑖 ∈ BL (𝑧𝑧𝑡𝑡

𝑘𝑘
← 𝑖𝑖) in round-robin

22: for each 𝑒𝑒𝑖𝑖 ∈ CH ∪ CL ∪ BH do
23: if 𝑒𝑒𝑖𝑖 is idle then
24: 𝜓𝜓𝑖𝑖 ← 𝜓𝜓𝑖𝑖 + 1; 𝑢𝑢𝑡𝑡

𝑖𝑖
← 0 and 𝑜𝑜𝑡𝑡

𝑙𝑙𝑡𝑡
𝑖𝑖

← 0 if 𝜓𝜓𝑖𝑖 ≥ T
25: else
26: 𝜓𝜓𝑖𝑖 ← 0

Algorithm 1 outlines the detailed operation of the proposed
availability-aware backup provisioning and resource allocation
procedure. The algorithm first partitions flows into two groups
based on their availability requirement 𝑟𝑟 𝑡𝑡

𝑘𝑘
with respect to a

predefined threshold 𝜃𝜃. Flows with 𝑟𝑟 𝑡𝑡
𝑘𝑘
≥ 𝜃𝜃 are assigned to

89



Fig. 2. Comparison with with state-of-the-art methods.

the high-availability group (H ) and configured with dedicated
backups (𝑦𝑦𝑡𝑡

𝑘𝑘
= 1), while the rest are grouped into the low-

availability group (L) and assigned shared backups (𝑦𝑦𝑡𝑡
𝑘𝑘
= 0)

(lines 1–3). Flows are allocated to existing cNFs in descending
order of demand 𝑚𝑚𝑡𝑡

𝑘𝑘
, and if no suitable cNF is available, a new

PM is turned on and a cNF with full capacity 𝑈𝑈 is launched
(lines 4–8). For each flow in H , a dedicated backup cNF is
selected similarly; if no appropriate backup exists, a new one
is provisioned (lines 9–12).

Next, the number of shared backup cNFs is dynamically
adjusted. The target number is calculated as ⌈|L|/𝑊𝑊⌉ based
on the shared backup ratio 𝑊𝑊 . If the current number is
insufficient or excessive, a corresponding counter (𝜓𝜓up or
𝜓𝜓dw) is incremented. When the counter exceeds a threshold
T , a shared backup is added or removed accordingly, and
the opposing counter is reset (lines 13–20). Flows in L are
assigned to available shared backups in a round-robin manner
(line 21). Finally, for all primary and backup cNFs, if a cNF
remains idle, its local counter 𝜓𝜓𝑖𝑖 is incremented; when it
reaches T , cNF and its hosting PM are powered off. If cNF
becomes active again, the counter is reset to zero (lines 23–26).

V. SIMULATION RESULTS

To evaluate the performance of the proposed algorithm
(Proposed), we compare it with two state-of-the-art schemes:
Shared and Dedicated. Shared allocates sufficient shared
backup resources to satisfy the availability requirements of
all flows [4], [5], while Dedicated provisions each flow with
a fully dedicated backup [10], [11]. The simulation spans
24 hours, divided into 𝑇𝑇 = 144 timeslots of 10 minutes
each. We consider 𝐾𝐾 = 100 flows, where each flow’s CPU
demand is normalized within [0, 8] based on traffic variations
from the Milan Internet Traffic Dataset [12]. The parameters
used in the simulation are summarized as follows [4], [6],
[9]. The availability requirement of each flow is randomly
selected between 𝑅𝑅min = 0.99 and 𝑅𝑅max = 0.9999999. The
physical infrastructure consists of 𝑁𝑁 = 30 COTS servers, each

Fig. 3. Effect of the cNF failure probability.

equipped with 64 cores and supporting up to 𝐼𝐼 = 100 cNFs.
The availability of servers and cNFs is set to 𝐴𝐴𝑃𝑃 = 0.999
and 𝐴𝐴𝐸𝐸 = 0.999, respectively. Accordingly, servers and
cNFs independently fail in each timeslot with probabilities
𝐹𝐹𝑃𝑃 = 1 − 𝐴𝐴𝑃𝑃 = 0.001 and 𝐹𝐹𝐸𝐸 = 1 − 𝐴𝐴𝐸𝐸 = 0.001. The cost
parameters are defined as follows: 𝑐𝑐𝛼𝛼 = 10 for server on/off,
𝑐𝑐𝛿𝛿 = 10 for cNF scaling or migration, 𝑐𝑐𝛾𝛾 = 10 for server
operation, 𝑐𝑐𝜅𝜅 = 1 for cNF maintenance per unit capacity,
𝑐𝑐𝜔𝜔 = 1 for flow processing, 𝑐𝑐𝜁𝜁 = 1 for failure penalty, and
𝑐𝑐𝜏𝜏 = 0.001 for shared backup overhead. The weighting factors
for the objective function are set to 𝜆𝜆𝑒𝑒 = 1 and 𝜆𝜆𝑝𝑝 = 1.

Figure 2 presents the simulation results. The proposed
scheme demonstrates significant improvements compared to
the state-of-the-art methods. Specifically, the total cost is
reduced by 29.3% compared to Shared and 52.9% compared
to Dedicated. In terms of energy cost, the proposed scheme
achieves a 55.2% reduction relative to Dedicated, while it is
72.3% higher than Shared. This is because Shared employs
shared backups for all flows, thereby incurring relatively low
energy costs for operating and scaling backup resources. How-
ever, when failures occur, Shared suffers from high penalty
costs due to limited recovery capability, such as delays in state
migration to backups or overload of shared backups that result
in traffic loss. Consequently, the penalty cost of Proposed is
about 94.1% lower than that of Shared. In contrast, Dedicated
assigns a dedicated backup for all flows, and thus penalty costs
are incurred only in very rare cases when both the original
cNF and its dedicated backup fail simultaneously. As a result,
Dedicated achieves 85.9% lower penalty cost compared to
Proposed.

Figure 3 illustrates the impact of the cNF failure prob-
ability 𝐹𝐹𝐸𝐸 . We vary 𝐹𝐹𝐸𝐸 from 0 to 0.01. Except for the
case of 𝐹𝐹𝐸𝐸 = 0, Proposed achieves up to 86.2% lower
total cost compared to the other methods. When 𝐹𝐹𝐸𝐸 = 0,
failures do not occur, and thus maintaining backups becomes
unnecessary, resulting in wasted energy costs. In this case,

90



Fig. 4. Effect of the maximum availability requirements.

Shared outperforms Proposed. Conversely, when 𝐹𝐹𝐸𝐸 = 0.01,
i.e., under a high failure probability, frequent failures result
in large traffic loss for unrecovered flows, causing Shared
to incur significantly higher penalty costs. In this regime,
both Dedicated and Proposed mitigate failures effectively
through the use of dedicated backups, thereby maintaining
lower total costs compared to Shared. However, Dedicated
assigns backups to all flows indiscriminately, incurring sig-
nificant resource overhead and yielding a 53.2% higher total
cost than Proposed. These results demonstrate that Proposed
achieves resilient yet resource-efficient operation by adaptively
provisioning dedicated backups only for flows with stringent
availability demands while utilizing shared backups for others.

Figure 4 shows the impact of the maximum availability
requirement 𝑅𝑅max on the total cost, where 𝑅𝑅max is varied from
0.99 to 0.9999999. Proposed consistently achieves the lowest
total cost across all scenarios, with reductions of up to 74.1%.
When 𝑅𝑅max lies between 0.99 and 0.99999, Shared performs
similarly to Proposed, as all flows are protected with shared
backups in both cases. However, when 𝑅𝑅max ≥ 0.999999, the
total cost of Shared increases sharply due to large penalties
from failures of high-availability flows. In the range 𝑅𝑅max ∈
[0.99999, 0.9999999], this escalation becomes even steeper
for Shared, whereas the slope for Proposed decreases. This is
because Proposed employs dedicated backups for flows with
stringent availability requirements, leading to additional en-
ergy costs but avoiding significant penalties from unrecovered
failures.

VI. CONCLUSION

In this paper, we studied availability-aware backup provi-
sioning and resource allocation for vRANs. We formulated
an ILP that minimizes the total cost—combining energy con-
sumed by operating/scaling PMs and cNFs with penalties from
traffic loss during failures—under resource and availability
requirements. We then designed a threshold-based heuristic

that partitions flows by availability requirement, assigns ded-
icated or shared backups accordingly, and applies counter-
based delayed scaling in line with traffic demand. Trace-
driven evaluations against Shared and Dedicated baselines
show substantial gains: our method reduces total cost by up
to 52.9% relative to Dedicated, and under high cNF failure
probability achieves up to 86.2% lower total cost than Shared
with markedly reduced penalty costs. These results indicate
that adaptively selecting backup types by availability demand
and co-optimizing resource usage are key to cost-efficient,
failure-resilient vRAN operation. As future work, we will
investigate learning-based mechanisms that dynamically tune
the threshold 𝜃𝜃 (and related weights) in response to traffic
dynamics and flow-level availability requirements.

REFERENCES

[1] P. Rost, I. Berberana, A. Maeder, H. Paul, V. Suryaprakash, M. Valenti,
D. Wübben, A. Dekorsy, and G. Fettweis, “Benefits and challenges
of virtualization in 5G radio access networks” IEEE Communications
Magazine, vol. 53, no. 12, pp.75-82, December 2015.

[2] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Understand-
ing O-RAN: Architecture, interfaces, algorithms, security, and research
challenges,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2,
pp. 1376-1411, January 2023.

[3] S. Singhm, R. Singh, and B. Kumbhani, “The evolution of radio access
network towards Open-RAN: Challenges and opportunities,” in Proc.
IEEE Wireless Communications and Networking Conference (WCNC)
Workshops, April 2020.

[4] D. Li, P. Hong, K. Xue, and J. Pei, “Availability aware VNF deploy-
ment in datacenter through shared redundancy and multi-tenancy,” IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp.
1651-1664, December 2019.

[5] G. Li, H. Chen, L. Wu, X. Chi, J. Yao, and F. Xia, “Efficient De-
ployment and Scheduling of Shared VNF Instances in Mobile Edge
Computing Networks,” IEEE Internet of Things Journal, vol. 11, no. 19,
pp. 32259–32271, October 2024.

[6] X. Liu, B. Cheng, and S. Wang, “Availability-aware and energy-efficient
virtual cluster allocation based on multi-objective optimization in cloud
datacenters,” IEEE Transactions on Network and Service Management,
vol. 17, no. 2, pp. 972-986, June 2020.

[7] F. W. Murti, S. Ali, G. Iosifidis, and M. Latva-aho, “Deep reinforcement
learning for orchestrating cost-aware reconfigurations of vRANs,” IEEE
Transactions on Network and Service Management, vol. 21, no. 1, pp.
200-216, February 2024.

[8] E. Amiri, N. Wang, M. Shojafar, M. Hamdan, C. Foh, and R. Tafazolli,
“Deep reinforcement learning for robust VNF reconfigurations in O-
RAN,” IEEE Transactions on Network and Service Management, vol.
21, no. 1, pp. 1115-1128, February 2024.

[9] T. Kim, D. Jung, Y. Kim, and S. Pack, “Cost-Aware Neural Adaptive
Scaling for vRAN Resource Allocation,” IEEE Transactions on Mobile
Computing, to appear.

[10] J. Xing, J. Gong, X. Foukas, A. Kalia, D. Kim, and M. Kotaru, “Enabling
resilience in virtualized RANs with Atlas,” in Proc. ACM MobiCom,
Madrid, Spain, October 2023.

[11] N. Lazarev, T. Ji, A. Kalia, D. Kim, I. Marinos, F. Y. Yan, C. Delimitrou,
Z. Zhang, and A. Akella, “Resilient baseband processing in virtualized
RANs with Slingshot,” in Proc. ACM SIGCOMM, New York, NY, USA,
September 2023.

[12] T. Italia, “Telecommunications - SMS, call, internet - MI,” 2015.
[Online]. Available: https://doi.org/10.7910/DVN/EGZHFV

91


