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Abstract—Network slicing, a key capability in SG network,
enables telecom operators to create multiple end-to-end virtual
network slices on shared infrastructure. While offering flexible
deployment, multi-tenancy and dynamic resource allocation in
slices also increase security risks. To mitigate the vulnerabilities
of the network slicing architecture, we propose an Autoencoder-
Based Intrusion Detection System with Trust Level Driven Slice
Access Control (AEIDS-TLDSAC) framework. Autoencoder-
based IDS, leverages reconstruction error to detect anomalies,
enabling recognition of unknown attacks and making it suitable
for dynamic slicing environments. TLDSAC maintains a trust
value for each UE, adjusting it based on IDS detection results.
Malicious behavior lowers the trust value and triggers access
restrictions, ensuring only UEs meeting trust requirements can
access slices. Experiment results show that our Autoencoder-
based IDS achieved 97.16% and 97.34% accuracy on two 5G
testbed datasets. In addition, Additive-Increase Multiplicative-
Decrease (AIMD) and Additive-Increase Additive-Decrease
(AIAD) based TLDSAC mechanisms outperformed the baseline
in average, median, and tail response time, with AIMD
delivering the best reductions—71.23%, 85.26%, and 63.37%,
respectively.

Keywords—5G/B5G, Network Slicing, Autoencoder, Intrusion
Detection System, Trust Level, Access Control

I. INTRODUCTION

In 5G/B5G networks, network slicing is a foundational
capability that enables telecom operators to partition a shared
physical infrastructure into multiple, isolated logical slices,
each tailored to the needs of a specific service class or
application. A slice provides end-to-end connectivity across
the User Equipment (UE), Radio Access Network (RAN), and
core network, while dynamically allocating compute, storage,
and network resources to meet application demands. For
example, a slice supporting remote surgery must be prioritized
and engineered with ultra-low latency and high reliability to
guarantee deterministic performance, whereas a video-
streaming slice primarily requires sustained high throughput
to ensure stable playback. By elastically orchestrating
resources and policies per slice, SG/B5G systems can more
effectively satisfy heterogeneous requirements and provide
different services such as enhanced Mobile Broadband
(eMBB), Ultra-Reliable and Low Latency Communications
URLLC), and massive Machine Type Communication
(mMTC) without violating Service Level Agreements (SLAs)
or Quality of Service (QoS) constraints.

Despite these benefits, network slicing also expends the
attack and abuse surface. Since slices are typically deployed
in multi-tenant environments[1], where diverse users and
applications coexist and share underlying network functions
and infrastructure resources. This makes malicious users
become harder to detect, and benign users are more likely to
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be affected. Moreover, since slice resources can be allocated
dynamically[2], a slice under attack may request additional
resources after exhausting its own, and indirectly degrading
the performance of the overall network system. Such behavior
can unintentionally starve the underlying resource pool and
degrade other slices’ performance, creating cross-slice
interference and SLA violations. Consequently, continuous
monitoring[3], timely risk assessment, and the ability to
restrict malicious or high-risk UEs from accessing sensitive
slices are critical to preserving overall system stability and
security.

To address these challenges, we propose an Autoencoder-
Based Intrusion Detection System with Trust-Level Driven
Slice Access Control (AEIDS-TLDSAC) framework. The
design integrates two tightly coupled components:
Autoencoder-based IDS and TLDSAC. First, we develop an
IDS using an autoencoder to identify malicious traffic
generated by UE. By deploying this Autoencoder-based IDS,
the traffic from diverse UEs can be monitored on the slice, and
malicious UEs can be detected as soon as possible. Secondly,
we then propose a UE trust value evaluation model that
follows a reputation-based mechanism[4]; the trust value is
adjusted dynamically according to each UE’s historical
behavior and IDS outputs and serves as the basis for risk
assessment. Finally, we integrate an access-control
mechanism that sets slice-specific trust thresholds according
to their security requirements; when a UE’s trust value falls
below the threshold, its access to that slice is restricted and it
is redirected to a quarantine slice. By preventing high-risk
UEs from accessing unavailable slices, proposed AEIDS-
TLDSAC can enhance the overall stability and security of 5G
network-slicing architectures.

The proposed approach delivers three key benefits. First,
it improves detection coverage and accuracy by integrating
Artificial Intelligence (AI) in IDS. Second, it offers a risk
assessment mechanism for multi-tenant environments via
reputation-based trust value management, ensuring that
security actions reflect both short-term evidence and long-
term behavior. Third, beyond merely conducting risk
assessment, our approach also integrates risk assessment with
slice-aware access control. By turning risk signals into
concrete access decisions, the system localizes threats and
blocks high-risk UEs from accessing critical slices. Overall,
by coupling AE-based IDS with trust-driven, slice-aware
access control, AEIDS-TLDSAC strengthens the security of
5G network-slicing architectures while preserving their
flexibility to meet diverse service requirements.

The remainder of this paper is organized as follows. In
Section II, we provide some background of our research and
also review some related researches. In section III, we explain
proposed AEIDS-TLDSAC in details, including its
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architecture and workflow. In Section IV, we conduct several
experiments to evaluate the effectiveness of our work. Finally,
we make a conclusion of our research in Section V.

II. BACKGROUND AND RELATED WORKS

This section introduces the research background and
related works, including network slicing, intrusion detection
system, reputation mechanism, and access control.

A. Network Slicing

By leveraging Software-Defined Networking (SDN) and
Network Functions Virtualization (NFV), SG/B5G networks
can be divided into several logically isolated end-to-end slices.
To achieve more adaptive orchestration and allocation of slice
resources, [5] and [6] introduced a reinforcement learning—
based scheme for dynamic slice resource management to
deliver more reliable QoS. However, [7] indicated that the
high dynamism and flexibility of network slicing make slices
more vulnerable to malicious behaviors, with attacks
potentially propagating easily across slices. Therefore,
stronger slice isolation mechanisms are required, and Al-
based IDS should be employed to monitor slice traffic and
detect malicious activities at the earliest possible stage[8].

B. Intrusion Detection System

Intrusion Detection Systems monitor and analyze network
traffic or system behavior to identify potential malicious
activity. According to their detection methodology, IDS can
be categorized as signature-based or anomaly-based[9]. The
former relies on predefined rules; it is fast but limited because
small deviations in traffic features can cause misses. The latter
employs Al models to learn complex relationships among
traffic patterns, offering greater flexibility, and is more
effective against unknown and zero-day attacks. Reference
[10] applied supervised learning (SL) models in 5G network
slicing environments for intrusion detection, achieving high
accuracy when sufficient labeled data are available. Reference
[11] adopted signature-based pattern matching for slice-level
intrusion detection. However, signature-based or supervised
learning models generally struggle to recognize unknown
attack types. In highly heterogeneous 5G environment, these
limitations are pronounced, and maintaining fully labeled
datasets is also costly. Therefore, we adopt an unsupervised
Autoencoder—based IDS[12] that leverages reconstruction
error for detection[13].

C. Reputation and Access Control Mechanism

Reputation-based security mechanisms quantify the
trustworthiness of wusers by evaluating their historical
behaviors and interaction records, thereby estimating a trust
value. In multi-tenant 5G network slicing scenarios, the
importance of such trust values is amplified. The slice trust
model proposed in [14] introduces trust awareness to improve
cross-slice security. Likewise, [15] argues that future 5G and
beyond networks require quantifiable trust models to
overcome vulnerabilities inherent in purely feature-based
detection. Nevertheless, reputation-based mechanisms alone
remain insufficient: while a trust value reflects potential risk,
it often lacks tight integration with existing policy
frameworks. To address this, our work draws upon the design
principles of rule-based access control, including Role-Based
Access Control (RBAC) and Risk-Adaptive Access Control
(RAdAC), and combines them with the concept of quarantine
slices from [16]. We treat the trust value as a risk signal that
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directly governs whether a UE may access a given slice,
thereby strengthening the isolation of high-risk UEs.

While prior studies have contributed to intrusion detection,
reputation mechanisms, and access control for network slicing,
most focus on a single aspect. In contrast, proposed AEIDS-
TLDSAC framework jointly integrates an Autoencoder-based
IDS, dynamic trust evaluation, access control, and quarantine-
slice, to more comprehensively enhance the security and
isolation of network slices and prevent malicious UEs from
degrading slice service quality.

III. SYSTEM ARCHITECTURE

In this section, proposed AEIDS-TLDSAC will be
introduced in detail, including the overall system architecture
and working flow. Section A will introduce the system
architecture, Section B will introduce our Autoencoder-based
IDS, and Section C will introduce TLDSAC mechanism.

A. System Architecture

AEIDS-TLDSAC consists of two components: The
Autoencoder-based IDS and TLDSAC. The IDS employs an
autoencoder to identify malicious traffic, thereby locating
malicious users connected to a slice. Through the TLDSAC
mechanism, it lowers the Trust Level (TL) to restrict the
malicious UE’s slice access privileges and isolate it. The
system architecture of AEIDS-TLDSAC is shown in the Fig.
1. When a UE connects to the 5G core network via the
gNodeB (gNB), the Access and Mobility Management
Function (AMF), based on the user’s trust level stored in the
Unified Data Management Function (UDM), queries the
Network Slice Selection Function (NSSF) for the slices the
UE is allowed to use and then attaches the UE to the
corresponding Network Slice Instance (NSI). If the UE’s trust
level is insufficient to access the requested slice, it is isolated
to a quarantine slice to prevent high-risk UEs from entering to
that unavailable slice. Each slice instance has its own Session
Management Function (SMF) and User Plane Function
(UPF), which respectively manage the PDU sessions
established between the UE and the Data Network (DN) and
forward the UE’s packets to the DN. The IDS is deployed on
the UPF, and it reports the results to the SMF as the basis for
updating the UE’s trust level.
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Fig. 1. AEIDS-TLDSAC system architecture

B. Autoencoder-Based Intrusion Detection

In Autoencoder-based IDS, we adopt an autoencoder as
the intrusion detection model. By using unsupervised
Autoencoder, this IDS can recognize attack types that are
absent from the dataset. The core idea is to train the
autoencoder solely on normal traffic so that it learns only the
distribution of benign behavior. Leveraging the
autoencoder’s reconstruction property, it becomes proficient



at reconstructing normal traffic but not malicious traffic. As
a result, when encountering malicious traffic, even if the
attack type has not appeared in the dataset, the autoencoder,
having not learned how to reconstruct malicious data, usually
produces a higher reconstruction error (RE), thereby enabling
recognition between benign and malicious traffic. This makes
the approach well suited to the highly diverse and dynamic
environment of network slicing. The architecture and
workflow of IDS are shown in Fig.2.

After network traffic is fed into the IDS, a preprocessing
step, including Z-score normalization, label encoding, and
outliers handling, transforms it into a form suitable for
autoencoder inference. The processed data are then
reconstructed by the autoencoder, and the Mean Squared
Error (MSE) between the reconstructed data and the original
inputs is computed. The RE is then compared against a
predefined threshold. For threshold selection, a subset of the
normal training data is held out as a validation set; following
[17], the 95th percentile of the validation RE is used as the
decision criterion. If the RE exceeds this threshold, it
indicates that the autoencoder cannot effectively reconstruct
the sample, and the flow is classified as malicious; otherwise,
it is classified as normal.
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Fig. 2. Autoencoder-based IDS system architecture and workflow

C. Trust Level Driven Slice Access Control

To further enhance the overall security of the network
slicing architecture, we design TDLSAC mechanism. The
purpose of TLDSAC is to dynamically manage UE slice
access permissions through risk-adaptive control and to apply
isolation measures, thereby mitigating the impact of
malicious UEs and maintaining the QoS of legitimate UEs.
TLDSAC workflow is shown in Fig. 3.

When a UE initiates a connection request, if its trust level
is below zero, it indicates the presence of excessive malicious
behavior and a higher degree of risk; in such cases, the UE’s
connection will be blocked. If the trust level is greater than
zero, the system further checks whether it meets the minimum
trust level required by the requested slice. If the UE’s trust
level is insufficient, the UE will be redirected to a quarantine
slice; otherwise, it is allowed to connect to the requested slice.
During the connection, a tolerance value is maintained for
each UE, representing the amount of malicious traffic that can
be tolerated. Whenever malicious traffic is detected, this
value will be decreased, and the system will evaluate whether
tolerance value has exceeded the threshold. If the threshold is
surpassed, the connection will be terminated, and the UE’s
trust level will be reduced. This design mitigates the impact
of occasional IDS detection noise, preventing premature
throttling or blocking of legitimate UEs.
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Fig. 3 TLDSAC workflow

IV. EXPERIMENTS AND DISCUSSIONS

This section demonstrates the results and discussions of
the experiments, including performance evaluation of
Autoencoder-based IDS and effectiveness of TLDSAC.

A. Performance Evaluation of Autoencoder-Based IDS

The objective of this experiment is to evaluate the
performance of Autoencoder-based IDS in detecting
malicious attacks. Since the protocols used in 5G differ from
wired network, two datasets constructed on 5G testbeds—
SGNIDD[18] and WUSTL-HDRL[19]—were adopted. The
results on the testing set are summarized in Table I and Table
II. The results demonstrate that our Autoencoder-based IDS
achieves 97.16% and 97.34% accuracy in 5GNIDD and
WUSTL-HDRL respectively. Besides, this Autoencoder-
based IDS also attains high precision, recall, and F1-scores
across both normal and malicious classes, indicating that it can
effectively detect malicious traffic. The distributions of the
data categories of two datasets are shown in Fig. 4 and Fig. 5.
In this experiment, 75% of the normal data were used for
training, with 10% of the training data further set aside as a
validation set. An additional 15% of the normal data were used
to compute reconstruction errors, and the remaining 10%
served as the testing set.



TABLE 1. AUTOENCODER-BASED IDS PERFORMANCE ON 5GNIDD
Metrics
Class
Precision Recall Fl1-score
Normal 0.99 0.95 0.97
Malicious 0.95 0.99 0.97
Accuracy 97.16%
TABLE II. AUTOENCODER-BASED IDS PERFORMANCE ON WUSTL-
HDRL
Metrics
Class
Precision Recall Fl1-score
Normal 0.99 0.95 0.97
Malicious 0.95 0.99 0.97
Accuracy 97.34%
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B. Performance Evaluation of TLDSAC

The objective of this experiment is to evaluate the
effectiveness of the proposed TLDSAC in protecting
legitimate UEs within network slices. The experiment lasted
150 seconds in total. During the first 30 seconds, 50
legitimate UEs accessed the slice, and 100 malicious UEs
launched an attack at 30 seconds. In this experiment, the
tolerance value and the trust value are set to 10, minimum
required trust level of the slice is set to 8. These values can
be adjusted to accommodate different deployment scenarios,
parameter tuning is application-specific and is not pursued
here. The average response time of legitimate UEs was
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measured, as shown in Fig. 6. The orange curve represents
the baseline without any protection, the blue curve represents
the TLDSAC adopting the Additive Increase Multiplicative
Decrease (AIMD) tolerance and trust value adjustment
strategy, and the green curve represents the Additive Increase
Additive Decrease (AIAD) strategy. The results show that,
after the attack begins at 30 seconds, the baseline fails to
recover to the pre-attack state, whereas both AIMD and
AIAD successfully isolate malicious UEs and restore normal
service to legitimate UEs. Due to AIMD’s faster adjustment
compared to AIAD, AIMD recovered by approximately 50
seconds, while AIAD required about 80 seconds.
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Further detailed results are presented in Table III. It shows
that AIMD improves the average response time by 71.23%
compared to the baseline and by 59.02% compared to AIAD,
while AIAD achieves a 29.78% improvement over the
baseline. For the average median response time, AIMD
improves by 85.26% over the baseline and 46.30% over
AIAD, while AIAD improves by 72.56% over the baseline.
For average tail response time (99th percentile), AIMD
improves by 63.37% over the baseline and 42.89% over
AIAD, while AIAD improves by 35.86% over the baseline.
While AIMD generally outperforms AIAD, its faster
adjustments also result in 4.16% higher false positive rate
than AIAD.

TABLE III. TLDSAC AND BASELINE PERFORMANCE COMPARISON
Measurement
Method Average Average Median Average Tail
Respond Time Response Time Response Time
(ms) (ms) (ms)

AIMD-

TLDSAC 268.53 157.16 717.36
AIAD-

TLDSAC 655.32 292.64 1256.08
Baseline 933.30 1066.62 1958.45

V. CONCLUSION

The AEIDS-TLDSAC framework is designed to mitigate
the vulnerabilities of the network slicing architecture and
enhance slice security. Through Autoencoder-based IDS,
malicious behaviors within network slices can be effectively
monitored. Combined with TLDSAC, which dynamically
adjusts each UE’s trust value and employs it as the basis for
risk assessment, TLDSAC controls UE access permissions to
slices and isolates high-risk UEs into quarantine slices.

Experimental results show that our Autoencoder-based
IDS achieves detection accuracies of 97.16% and 97.34% on
two 5G datasets. The results also demonstrate that the AIMD-
based TLDSAC delivers the best performance, with



improvements of 71.23%, 85.26%, and 63.37% over the
baseline in terms of average, median, and tail response time,
respectively. Although AIMD achieves better overall
performance, it also results in a 4.16% higher rate of
misclassifying legitimate UEs as malicious. Thus, the choice
between AIMD and AIAD ultimately depends on the specific
application requirements.
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