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Abstract—Network slicing, a key capability in 5G network, 
enables telecom operators to create multiple end-to-end virtual 
network slices on shared infrastructure. While offering flexible 
deployment, multi-tenancy and dynamic resource allocation in 
slices also increase security risks. To mitigate the vulnerabilities 
of the network slicing architecture, we propose an Autoencoder-
Based Intrusion Detection System with Trust Level Driven Slice 
Access Control (AEIDS-TLDSAC) framework. Autoencoder-
based IDS, leverages reconstruction error to detect anomalies, 
enabling recognition of unknown attacks and making it suitable 
for dynamic slicing environments. TLDSAC maintains a trust 
value for each UE, adjusting it based on IDS detection results. 
Malicious behavior lowers the trust value and triggers access 
restrictions, ensuring only UEs meeting trust requirements can 
access slices. Experiment results show that our Autoencoder-
based IDS achieved 97.16% and 97.34% accuracy on two 5G 
testbed datasets. In addition, Additive-Increase Multiplicative-
Decrease (AIMD) and Additive-Increase Additive-Decrease 
(AIAD) based TLDSAC mechanisms outperformed the baseline 
in average, median, and tail response time, with AIMD 
delivering the best reductions—71.23%, 85.26%, and 63.37%, 
respectively. 
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I. INTRODUCTION 
In 5G/B5G networks, network slicing is a foundational 

capability that enables telecom operators to partition a shared 
physical infrastructure into multiple, isolated logical slices, 
each tailored to the needs of a specific service class or 
application. A slice provides end-to-end connectivity across 
the User Equipment (UE), Radio Access Network (RAN), and 
core network, while dynamically allocating compute, storage, 
and network resources to meet application demands. For 
example, a slice supporting remote surgery must be prioritized 
and engineered with ultra-low latency and high reliability to 
guarantee deterministic performance, whereas a video-
streaming slice primarily requires sustained high throughput 
to ensure stable playback. By elastically orchestrating 
resources and policies per slice, 5G/B5G systems can more 
effectively satisfy heterogeneous requirements and provide 
different services such as enhanced Mobile Broadband 
(eMBB), Ultra-Reliable and Low Latency Communications 
URLLC), and massive Machine Type Communication 
(mMTC) without violating Service Level Agreements (SLAs) 
or Quality of Service (QoS) constraints.  

Despite these benefits, network slicing also expends the 
attack and abuse surface. Since slices are typically deployed 
in multi-tenant environments[1], where diverse users and 
applications coexist and share underlying network functions 
and infrastructure resources. This makes malicious users 
become harder to detect, and benign users are more likely to 

be affected. Moreover, since slice resources can be allocated 
dynamically[2], a slice under attack may request additional 
resources after exhausting its own, and indirectly degrading 
the performance of the overall network system. Such behavior 
can unintentionally starve the underlying resource pool and 
degrade other slices’ performance, creating cross-slice 
interference and SLA violations. Consequently, continuous 
monitoring[3], timely risk assessment, and the ability to 
restrict malicious or high-risk UEs from accessing sensitive 
slices are critical to preserving overall system stability and 
security.   

To address these challenges, we propose an Autoencoder-
Based Intrusion Detection System with Trust-Level Driven 
Slice Access Control (AEIDS-TLDSAC) framework. The 
design integrates two tightly coupled components: 
Autoencoder-based IDS and TLDSAC. First, we develop an 
IDS using an autoencoder to identify malicious traffic 
generated by UE. By deploying this Autoencoder-based IDS, 
the traffic from diverse UEs can be monitored on the slice, and 
malicious UEs can be detected as soon as possible. Secondly, 
we then propose a UE trust value evaluation model that 
follows a reputation-based mechanism[4]; the trust value is 
adjusted dynamically according to each UE’s historical 
behavior and IDS outputs and serves as the basis for risk 
assessment. Finally, we integrate an access-control 
mechanism that sets slice-specific trust thresholds according 
to their security requirements; when a UE’s trust value falls 
below the threshold, its access to that slice is restricted and it 
is redirected to a quarantine slice. By preventing high-risk 
UEs from accessing unavailable slices, proposed AEIDS-
TLDSAC can enhance the overall stability and security of 5G 
network-slicing architectures.  

The proposed approach delivers three key benefits. First, 
it improves detection coverage and accuracy by integrating 
Artificial Intelligence (AI) in IDS. Second, it offers a risk 
assessment mechanism for multi-tenant environments via 
reputation-based trust value management, ensuring that 
security actions reflect both short-term evidence and long-
term behavior. Third, beyond merely conducting risk 
assessment, our approach also integrates risk assessment with 
slice-aware access control. By turning risk signals into 
concrete access decisions, the system localizes threats and 
blocks high-risk UEs from accessing critical slices. Overall, 
by coupling AE-based IDS with trust-driven, slice-aware 
access control, AEIDS-TLDSAC strengthens the security of 
5G network-slicing architectures while preserving their 
flexibility to meet diverse service requirements. 

The remainder of this paper is organized as follows. In 
Section II, we provide some background of our research and 
also review some related researches. In section III, we explain 
proposed AEIDS-TLDSAC in details, including its 
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architecture and workflow. In Section IV, we conduct several 
experiments to evaluate the effectiveness of our work. Finally, 
we make a conclusion of our research in Section V. 

II. BACKGROUND AND RELATED WORKS 
This section introduces the research background and 

related works, including network slicing, intrusion detection 
system, reputation mechanism, and access control. 

A. Network Slicing 
By leveraging Software-Defined Networking (SDN) and 

Network Functions Virtualization (NFV), 5G/B5G networks 
can be divided into several logically isolated end-to-end slices. 
To achieve more adaptive orchestration and allocation of slice 
resources, [5] and [6] introduced a reinforcement learning–
based scheme for dynamic slice resource management to 
deliver more reliable QoS. However, [7] indicated that the 
high dynamism and flexibility of network slicing make slices 
more vulnerable to malicious behaviors, with attacks 
potentially propagating easily across slices. Therefore, 
stronger slice isolation mechanisms are required, and AI-
based IDS should be employed to monitor slice traffic and 
detect malicious activities at the earliest possible stage[8]. 

B. Intrusion Detection System 
Intrusion Detection Systems monitor and analyze network 

traffic or system behavior to identify potential malicious 
activity. According to their detection methodology, IDS can 
be categorized as signature-based or anomaly-based[9]. The 
former relies on predefined rules; it is fast but limited because 
small deviations in traffic features can cause misses. The latter 
employs AI models to learn complex relationships among 
traffic patterns, offering greater flexibility, and is more 
effective against unknown and zero-day attacks. Reference 
[10] applied supervised learning (SL) models in 5G network 
slicing environments for intrusion detection, achieving high 
accuracy when sufficient labeled data are available. Reference 
[11] adopted signature-based pattern matching for slice-level 
intrusion detection. However, signature-based or supervised 
learning models generally struggle to recognize unknown 
attack types. In highly heterogeneous 5G environment, these 
limitations are pronounced, and maintaining fully labeled 
datasets is also costly. Therefore, we adopt an unsupervised 
Autoencoder–based IDS[12] that leverages reconstruction 
error for detection[13].  

C. Reputation and Access Control Mechanism 
Reputation-based security mechanisms quantify the 

trustworthiness of users by evaluating their historical 
behaviors and interaction records, thereby estimating a trust 
value. In multi-tenant 5G network slicing scenarios, the 
importance of such trust values is amplified. The slice trust 
model proposed in [14] introduces trust awareness to improve 
cross-slice security. Likewise, [15] argues that future 5G and 
beyond networks require quantifiable trust models to 
overcome vulnerabilities inherent in purely feature-based 
detection. Nevertheless, reputation-based mechanisms alone 
remain insufficient: while a trust value reflects potential risk, 
it often lacks tight integration with existing policy 
frameworks. To address this, our work draws upon the design 
principles of rule-based access control, including Role-Based 
Access Control (RBAC) and Risk-Adaptive Access Control 
(RAdAC), and combines them with the concept of quarantine 
slices from [16]. We treat the trust value as a risk signal that 

directly governs whether a UE may access a given slice, 
thereby strengthening the isolation of high-risk UEs. 
 While prior studies have contributed to intrusion detection, 
reputation mechanisms, and access control for network slicing, 
most focus on a single aspect. In contrast, proposed AEIDS-
TLDSAC framework jointly integrates an Autoencoder-based 
IDS, dynamic trust evaluation, access control, and quarantine-
slice, to more comprehensively enhance the security and 
isolation of network slices and prevent malicious UEs from 
degrading slice service quality. 

III. SYSTEM ARCHITECTURE 
In this section, proposed AEIDS-TLDSAC will be 

introduced in detail, including the overall system architecture 
and working flow. Section A will introduce the system 
architecture, Section B will introduce our Autoencoder-based 
IDS, and Section C will introduce TLDSAC mechanism. 

A. System Architecture 
AEIDS-TLDSAC consists of two components: The 

Autoencoder-based IDS and TLDSAC. The IDS employs an 
autoencoder to identify malicious traffic, thereby locating 
malicious users connected to a slice. Through the TLDSAC 
mechanism, it lowers the Trust Level (TL) to restrict the 
malicious UE’s slice access privileges and isolate it. The 
system architecture of AEIDS-TLDSAC is shown in the Fig. 
1. When a UE connects to the 5G core network via the 
gNodeB (gNB), the Access and Mobility Management 
Function (AMF), based on the user’s trust level stored in the 
Unified Data Management Function (UDM), queries the 
Network Slice Selection Function (NSSF) for the slices the 
UE is allowed to use and then attaches the UE to the 
corresponding Network Slice Instance (NSI). If the UE’s trust 
level is insufficient to access the requested slice, it is isolated 
to a quarantine slice to prevent high-risk UEs from entering to 
that unavailable slice. Each slice instance has its own Session 
Management Function (SMF) and User Plane Function 
(UPF), which respectively manage the PDU sessions 
established between the UE and the Data Network (DN) and 
forward the UE’s packets to the DN. The IDS is deployed on 
the UPF, and it reports the results to the SMF as the basis for 
updating the UE’s trust level. 

 
Fig. 1. AEIDS-TLDSAC system architecture 

B. Autoencoder-Based Intrusion Detection 
In Autoencoder-based IDS, we adopt an autoencoder as 

the intrusion detection model. By using unsupervised 
Autoencoder, this IDS can recognize attack types that are 
absent from the dataset. The core idea is to train the 
autoencoder solely on normal traffic so that it learns only the 
distribution of benign behavior. Leveraging the 
autoencoder’s reconstruction property, it becomes proficient 
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at reconstructing normal traffic but not malicious traffic. As 
a result, when encountering malicious traffic, even if the 
attack type has not appeared in the dataset, the autoencoder, 
having not learned how to reconstruct malicious data, usually 
produces a higher reconstruction error (RE), thereby enabling 
recognition between benign and malicious traffic. This makes 
the approach well suited to the highly diverse and dynamic 
environment of network slicing. The architecture and 
workflow of IDS are shown in Fig.2.  

After network traffic is fed into the IDS, a preprocessing 
step, including Z-score normalization, label encoding, and 
outliers handling, transforms it into a form suitable for 
autoencoder inference. The processed data are then 
reconstructed by the autoencoder, and the Mean Squared 
Error (MSE) between the reconstructed data and the original 
inputs is computed. The RE is then compared against a 
predefined threshold. For threshold selection, a subset of the 
normal training data is held out as a validation set; following 
[17], the 95th percentile of the validation RE is used as the 
decision criterion. If the RE exceeds this threshold, it 
indicates that the autoencoder cannot effectively reconstruct 
the sample, and the flow is classified as malicious; otherwise, 
it is classified as normal. 

 
Fig. 2. Autoencoder-based IDS system architecture and workflow 

C. Trust Level Driven Slice Access Control 
To further enhance the overall security of the network 

slicing architecture, we design TDLSAC mechanism. The 
purpose of TLDSAC is to dynamically manage UE slice 
access permissions through risk-adaptive control and to apply 
isolation measures, thereby mitigating the impact of 
malicious UEs and maintaining the QoS of legitimate UEs. 
TLDSAC workflow is shown in Fig. 3. 

When a UE initiates a connection request, if its trust level 
is below zero, it indicates the presence of excessive malicious 
behavior and a higher degree of risk; in such cases, the UE’s 
connection will be blocked. If the trust level is greater than 
zero, the system further checks whether it meets the minimum 
trust level required by the requested slice. If the UE’s trust 
level is insufficient, the UE will be redirected to a quarantine 
slice; otherwise, it is allowed to connect to the requested slice. 
During the connection, a tolerance value is maintained for 
each UE, representing the amount of malicious traffic that can 
be tolerated. Whenever malicious traffic is detected, this 
value will be decreased, and the system will evaluate whether 
tolerance value has exceeded the threshold. If the threshold is 
surpassed, the connection will be terminated, and the UE’s 
trust level will be reduced. This design mitigates the impact 
of occasional IDS detection noise, preventing premature 
throttling or blocking of legitimate UEs. 

 
Fig. 3 TLDSAC workflow 

IV. EXPERIMENTS AND DISCUSSIONS 
This section demonstrates the results and discussions of 

the experiments, including performance evaluation of 
Autoencoder-based IDS and effectiveness of TLDSAC. 

A. Performance Evaluation of Autoencoder-Based IDS 
The objective of this experiment is to evaluate the 

performance of Autoencoder-based IDS in detecting 
malicious attacks. Since the protocols used in 5G differ from 
wired network, two datasets constructed on 5G testbeds—
5GNIDD[18] and WUSTL-HDRL[19]—were adopted. The 
results on the testing set are summarized in Table I and Table 
Ⅱ. The results demonstrate that our Autoencoder-based IDS 
achieves 97.16% and 97.34% accuracy in 5GNIDD and 
WUSTL-HDRL respectively. Besides, this Autoencoder-
based IDS also attains high precision, recall, and F1-scores 
across both normal and malicious classes, indicating that it can 
effectively detect malicious traffic. The distributions of the 
data categories of two datasets are shown in  Fig. 4 and Fig. 5. 
In this experiment, 75% of the normal data were used for 
training, with 10% of the training data further set aside as a 
validation set. An additional 15% of the normal data were used 
to compute reconstruction errors, and the remaining 10% 
served as the testing set. 

 

 

45



 

TABLE I.  AUTOENCODER-BASED IDS PERFORMANCE ON 5GNIDD 

Class 
Metrics 

Precision Recall F1-score 
Normal 0.99 0.95 0.97 

Malicious 0.95 0.99 0.97 
Accuracy 97.16% 

 

TABLE II.  AUTOENCODER-BASED IDS  PERFORMANCE ON WUSTL-
HDRL 

Class 
Metrics 

Precision Recall F1-score 
Normal 0.99 0.95 0.97 

Malicious 0.95 0.99 0.97 
Accuracy 97.34% 

 

 
Fig. 4. 5GNIDD data distribution 

 

 
Fig. 5. WUSTL-HDRL data distribution 

 

B. Performance Evaluation of TLDSAC 
The objective of this experiment is to evaluate the 

effectiveness of the proposed TLDSAC in protecting 
legitimate UEs within network slices. The experiment lasted 
150 seconds in total. During the first 30 seconds, 50 
legitimate UEs accessed the slice, and 100 malicious UEs 
launched an attack at 30 seconds. In this experiment, the 
tolerance value and the trust value are set to 10, minimum 
required trust level of the slice is set to 8. These values can 
be adjusted to accommodate different deployment scenarios, 
parameter tuning is application-specific and is not pursued 
here. The average response time of legitimate UEs was 

measured, as shown in Fig. 6. The orange curve represents 
the baseline without any protection, the blue curve represents 
the TLDSAC adopting the Additive Increase Multiplicative 
Decrease (AIMD) tolerance and trust value adjustment 
strategy, and the green curve represents the Additive Increase 
Additive Decrease (AIAD) strategy. The results show that, 
after the attack begins at 30 seconds, the baseline fails to 
recover to the pre-attack state, whereas both AIMD and 
AIAD successfully isolate malicious UEs and restore normal 
service to legitimate UEs. Due to AIMD’s faster adjustment 
compared to AIAD, AIMD recovered by approximately 50 
seconds, while AIAD required about 80 seconds.  

 
Fig. 6. Legitimate UEs average respond time 

  
Further detailed results are presented in Table III. It shows 

that AIMD improves the average response time by 71.23% 
compared to the baseline and by 59.02% compared to AIAD, 
while AIAD achieves a 29.78% improvement over the 
baseline. For the average median response time, AIMD 
improves by 85.26% over the baseline and 46.30% over 
AIAD, while AIAD improves by 72.56% over the baseline. 
For average tail response time (99th percentile), AIMD 
improves by 63.37% over the baseline and 42.89% over 
AIAD, while AIAD improves by 35.86% over the baseline. 
While AIMD generally outperforms AIAD, its faster 
adjustments also result in 4.16% higher false positive rate 
than AIAD. 

TABLE III.  TLDSAC AND BASELINE PERFORMANCE COMPARISON 

Method 
Measurement 

Average 
Respond Time 

(ms) 

Average Median 
Response Time 

(ms) 

Average Tail 
Response Time 

(ms) 
AIMD-

TLDSAC 268.53 157.16 717.36 

AIAD-
TLDSAC 655.32 292.64 1256.08 

Baseline 933.30 1066.62 1958.45 

 

V. CONCLUSION 
 The AEIDS-TLDSAC framework is designed to mitigate 
the vulnerabilities of the network slicing architecture and 
enhance slice security. Through Autoencoder-based IDS, 
malicious behaviors within network slices can be effectively 
monitored. Combined with TLDSAC, which dynamically 
adjusts each UE’s trust value and employs it as the basis for 
risk assessment, TLDSAC controls UE access permissions to 
slices and isolates high-risk UEs into quarantine slices.  

 Experimental results show that our Autoencoder-based 
IDS achieves detection accuracies of 97.16% and 97.34% on 
two 5G datasets. The results also demonstrate that the AIMD-
based TLDSAC delivers the best performance, with 
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improvements of 71.23%, 85.26%, and 63.37% over the 
baseline in terms of average, median, and tail response time, 
respectively. Although AIMD achieves better overall 
performance, it also results in a 4.16% higher rate of 
misclassifying legitimate UEs as malicious. Thus, the choice 
between AIMD and AIAD ultimately depends on the specific 
application requirements. 
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