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Abstract—The rapid growth of cloud computing has led to
significant energy consumption in large-scale data centers, raising
concerns about sustainability and operational costs. Efficient
resource allocation is a critical factor in balancing performance
with energy efficiency. Traditional optimization methods often
struggle to adapt to the dynamic and heterogeneous nature of
cloud workloads. In this paper, we propose a deep reinforcement
learning (DRL)-based framework for energy-efficient resource
allocation in cloud computing environments. By modeling the
allocation problem as a Markov Decision Process (MDP), the
DRL agent learns optimal policies through interaction with the
cloud environment, dynamically allocating resources based on
workload variations and energy constraints. The framework
leverages deep neural networks for value function approximation,
enabling scalability to high-dimensional state spaces. Simulation
results on benchmark cloud workloads demonstrate that our
approach achieves substantial reductions in energy consumption
compared to conventional heuristic and rule-based methods,
while maintaining high service quality and meeting Service Level
Agreements (SLAs). The proposed method provides a promising
direction for sustainable cloud infrastructure design, bridging
the gap between intelligent workload management and green
computing objectives.

Index Terms—Cloud Computing, Energy Efficiency, Resource
Allocation, Deep Reinforcement Learning, Sustainability, Data
Centers, Service Level Agreement (SLA), Green Computing.

I. INTRODUCTION

Cloud computing has emerged as a dominant paradigm
for delivering on-demand computing services, enabling scala-
bility, flexibility, and cost-effectiveness across diverse appli-
cation domains. The increasing reliance on cloud services
by enterprises, government institutions, and individuals has
significantly expanded the scale and complexity of cloud
data centers. However, this growth has been accompanied
by a sharp rise in energy consumption, resulting in higher
operational costs, increased carbon emissions, and sustainabil-
ity challenges [1]. According to recent studies, data centers
account for a substantial proportion of global electricity usage,
highlighting the urgent need for energy-efficient management
strategies [2].

One of the critical challenges in achieving energy efficiency
lies in resource allocation, which involves dynamically assign-
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ing computational, memory, and network resources to work-
loads. Poor allocation strategies can lead to server underutiliza-
tion, energy waste, or performance degradation that violates
Service Level Agreements (SLAs). Traditional optimization-
based and heuristic methods have provided partial solutions
but often struggle with the dynamic, heterogeneous, and large-
scale nature of modern cloud environments. They generally
lack adaptability to real-time workload fluctuations and do not
scale effectively under high-dimensional system states.

Recent advancements in machine learning and artificial
intelligence (AI) have opened new avenues for intelligent
cloud resource management. In particular, reinforcement learn-
ing (RL) has shown promise in sequential decision-making
problems by enabling agents to learn optimal policies through
interactions with an environment. However, classical RL tech-
niques face limitations in handling high-dimensional state and
action spaces common in large-scale cloud systems. To address
this issue, deep reinforcement learning (DRL) integrates deep
neural networks with RL, allowing efficient policy approxima-
tion and adaptability to complex, dynamic environments [3].

In this paper, we propose a Deep Reinforcement Learning-
based framework for energy-efficient resource allocation in
cloud computing environments. Our approach formulates the
allocation process as a Markov Decision Process (MDP),
where the agent learns to allocate resources based on workload
intensity, energy constraints, and performance requirements.
By leveraging DRL, the framework dynamically adapts to
workload variations while reducing energy consumption and
maintaining SLA compliance.

The main contributions of this paper are as follows:
+ We formulate the energy-efficient resource allocation

problem as a Markov Decision Process (MDP), enabling the
use of DRL for policy learning.

+ We propose a DRL-based allocation framework that
incorporates workload dynamics and energy-awareness into
decision-making.

+ We evaluate the proposed framework through simulation
experiments on benchmark cloud workloads, demonstrating
improved energy efficiency compared to traditional heuristic
and rule-based methods.

+ The remainder of this paper is organized as follows.
Section II reviews related work on resource allocation and
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TABLE I
SAMPLE OF CLOUD WORKLOAD DATASET (FIRST 15 ROWS, WITHOUT START/END TIME)

Job ID CPU Utilization (%) Memory Consumption (MB) Task Execution Time (ms) System Throughput (tasks/sec) Task Waiting Time (ms) Data Source Number of Active Users Network Bandwidth Utilization (Mbps) Job Priority Scheduler Type Resource Allocation Type Error Rate (%)

JOB 1 39.96 3622 2734 9.03 83 IoT 3000 112.97 Low FCFS Static 1.65
JOB 2 86.06 5690 3859 9.21 63 Social Media 4500 115.83 Medium RoundRobin Dynamic 2.39
JOB 3 72.85 4872 3221 9.10 71 Web App 5200 119.27 Low FCFS Dynamic 3.11
JOB 4 61.92 4218 3054 8.89 75 IoT 3100 110.45 Low RoundRobin Static 1.87
JOB 5 43.54 3321 2678 8.78 88 Social Media 4300 109.62 Medium FCFS Dynamic 2.56
JOB 6 79.26 5139 3421 9.34 68 Web App 5000 116.38 Low RoundRobin Dynamic 3.34
JOB 7 55.31 3782 2876 8.92 82 IoT 2900 108.71 Medium FCFS Static 1.94
JOB 8 64.73 4365 3150 9.05 76 Social Media 4700 114.62 Low RoundRobin Dynamic 2.78
JOB 9 48.15 3567 2790 8.80 85 Web App 4800 111.29 Medium FCFS Static 2.12
JOB 10 92.34 6128 4015 9.40 59 IoT 3200 118.54 Low RoundRobin Dynamic 3.87
JOB 11 69.47 4756 3198 9.12 73 Social Media 4600 113.92 Low FCFS Static 2.63
JOB 12 58.39 3890 2984 8.95 80 Web App 4900 112.47 Medium RoundRobin Dynamic 2.07
JOB 13 74.62 5027 3356 9.28 69 IoT 3300 117.21 Low FCFS Dynamic 3.02
JOB 14 66.81 4498 3102 9.07 77 Social Media 4400 115.34 Medium RoundRobin Static 2.46
JOB 15 52.27 3681 2850 8.84 84 Web App 5100 110.12 Low FCFS Dynamic 1.98

energy efficiency in cloud computing. Section III presents the
problem formulation and DRL-based methodology. Section
IV describes the experimental setup and performance metrics.
Section V discusses the results and analysis. Finally, Section
VI concludes the paper and outlines future research directions.

II. METHODOLOGY

Cloud Workload Dataset

Preprocessing
(Cleaning, Normalization)

Feature Extraction
(CPU, Memory, Throughput, Errors)

Modeling Approaches
(SA, HA, Q-Learning, DRL)

Performance Metrics
(Energy, SLA, Utilization, Migration)

Numerical Results & Visualizations

Fig. 1. Processing pipeline of the proposed methodology.

A. Data collection

To evaluate the proposed Deep Reinforcement Learning
(DRL) framework for energy-efficient resource allocation,
experimental data were collected from simulated cloud com-
puting environments. Since real-world cloud platforms such
as Amazon EC2 or Microsoft Azure provide limited visibility
into low-level energy consumption metrics, a simulation-based
approach was adopted to obtain fine-grained control over
workload generation, system parameters, and energy models.

Simulation Environment: The data collection (Table I) pro-
cess was carried out using CloudSim and its energy-aware
extensions [4], which are widely used for modeling and
simulating cloud infrastructures. The simulation environment
allows the measurement of both resource utilization and energy

consumption under varying workloads. Each virtual machine
(VM) request was parameterized with CPU, memory, and stor-
age requirements, while physical hosts were modeled based on
real-world data center configurations.

Workload Traces: Workload traces were obtained from
publicly available datasets, including the Google Cluster Data
[5] and PlanetLab workload traces. These datasets provide
realistic job arrival patterns, task durations, and resource usage
characteristics. The traces were preprocessed to align with the
simulation environment, ensuring consistency across multiple
experimental runs. Google Cluster Data: Used for large-scale
batch job workloads, with diverse CPU and memory require-
ments. PlanetLab Traces: Used for evaluating interactive and
heterogeneous workloads typical of distributed applications.

Energy Consumption Model: We adopt a widely used linear
power model that relates a physical host’s CPU utilization to
its instantaneous power consumption. Let u(t) ∈ [0, 1] denote
the CPU utilization of a host at time t. The instantaneous
power consumption P (u(t)) of the host is modeled as:

P (u(t)) = Pidle +
(
Pmax − Pidle

)
u(t), (1)

where Pidle is the power consumed when the host is idle (zero
CPU utilization) and Pmax is the power at full CPU utilization.
The utilization u(t) is computed as the ratio of allocated CPU
capacity to the host’s total CPU capacity.

For experiments performed in discrete time steps of duration
∆t, the energy consumed by a single host over a time horizon
T (consisting of N steps) is computed as:

E =
N∑

k=1

P
(
u(k∆t)

)
∆t. (2)

When continuous monitoring is available, the total energy over
T is given by the integral:

E =

∫ T

0

P
(
u(t)

)
dt. (3)

In addition to host power, we account for energy overheads
associated with workload consolidation and VM migrations.
Each migration incurs a fixed energy penalty Emig that models
the additional CPU, disk and network activity during migra-
tion. Thus, if M migrations occur during the evaluation period,
the total system energy is:

Etotal =
∑
h∈H

N∑
k=1

Ph

(
uh(k∆t)

)
∆t + M · Emig, (4)

55



where H is the set of physical hosts and Ph(·) indicates that
parameters Pidle and Pmax may differ per host type.

Model Justification and Limitations: The linear model in
Eq. (1) is simple and computationally efficient while providing
sufficiently accurate estimates for comparative algorithm eval-
uation [6]. For high-fidelity studies, the model can be extended
to include non-linear components or component-wise power
(CPU, memory, disk, NIC). In our experiments we use host-
specific Pidle and Pmax values derived from typical server
specifications to ensure realistic energy estimation.

State and Action Data for DRL Agent: For training the DRL
agent, state-action-reward tuples were collected during simula-
tion runs. State Space: Includes current VM requests, CPU and
memory utilization of hosts, energy consumption levels, and
SLA violation rates. Action Space: Corresponds to mapping
decisions of VMs onto physical hosts and dynamic consoli-
dation/migration of workloads. Reward Signal: Computed as
a weighted combination of energy efficiency (minimization of
power consumption) and SLA compliance (minimization of
violations). This dataset provides the foundation for training
the DRL agent to adaptively allocate resources under dynamic
cloud workloads while minimizing energy consumption.

B. Deployed Methodology
In this section, we present the proposed Deep Reinforce-

ment Learning (DRL)-based framework for energy-efficient
resource allocation in cloud computing environments shown
in Fig. 1. The methodology is structured into four compo-
nents: (i) problem formulation as a Markov Decision Process
(MDP), (ii) state and action space design, (iii) reward function
specification, and (iv) DRL algorithm design and training.

Problem Formulation: The energy-efficient resource alloca-
tion problem is modeled as a Markov Decision Process (MDP)
defined by the tuple ⟨S,A,P,R, γ⟩, where:

• S: set of system states capturing workload characteristics,
resource utilization, and energy consumption,

• A: set of allocation actions, mapping virtual machines
(VMs) to physical hosts,

• P: state transition probabilities determined by workload
arrivals and system dynamics,

• R: reward function balancing energy efficiency and SLA
satisfaction,

• γ ∈ [0, 1]: discount factor for future rewards.
At each decision epoch, the DRL agent observes the current
state st ∈ S, selects an action at ∈ A, and receives an
immediate reward rt. The environment then transitions to a
new state st+1. The goal of the agent is to maximize the
expected cumulative discounted reward:

max
π

Eπ

[ ∞∑
t=0

γtrt

]
, (5)

where π denotes the policy mapping states to actions.
State Space: The state vector encodes the dynamic status of

the cloud environment, including:
• CPU, memory, and bandwidth utilization of each physical

host,

• energy consumption levels derived from the power model,
• number of active VMs and their resource demands,
• SLA violation metrics, such as response time delay or

deadline misses.
This multi-dimensional representation enables the agent to
capture workload dynamics and energy-performance trade-
offs.

Action Space: An action corresponds to a resource alloca-
tion decision, defined as the placement of VMs onto physical
hosts. The action space includes:

• initial placement of incoming VMs,
• live migration of VMs to reduce energy consumption or

SLA violations,
• consolidation of workloads by turning idle servers into

low-power states.
Reward Function: The reward is designed to jointly optimize

energy efficiency and service quality. At time step t, the reward
rt is computed as:

rt = −α · Et − β · SLAt, (6)

where:
• Et: energy consumed during interval t,
• SLAt: penalty for SLA violations (e.g., response time or

throughput degradation),
• α, β: weighting coefficients to balance objectives.

This formulation ensures that the agent is incentivized to
minimize energy usage while maintaining SLA compliance.

Deep Reinforcement Learning Algorithm: We adopt a value-
based DRL method, specifically the Deep Q-Network (DQN)
[7], due to its ability to handle discrete action spaces in high-
dimensional environments. The key components include:

• Q-Network: A deep neural network approximates
the action-value function Q(s, a; θ), parameterized by
weights θ.

• Experience Replay: A replay buffer stores past transitions
(st, at, rt, st+1), which are sampled randomly to stabilize
learning.

• Target Network: A separate target network is periodically
updated to improve training stability.

• Exploration-Exploitation: An ϵ-greedy strategy balances
random exploration with exploitation of learned policies.

The Q-network is trained by minimizing the temporal differ-
ence (TD) error:

L(θ) = E
[(
rt+γmax

a′
Q(st+1, a

′; θ−)−Q(st, at; θ)
)2]

, (7)

where θ− are the parameters of the target network.
Framework Workflow: The overall workflow is summarized

as follows:
1) Workload traces are injected into the cloud simulator to

generate system states and energy metrics.
2) The DRL agent observes the state vector and selects

allocation actions.
3) The environment executes the action, yielding new sys-

tem states and reward values.
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4) The agent updates its Q-network based on experience
replay and TD learning.

5) The process repeats until convergence, producing an
allocation policy that balances energy efficiency and
SLA satisfaction.

This methodology enables the proposed framework to learn
adaptive allocation strategies that minimize energy consump-
tion while maintaining service quality under dynamic cloud
workloads.

III. NUMERICAL RESULTS

A. Evaluation Metrics

To assess the performance of the proposed Deep Reinforce-
ment Learning (DRL)-based [2] resource allocation frame-
work, we employ a set of widely used metrics that capture
both energy efficiency and quality of service (QoS) in cloud
computing environments. The metrics are defined as follows.

Total Energy Consumption: The primary objective is to
minimize the total energy consumed by all active physical
hosts over the evaluation period. Energy is computed using
the power model shown as follows:

Etotal =
∑
h∈H

∫ T

0

Ph(uh(t)) dt, (8)

where H is the set of hosts, uh(t) is the utilization of host h
at time t, and Ph(·) is the power consumption function. Lower
values of Etotal indicate better energy efficiency.

Service Level Agreement (SLA) Violation Rate: SLA viola-
tions occur when QoS constraints, such as maximum response
time or throughput, are not satisfied. The SLA violation rate
is defined as:

SLArate =
Nviolations

Ntotal
, (9)

where Nviolations is the number of tasks that failed to meet
SLA requirements and Ntotal is the total number of tasks ex-
ecuted. A lower SLArate represents higher service reliability.

Energy-SLA Trade-off Metric: To jointly evaluate energy
efficiency and SLA compliance, we define the Energy-SLA
trade-off (EST) as:

EST = α · Etotal

Ebaseline
+ β · SLArate, (10)

where Ebaseline is the energy consumption of a non-energy-
aware baseline system, and α, β are weighting coefficients. A
smaller EST indicates a better trade-off.

Resource Utilization Efficiency: Resource utilization effi-
ciency measures how effectively CPU and memory resources
are allocated across hosts. For CPU utilization:

Ucpu =
1

|H|
∑
h∈H

uh, (11)

where uh is the average CPU utilization of host h. Higher
values of Ucpu imply better consolidation of workloads.

VM Migration Overhead: Live migration is an effective
mechanism for workload consolidation, but excessive migra-
tions may introduce performance degradation and additional
energy cost. The migration overhead is quantified as:

Moverhead =
Nmigrations

NVM
, (12)

where Nmigrations is the number of VM migrations during the
experiment and NVM is the total number of active VMs. An
efficient algorithm minimizes Moverhead while maintaining
energy savings.

Convergence Speed: For DRL-based algorithms, conver-
gence speed is evaluated in terms of the number of episodes
required for the training process to stabilize. Faster conver-
gence implies better adaptability of the learning framework to
dynamic environments.

Comparative Benchmark: For a comprehensive evaluation,
all metrics are compared against baseline approaches, includ-
ing:

• Static resource allocation (baseline scheduling),
• Heuristic-based dynamic allocation (e.g., Best Fit De-

creasing),
• Classical Ant Colony Optimization (ACO) or other meta-

heuristic methods.

These metrics together provide a balanced evaluation of
both energy performance and service quality, ensuring that
the proposed DRL framework meets the dual objectives of
sustainability and QoS in cloud computing.

B. Numerical Results

This section presents the numerical evaluation of the pro-
posed Deep Reinforcement Learning (DRL)-based framework
compared with baseline approaches. The experiments were
conducted using CloudSim with workloads derived from the
Google Cluster dataset and PlanetLab traces. Each experiment
was repeated 10 times, and average results are reported.

Comparison Algorithms: We compare the proposed method
against three baselines:

• Static Allocation (SA): VMs are assigned to the first
available host without dynamic adjustment.

• Heuristic Allocation (HA): Best-Fit Decreasing (BFD)
heuristic for VM placement with periodic consolidation.

• Classical Reinforcement Learning (Q-Learning): Tabular
Q-learning with discretized state space.

• Proposed DRL: Deep Q-Network (DQN)-based allocation
strategy.

Performance Metrics: The algorithms [9] were evaluated
using the metrics including total energy consumption, SLA
violation rate, energy-SLA trade-off, average CPU utilization,
VM migration overhead, and convergence speed.

Results Summary: Table II summarizes the experimental
results. Energy consumption is normalized with respect to the
static allocation baseline. Performance is shown in Fig. 2 and
Fig. 3.
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TABLE II
PERFORMANCE COMPARISON OF RESOURCE ALLOCATION ALGORITHMS

Metric SA HA Q-Learning Proposed DRL
Total Energy (kWh) 100% 87.4% 83.6% 76.5%
SLA Violation Rate 5.2% 3.8% 3.4% 2.1%
EST Score 1.00 0.76 0.71 0.58
CPU Utilization 56.2% 64.5% 66.8% 71.4%
Migration Overhead 0.0 12.7% 15.2% 9.3%
Convergence(episodes) – – 650 380

Fig. 2. Convergence Comparison.

Fig. 3. Server Power Consumption Over Time.

The results clearly demonstrate that the proposed DRL
framework achieves superior performance compared to base-
line methods:

• Energy Efficiency: DRL reduces energy consumption
by 23.5% compared to static allocation and by 10.9%
compared to heuristic-based methods. This improvement

is attributed to adaptive workload consolidation and in-
telligent VM placement.

• SLA Compliance: The DRL agent achieves the lowest
SLA violation rate (2.1%), demonstrating its ability to
balance energy savings with service quality.

• Energy-SLA Trade-off: The proposed approach achieves
the lowest EST score, highlighting an optimal trade-off
between energy reduction and SLA adherence.

• Resource Utilization: Higher average CPU utilization
indicates better consolidation and efficient use of physical
resources.

• Migration Overhead: While migrations are necessary for
consolidation, DRL maintains a relatively low overhead
(9.3%), better than Q-learning and heuristic approaches.

• Convergence Speed: The DRL agent converges in fewer
episodes (380) compared to tabular Q-learning (650),
due to its ability to generalize in high-dimensional state
spaces.

Overall, the proposed DRL framework consistently outper-
forms baselines, confirming its effectiveness in energy-efficient
cloud resource management.

IV. CONCLUSION

In this paper, we presented a Deep Reinforcement Learn-
ing (DRL)-based framework for energy-efficient resource
allocation in cloud computing environments. Unlike static
or heuristic-based strategies, the proposed method leverages
adaptive decision-making to dynamically allocate resources
while balancing energy efficiency and service quality. Ex-
perimental results on real-world workload traces demonstrate
that the proposed approach significantly reduces energy con-
sumption, improves CPU utilization, and lowers SLA violation
rates compared to static allocation, heuristic methods, and
classical Q-learning. Moreover, the DRL agent achieves faster
convergence and lower migration overhead, highlighting its
practicality for large-scale cloud data centers. The findings
confirm that DRL is a promising paradigm for sustainable
cloud computing and green data center management. Future
work will extend this framework to incorporate multi-objective
optimization, including carbon footprint minimization, cost-
aware scheduling, and integration with edge–cloud collabora-
tive systems.
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